55
2

Accelerated
Ray Tracing
Thomas Funkhouser

Princeton University
CO0S 526, Fall 2012

4 2\
Ray-Scene Intersection

gt
:
iy

Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Beyond rays
o Beam tracing
o etc.

4 N\
Bounding Volume Hierarchies | gﬂ’f

Urr

« Build hierarchy of bounding volumes
o Bounding volume of interior node contains all children

N\
/

®
©
@

O‘@\
D@

4 2\
Ray-Scene Intersection ,,wzf

Urr

* Find intersection with front-most primitive in scene

Intersection FindIntersection(Ray ray, Scene scene)

min_t = infinity

min_primitive = NULL

For each primitive in scene {
t = Intersect(ray, primitive);
if (t< min_t) then

min_primitive = primitive
min_t=t
: ®

}
return Intersection(min_t, min_primitive)
¥

J
4 N\
Bounding Volumes EQQ

» Check for intersection with simple shape first
o If ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents
J
s N
Bounding Volume Hierarchies o

+ Use hierarchy to accelerate ray intersections
o Intersect node contents only if hit bounding volume

4 N\
Bounding Volume Hierarchies Il

Ve

Ray-Scene Intersection

S

E“-’!—w}‘?
« Sort hits & detect early termination
FindIntersection(Ray ray, Node node)
{
/I Find intersections with child node bounding volumes
}}.Sort intersections front to back
/I Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {
if (min_t < bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t < min_t) { min_t = shape_t;}
}
return min_t;
}
J
4 2\
Uniform Grid 2

« Construct uniform grid over scene
o Index primitives according to overlaps with grid cells

Acceleration techniques

o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Beyond rays
o Beam tracing
o etc.

Ve

Uniform Grid

gt

e

» Trace rays through grid cells
o Fast
o Incremental

Only check primitives

in intersected grid cells

Ve

Ray-Scene Intersection

Gz

S

D F
A
C
»)
B
J
Ve 2\
Uniform Grid u
» Potential problem:
o How choose suitable grid resolution?
Too little benefit
if grid is too coarse) z E
Too much cost)
A ' C
if grid is too fine i <
ay
., B
a4
)

Acceleration techniques

» Octrees
» BSP trees

Beyond rays
o Beam tracing
o etc.

Ve

Octree E?»f

~

Ve

« Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

(e @)
o

Generally fewer cells D L
C

gt
:
iy

Ray-Scene Intersection

Acceleration techniques

» BSP trees

Beyond rays
o Beam tracing
o etc.

4 N\
Binary Space Partition (BSP) Tree ,,?;f

» Simple recursive algorithms
o Example: point finding

@

e N
Octree 2
» Trace rays through neighbor cells
o Fewer cells
o More complex neighbor finding
(e (@)
Nav8 R4
Trade-off fewer cells for D 4
more expensive traversal
A0
)~
)
e N
Binary Space Partition (BSP) Tree g?;
» Recursively partition space by planes
o Every cell is a convex polyhedron
J
e N
Binary Space Partition (BSP) Tree ,,?;f

» Trace rays by recursion on tree
o BSP construction enables simple front-to-back traversal

Other Accelerations

Binary Space Partition (BSP) Tree

RayTreelntersect(Ray ray, Node node, double min, double max) * Screen Space‘ (%Oherence
o Check last hit first .
if (Node is a leaf) . o) o Beam tracing A0
return intersection of closest primitive in cell, or NULL if none . . pie Tk lefe s
clse o Pencil tracing } b T,
dist = distance of the ray point to split plane of node o Cone tracing [o[e °
near_child = child of node that contains the origin of Ray *
far_child = other child of node * Memory coherence T~
if the interval to look is on near side . ‘ o Large scenes
return RayTreelntersect(ray, near_child, min, max)
else if the interval to look is on far side _] « Parallelism
return RayTreelntersect(ray, far_child, min, max) . s« . . »
else if the interval to look is on both side o Ray casting is “embarassingly parallelizable
if (RayTreelntersect(ray, near_child, min, dist)) return ...;
else return RayTreelntersect(ray, far_child, dist, max) * eftc.
}

Other Accelerations

Beam Tracing

+ Screen space coherence » Trace “bundle of rays” all at once
o Check last hit first
» Beam tracing

o Pencil tracing } b
o Cone tracing |°|°

* Memory coherence \P
o Large scenes

. . : ~ Shadow &
Parallellsm ' . . Reflection Transmission
o Ray casting is “embarassingly parallelizable” Beam Beam

* etc.

Trace beams (bundles of rays) from source

Beam Tracing Beam Tracing Method

» Specular reflections .
3D Environment

[Spatial Subdivision |
Cell Adjacency Graph

e
d
Sources eam Ilracin Off-Line

Beam Trees

Moving -
Source Receiver Path Generation

s Propagation Paths
Aouu(;icc?—' Auditory Display
i

Spatialized Audio

Interactive

-~

Beam Tracing Method ﬁ

el
Ul

 Input is source, receiver, and 3D environment

receiver

Isource

-~

Step 1: Spatial Subdivision

2
et

i

Ve

Step 2: Beam Tracing t?

5

« Trace beams through cell adjacency graph

+ Partition space into convex polyhedral cells

Ve

Step 2: Beam Tracing

2
o 45

-~

Step 2: Beam Tracing ﬁ

el
Ul

« Trace beams through cell adjacency graph

+ Trace beams through cell adjacency graph

tré

-~

Step 2: Beam Tracing

k3
it

%

» Trace beams through cell adjacency graph

-~

Step 2: Beam Tracing

2
et

i

* Trace beams through cell adjacency graph

-~

Ve

Step 2: Beam Tracing

v
i

5

« Trace beams through cell adjacency graph

-~

Step 3: Path Generation

L

« For each beam containing receiver ...

Step 2: Beam Tracing c?
» Trace beams through cell adjacency graph
~
Step 2: Beam Tracing 2z
» Store all beams in a tree data structure
Beam tree encodes regions reached by
different sequences of scattering from source
~
Step 3: Path Generation CQ

» Lookup propagation sequence in beam tree

s R
Step 3: Path Generation

« Construct shortest path along sequence

J
(N
Step 4: Auralization 2z
« Apply filter for each propagation path
ampllude
J
(M
Beam Tracing Method o
3D Environment
[Spatial Subdivision |
. | Cell Adjacency Graph
Stationary -
Sources Off-Li
| Beam Trees —
Interactive

Moving _
Receiver Path Generation

S 1 Propagation Paths
fu”Jicg—» Auditory Display
i

Spatialized Audio

p
Step 3: Path Generation

~

9
et

i

» Solve equal angle constraints for diffractions

J
(M
Step 4: Auralization o
+ Combine paths to model early response
ampllude
)
(2
Beam Tracing Demo),
J

e N
Experimental Results),
« Test propagation path update rates in
large environments with several reflections
J

Ve

Beam Tracing Results ,_,?a

~

Ve

Path Generation Results

95MHz CPU (1998)

» Propagation paths updated interactively ...

even for large environments

>

2 02
E_y :
38 10,057 input polygofts
g5 . 8 specular reflections
R 6 updates per second
(OS]
oe
& .

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Polygons in Environment

Ve

Path Generation Demo

&
i
A

» Beam tree does not necessarily grow with global
complexity of environment

400000

300000

200000

100000

Beams Traced
(up to 8 reflections)

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Polygons in Environment

Ve

Path Generation Video

gt
:
~PI%

288 polygocs, § mbictions)

Ve

Auralization Video o

Specular reflection only

data/movies/paths.bat
data/movies/vworks.bat

Ve

Auralization Video

Real-Time Auralization

(Bird's Eye View)

Diagnostic Results

listener |,
%

Power Power + Paths

Vs
Auralization Video Il o
Diffraction and specular reflection
~
Summary CQ

* Intersection acceleration techniques are important
o Bounding volume hierarchies
o Spatial partitions

» General concepts
o Sort objects spatially
o Make trivial rejections quick
o Utilize coherence when possible

| Expected time is sub-linear in number of primitives

» Useful for sound propagation too!

