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Ray-Scene Intersection 

• Find intersection with front-most primitive in scene 
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Intersection FindIntersection(Ray ray, Scene scene)  

{ 

 min_t = infinity 

 min_primitive = NULL 

 For each primitive in scene { 

  t = Intersect(ray, primitive); 

  if (t < min_t) then 

   min_primitive = primitive 

   min_t = t 

  }  

 } 

 return Intersection(min_t, min_primitive) 

} 

Ray-Scene Intersection 

Acceleration techniques 
 Bounding volume hierarchies 

 Spatial partitions 

» Uniform grids 

» Octrees 

» BSP trees 

Beyond rays 
 Beam tracing 

 etc. 

Bounding Volumes 

• Check for intersection with simple shape first 
 If ray doesn’t intersect bounding volume,  

then it doesn’t intersect its contents 

Bounding Volume Hierarchies I 

• Build hierarchy of bounding volumes 
 Bounding volume of interior node contains all children 
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Bounding Volume Hierarchies 

• Use hierarchy to accelerate ray intersections 
 Intersect node contents only if hit bounding volume 
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Bounding Volume Hierarchies III 

FindIntersection(Ray ray, Node node) 

{ 

 // Find intersections with child node bounding volumes 

 ... 

 // Sort intersections front to back 

 ... 

 // Process intersections (checking for early termination) 

 min_t = infinity; 

 for each intersected child i { 

  if (min_t < bv_t[i]) break; 

  shape_t = FindIntersection(ray, child); 

  if (shape_t < min_t) { min_t = shape_t;} 

 } 

 return min_t; 

} 

• Sort hits & detect early termination 

Ray-Scene Intersection 

Acceleration techniques 
 Bounding volume hierarchies 

 Spatial partitions 

» Uniform grids 

» Octrees 

» BSP trees 

Beyond rays 
 Beam tracing 

 etc. 

 

Uniform Grid 

• Construct uniform grid over scene 
 Index primitives according to overlaps with grid cells 
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Uniform Grid 

• Trace rays through grid cells  
 Fast 

 Incremental 
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Only check primitives 

in intersected grid cells 

Uniform Grid 

• Potential problem: 
 How choose suitable grid resolution?  
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Too little benefit 

if grid is too coarse 

Too much cost 

if grid is too fine 

Ray-Scene Intersection 

Acceleration techniques 
 Bounding volume hierarchies 

 Spatial partitions 

» Uniform grids 

» Octrees 

» BSP trees 

Beyond rays 
 Beam tracing 

 etc. 
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Octree 

• Construct adaptive grid over scene 
 Recursively subdivide box-shaped cells into 8 octants 

 Index primitives by overlaps with cells 
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Octree 

• Trace rays through neighbor cells 
 Fewer cells 

 More complex neighbor finding  
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Trade-off fewer cells for 

more expensive traversal 

Ray-Scene Intersection 

Acceleration techniques 
 Bounding volume hierarchies 

 Spatial partitions 

» Uniform grids 

» Octrees 

» BSP trees 

Beyond rays 
 Beam tracing 

 etc. 

 

Binary Space Partition (BSP) Tree 

• Recursively partition space by planes 
 Every cell is a convex polyhedron 
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Binary Space Partition (BSP) Tree 

• Simple recursive algorithms 
 Example: point finding 
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Binary Space Partition (BSP) Tree 

• Trace rays by recursion on tree 
 BSP construction enables simple front-to-back traversal 
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Binary Space Partition (BSP) Tree 

RayTreeIntersect(Ray ray, Node node, double min, double max) 

{ 

 if (Node is a leaf)  

  return intersection of closest primitive in cell, or NULL if none 

 else  

  dist = distance of the ray point to split plane of node 

  near_child = child of node that contains the origin of Ray 

       far_child = other child of node 

  if the interval to look is on near side  

   return RayTreeIntersect(ray, near_child, min, max) 

  else if the interval to look is on far side  

   return RayTreeIntersect(ray, far_child, min, max) 

  else if the interval to look is on both side  

   if (RayTreeIntersect(ray, near_child, min, dist)) return …; 

          else return RayTreeIntersect(ray, far_child, dist, max) 

} 

Other Accelerations 

• Screen space coherence 
 Check last hit first 

 Beam tracing 

 Pencil tracing 

 Cone tracing 

• Memory coherence 
 Large scenes 

• Parallelism 
 Ray casting is “embarassingly parallelizable” 

• etc. 
 

Other Accelerations 

• Screen space coherence 
 Check last hit first 

Beam tracing 

 Pencil tracing 

 Cone tracing 

• Memory coherence 
 Large scenes 

• Parallelism 
 Ray casting is “embarassingly parallelizable” 

• etc. 
 

Beam Tracing 

• Trace “bundle of rays” all at once 

Trace beams (bundles of rays) from source 

Beam Tracing 

• Specular reflections 

Beam Tracing Method 
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Beam Tracing Method 

• Input is source, receiver, and 3D environment 

Step 1: Spatial Subdivision 

• Partition space into convex polyhedral cells 

Step 2: Beam Tracing 

• Trace beams through cell adjacency graph 

source 

Step 2: Beam Tracing 

• Trace beams through cell adjacency graph 

source 

Step 2: Beam Tracing 

• Trace beams through cell adjacency graph 

source 

Step 2: Beam Tracing 

• Trace beams through cell adjacency graph 

source 
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Step 2: Beam Tracing 

• Trace beams through cell adjacency graph 

source 

Step 2: Beam Tracing 

• Trace beams through cell adjacency graph 

source 

Step 2: Beam Tracing 

• Trace beams through cell adjacency graph 

source 

Step 2: Beam Tracing 

• Store all beams in a tree data structure 

source 

Beam tree encodes regions reached by  
different sequences of scattering  from source 

transmission 

transmission 

transmission 

reflection 

diffraction 

Step 3: Path Generation 

• For each beam containing receiver ... 

source 

receiver 

Step 3: Path Generation 

• Lookup propagation sequence in beam tree 

source 

receiver 
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Step 3: Path Generation 

• Construct shortest path along sequence 

source 

receiver 

Step 3: Path Generation 

• Solve equal angle constraints for diffractions 

source 

receiver 

Step 4: Auralization 

• Apply filter for each propagation path 

source 

receiver 

Step 4: Auralization 

• Combine paths to model early response 

source 

receiver 

Beam Tracing Method 
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Experimental Results 

• Test propagation path update rates in  

large environments with several reflections 

Beam Tracing Results 

• Beam tree does not necessarily grow with global 

complexity of environment 
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Path Generation Results 

• Propagation paths updated interactively … 

even for large environments 
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10,057 input polygons 
8 specular reflections 
6 updates per second 

195MHz CPU (1998) 

Path Generation Video 

Path Generation Demo Auralization Video 

Specular reflection only 

data/movies/paths.bat
data/movies/vworks.bat
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Auralization Video Auralization Video II 

Diffraction and specular reflection 

Diagnostic Results 

Paths 

Power Power + Paths 

Summary 

• Intersection acceleration techniques are important 
 Bounding volume hierarchies 

 Spatial partitions 

• General concepts 
 Sort objects spatially 

 Make trivial rejections quick 

 Utilize coherence when possible 

 

 

 

• Useful for sound propagation too! 
 

Expected time is sub-linear in number of primitives 


