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Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Beyond rays
o Beam tracing
o etc.
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« Build hierarchy of bounding volumes
o Bounding volume of interior node contains all children
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* Find intersection with front-most primitive in scene

Intersection FindIntersection(Ray ray, Scene scene)

min_t = infinity

min_primitive = NULL

For each primitive in scene {
t = Intersect(ray, primitive);
if (t< min_t) then

min_primitive = primitive
min_t=t
: ®

}
return Intersection(min_t, min_primitive)
¥
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» Check for intersection with simple shape first
o If ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents
J
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Bounding Volume Hierarchies o

+ Use hierarchy to accelerate ray intersections
o Intersect node contents only if hit bounding volume
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« Sort hits & detect early termination
FindIntersection(Ray ray, Node node)
{
/I Find intersections with child node bounding volumes
}}.Sort intersections front to back
/I Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {
if (min_t < bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t < min_t) { min_t = shape_t;}
}
return min_t;
}
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« Construct uniform grid over scene
o Index primitives according to overlaps with grid cells

Acceleration techniques

o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Beyond rays
o Beam tracing
o etc.
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» Trace rays through grid cells
o Fast
o Incremental

Only check primitives

in intersected grid cells
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» Potential problem:
o How choose suitable grid resolution?
Too little benefit
if grid is too coarse ) z E
Too much cost )
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if grid is too fine i <
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Acceleration techniques

» Octrees
» BSP trees

Beyond rays
o Beam tracing
o etc.
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« Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells
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Ray-Scene Intersection

Acceleration techniques

» BSP trees

Beyond rays
o Beam tracing
o etc.
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» Simple recursive algorithms
o Example: point finding
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Octree 2
» Trace rays through neighbor cells
o Fewer cells
o More complex neighbor finding
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Trade-off fewer cells for D 4
more expensive traversal
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Binary Space Partition (BSP) Tree g?;
» Recursively partition space by planes
o Every cell is a convex polyhedron
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» Trace rays by recursion on tree
o BSP construction enables simple front-to-back traversal




Other Accelerations

Binary Space Partition (BSP) Tree

RayTreelntersect(Ray ray, Node node, double min, double max) * Screen Space‘ (%Oherence
o Check last hit first .
if (Node is a leaf) . o ) o Beam tracing A0
return intersection of closest primitive in cell, or NULL if none . . pie Tk lefe s
clse o Pencil tracing } b T,
dist = distance of the ray point to split plane of node o Cone tracing [o[e °
near_child = child of node that contains the origin of Ray *
far_child = other child of node * Memory coherence T~
if the interval to look is on near side . ‘ o Large scenes
return RayTreelntersect(ray, near_child, min, max)
else if the interval to look is on far side _ ] « Parallelism
return RayTreelntersect(ray, far_child, min, max) . s« . . »
else if the interval to look is on both side o Ray casting is “embarassingly parallelizable
if (RayTreelntersect(ray, near_child, min, dist)) return ...;
else return RayTreelntersect(ray, far_child, dist, max) * eftc.
}

Other Accelerations

Beam Tracing

+ Screen space coherence » Trace “bundle of rays” all at once
o Check last hit first
» Beam tracing

o Pencil tracing } b
o Cone tracing |°|°

* Memory coherence \P
o Large scenes

. . : ~ Shadow &
Parallellsm ' . . Reflection Transmission
o Ray casting is “embarassingly parallelizable” Beam Beam

* etc.

Trace beams (bundles of rays) from source

Beam Tracing Beam Tracing Method

» Specular reflections .
3D Environment
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Beam Tracing Method ﬁ
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 Input is source, receiver, and 3D environment

receiver
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Step 1: Spatial Subdivision
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Step 2: Beam Tracing t?
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« Trace beams through cell adjacency graph

+ Partition space into convex polyhedral cells
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Step 2: Beam Tracing
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Step 2: Beam Tracing ﬁ
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« Trace beams through cell adjacency graph

+ Trace beams through cell adjacency graph
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Step 2: Beam Tracing
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» Trace beams through cell adjacency graph
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Step 2: Beam Tracing
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* Trace beams through cell adjacency graph
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Step 2: Beam Tracing

v
i

5

« Trace beams through cell adjacency graph
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Step 3: Path Generation
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« For each beam containing receiver ...

Step 2: Beam Tracing c?
» Trace beams through cell adjacency graph
~
Step 2: Beam Tracing 2z
» Store all beams in a tree data structure
Beam tree encodes regions reached by
different sequences of scattering from source
~
Step 3: Path Generation CQ

» Lookup propagation sequence in beam tree




s R
Step 3: Path Generation

« Construct shortest path along sequence
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Step 4: Auralization 2z
« Apply filter for each propagation path
ampllude
J
( M
Beam Tracing Method o
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Spatialized Audio
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Step 3: Path Generation

~

9
et

i

» Solve equal angle constraints for diffractions
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Step 4: Auralization o
+ Combine paths to model early response
ampllude
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Beam Tracing Demo ),
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Experimental Results ),
« Test propagation path update rates in
large environments with several reflections
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Beam Tracing Results ,_,?a
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Path Generation Results

95MHz CPU (1998)

» Propagation paths updated interactively ...

even for large environments
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Path Generation Demo

&
i
A

» Beam tree does not necessarily grow with global
complexity of environment
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Path Generation Video
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Auralization Video o

Specular reflection only



data/movies/paths.bat
data/movies/vworks.bat
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Auralization Video

Real-Time Auralization

(Bird's Eye View)

Diagnostic Results
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Diffraction and specular reflection
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Summary CQ

* Intersection acceleration techniques are important
o Bounding volume hierarchies
o Spatial partitions

» General concepts
o Sort objects spatially
o Make trivial rejections quick
o Utilize coherence when possible

| Expected time is sub-linear in number of primitives

» Useful for sound propagation too!




