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Spectral Meshes
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Frequencies in a mesh

Motivation

o8

Want frequency domain representation for
3D meshes

o Smoothing

o Compression

o Progressive transmission

o Watermarking

o etc.
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Frequencies in a mesh

One possibility = multiresolution meshes
o Like wavelets

> p>

This lecture = spectral meshes
o Like Fourier

[Hoppe] [Hoppe]
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Filtering

Filtering ;aQ

P\ Filtering ;"
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Filtering on a mesh oy Frequencies in a function
Fourier analysis
p 4 o 2D bases for 2D signals (images)
A Filtering =
[Taubin 95]
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How about 3D shapes? B\ 4 Basis functions for 3D meshes Q

Problem: 2D surfaces embedded in 3D
are not (height) functions

Height function, regularly General 3D shapes
sampled above a 2D domain

Need extension of the Fourier basis to a general
(irregular) mesh

sin(kx)



Basis functions for 3D meshes 5

Harmonics

k=
i:m.

We need a collection of basis functions
o First basis functions will be very smooth, slowly-varying
o Last basis functions will be high-frequency, oscillating

We will represent our shape (mesh geometry) as a linear
combination of the basis functions

sin(kx) are the stationary vibrating modes = harmonics of a string

Harmonics oy Spherical Harmonics B
Harmonics Harmonics wd
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Line 9$60
Sphere :;0@0
Stationary vibrating modes Stationary vibrating modes
Manifold Harmonics @ Harmonics L

Harmonics I)

Stationary vibrating modes

Wave equation:
T 02ylox? = p 7y,
T: stiffness p: mass |

<
.
|
s
x

Stationary modes:
y(xt) = y(x)sin(wt)
0%ylox? = -pwATy
eigenfunctions of 62/0x?
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Harmonics

The Mesh Laplacian operator ﬁQ

Harmonics are eigenfunctions of 92/0x?
On a mesh, ¢%/0x? is the Laplacian A

Frequency domain basis functions for 3D meshes
are eigenfunctions of the Laplacian

i

Laplacian operator in matrix form

LN

L(v)=dyv; - Z Vi :di(vi_di 2 ij
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jen )

Measures the local smoothness at each mesh
vertex
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Spectral bases
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The spectral basis

First functions are smooth and slow, last oscillate a lot
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chain connectivity
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spectral basis of L =
the DCT basis

horse connectivity
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2 basis 10" basis 100" basis
function function function

L is a symmetric nxn matrix
Eigenfunctions of L computed with spectral analysis
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Basis vectors  Frequencies,
sorted in ascending
order

The spectral basis

First functions are smooth and slow, last oscillate a lot
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Spectral mesh representation p
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Coordinates represented in spectral basis:

X, Y,Z eR". .
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The spectral basis
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Spectral mesh representation an

Most shape information is in low-frequency
components

e

[Karni and Gotsman 00]

Mesh smoothing

%)

Coordinates represented in spectral basis:

Aim to remove high frequency details

[Taubin 95]
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components are components are
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Applications ;Q
Smoothing

Compression
Progressive transmission
Watermarking

etc.

Spectral mesh smoothing

Drop the high-frequency components
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High-frequency components!



Mesh compression

k=
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Mesh compression A48
Aim to represent surface with fewer bits

36 bits/vertex 1.4 bits/vertex
Mesh compression A48
What happens if quantize xyz coordinates?
Mesh compression .

Most of mesh data is in geometry
o The connectivity (the graph) can be very efficiently
encoded
» About 2 bits per vertex only
o The geometry (x,y,z) is heavy!
» When stored naively, at least 12 bits per coordinate
are needed, i.e. 36 bits per vertex

k=
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Mesh compression

Transform the Cartesian coordinates to another
space where quantization error will have low
frequency in the regular Cartesian space

Quantize the transformed coordinates.

Low-frequency errors are less apparent to a human
observer.

Quantization of the Cartesian coordinates
introduces high-frequency errors to the surface.

High-frequency errors alter the visual appearance of
the surface — affect normals and lighting.

Spectral mesh compression g
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The encoding side:
o Compute the spectral bases from mesh connectivity
o Represent the shape geometry in the spectral basis and decide how
many coeffs. to leave (K)
o Store the connectivity and the K non-zero coefficients

The decoding side:
o Compute the first K spectral bases from the connectivity
o Combine them using the K received coefficients and get the shape
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Spectral mesh compression

Low-frequency errors are hard to see
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Mesh watermarking

o8

Progressive transmission

Embed a bitstring in the low-frequency coefficients
o Low-frequency changes are hard to notice

(3) Original (4) Watermarked (6) Additive candows moise  (d) Mesh ssootbing

(#) Origisal (D Wasermackad. () Addurve randoms mowe.  (8) Mesh sasoodbung.

[Ohbuchi et al. 2003]

First transmit the lower-eigenvalue coefficients (low
frequency components), then gradually add finer details by
transmitting more coefficients.

[Karni and Gotsman 00]

Caveat g?;

Performing spectral decomposition of a large matrix (n>1000)
is prohibitively expensive (O(n®))
o Today's meshes come with 50,000 and more vertices
o We don’t want the decompressor to work forever!

Possible solutions:
o Simplify mesh
o Work on small blocks (like JPEG)




