
1

Texture Synthesis

Tom Funkhouser

Fall 2012

Slides from Efros, Freeman, Lazebnik, Wei

Texture

• Texture has spatially repeating patterns

• It lacks the full range of complexity of

photographic imagery, but makes a good starting

point for study of image-based techniques

radishes rocks yogurt

Texture Synthesis

• Goal of Texture Synthesis: create new samples of
a given texture

• Many applications: virtual environments, hole-
filling, texturing surfaces

The Challenge

• Need to model the whole

spectrum: from repeated to

stochastic texture

repeated

stochastic

Both?

Some History

• Stochastic textures

– [Heeger & Bergen,‟95]

– [DeBonet,‟97]

– [Portilla & Simoncelli,‟98]

• Structured textures

– [Liu, „04]

• Both

– [Efros & Leung,‟99]

– [Efros & Freeman,‟01]

– [Kwatra, `05]

Statistical modeling of texture
• Assume stochastic model of texture (Markov

Random Field)

• Stationarity: the stochastic model is the same

regardless of position

stationary texture non-stationary texture

2

Statistical modeling of texture
• Assume stochastic model of texture (Markov

Random Field)

• Stationarity: the stochastic model is the same

regardless of position

• Markov property:

p(pixel | rest of image) = p(pixel | neighborhood)

?

Motivation from Language

• Shannon (1948) proposed a way to generate

English-looking text using N-grams

– Assume a Markov model

– Use a large text to compute probability distributions

of each letter given N–1 previous letters

– Starting from a seed repeatedly sample the

conditional probabilities to generate new letters

– One can use whole words instead of letters too

Efros

Mark V. Shaney (Bell Labs)

• Results (using alt.singles corpus):

– “As I've commented before, really relating to

someone involves standing next to impossible.”

– “One morning I shot an elephant in my arms and

kissed him.”

– “I spent an interesting evening recently with a

grain of salt.”

• Notice how well local structure is preserved!

– Now let‟s try this in 2D...

Efros

Efros & Leung Algorithm

Idea initially proposed in 1981 (Garber ‟81), but dismissed as too

computationally expensive!
Efros

Efros & Leung Algorithm

• Assume Markov property, sample from P(p|N(p))

– Building explicit probability tables infeasible

p

Synthesizing a pixel

non-parametric

sampling

Input image

– Instead, we search the input image for all sufficiently
similar neighborhoods and pick one match at random

Efros

|| – ||2

Finding matches

• Sum of squared differences (SSD)

Efros

3

|| *(–)||2

Finding matches

• Sum of squared differences (SSD)

– Gaussian-weighted to make sure closer

neighbors are in better agreement

Efros

Implementation Details

• Initialization

– Start with a few rows of white noise and grow in scanline order

– Start with a “seed” in the middle and grow outward in layers

• Sampling
– Random sampling from the set of candidates vs. picking the

best candidate

Efros

Synthesis Results

french canvas raffia weave

Efros

More Results
white bread brick wall

Efros

Homage to Shannon

Efros

Varying Window Size

input

Efros

4

Varying Window Size

Increasing window size
Efros

Failure Cases

Growing garbage Verbatim copying
Efros

Hole Filling and Extrapolation

• Grow in “onion skin” order

– Within each “layer”, pixels with most neighbors are

synthesized first

– Normalize error by the number of known pixels

– If no close match can be found, the pixel is not synthesized

until the end

Efros

Hole Filling

Efros

Extrapolation

Efros

Summary

• The Efros & Leung algorithm

– Very simple

– Surprisingly good results

• Problems?

5

Accelerating texture synthesis

• Indexed similarity search

• Coherence

• Multiresolution

• Patches

Indexed Similarity Search

• Perform fast approximate nearest neighbor

search using spatial search structure

– tree-structured vector quantization (TSVQ)

– kd-tree

Indexed Similarity Search

• Perform fast approximate nearest neighbor search

using e.g. tree-structured vector quantization

– Use all neighborhoods of the exemplar texture to build

a tree-structured codebook

– To find a match for a new neighborhood, follow the

tree in best-first order (at each level, choose child

codeword closest to the query)

– Example running times from the paper:

• Exhaustive search: 360 sec

• Building codebook: 22 sec, synthesis: 7.5 sec

– Shortcomings?

Wei00

Indexed Similarity Search

original Full search TSVQ

• Can degrade quality (blur)

Wei00

Coherence

• Use original position of

already synthesized

neighborhood pixels to create

a “short list” of candidates for

the current pixel

Ashikhmin01

Coherence

Original sample Wei & Levoy

Ashikhmin Boundaries

Ashikhmin01

6

Multiresolution

• For textures with large-scale

structures, use a Gaussian

pyramid to reduce required

neighborhood size

Wei00

Multiresolution

• For textures with large-scale

structures, use a Gaussian

pyramid to reduce required

neighborhood size

– Low-resolution image is

synthesized first

– For synthesis at a given pyramid

level, the neighborhood consists of

already generated pixels at this

level plus all neighboring pixels at

the lower level

Wei00

noise

noise

Search

Copy

input
output

• Example:

Wei00

Multiresolution

• Results

1 level

55

3 levels

55

1 level

1111

Multiresolution

Wei00

Multiresolution

Random Oriented

Regular Semi-regular

Wei00

Multiresolution

Wei00

7

Patch-Based Synthesis

• Copy patches of pixels rather than pixels

p

• Observation: neighbor pixels are highly correlated

Input image

non-parametric

sampling

B

• Exactly the same as Efros & Leung but P(B|N(B))

• Much faster: synthesize all pixels in a block at once

Synthesizing a block

Efros01

Patch-Based Synthesis

• General approach:

– Copy large blocks from input image

– Then hide the seams

• Rationale:

– Texture blocks are by definition correct samples of

texture so problem only connecting them together

Efros01

Chaos Mosaic

• Process: 1) tile input image; 2) pick random

blocks and place them in random locations 3)

Smooth edges

input

idea result

Xu00

Chaos Mosaic

• Of course, doesn‟t work for structured textures

input

result

Xu00

Image Quilting [Efros & Freeman]

• Regularly arranged patches

Efros01

Algorithm

– Pick size of block and size of overlap

– Synthesize blocks in raster order

– Search input texture for block that satisfies overlap

constraints (above and left)

– Paste new block into resulting texture

• use dynamic programming to compute minimal error
boundary cut

Efros01

8

Input texture

B1 B2

Random placement

of blocks

block

B1 B2

Neighboring blocks

constrained by overlap

B1 B2

Minimal error

boundary cut

Efros01
min. error boundary

Minimal error boundary

overlapping blocks vertical boundary

_ =

2

overlap error
Efros01

Efros01 Efros01

Efros01 Efros01

9

Efros01 Efros01

Summary

• Texture synthesis

– create new samples of a given texture

• Non-parametric methods

– Copy samples from input based on neighborhood similarity

• Acceleration techniques

– Multiresolution

– Indexing

– Coherence

– Patches

