Texture
Texture Synthesis
« Texture has spatially repeating patterns

« It lacks the full range of complexity of
photographic imagery, but makes a good starting
point for study of image-based techniques

Tom Funkhouser
Fall 2012

Slides from Efros, Freeman, Lazebnik, Wei
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Texture Synthesis The Challenge

» Goal of Texture Synthesis: create new samples of
a given texture

« Many applications: virtual environments, hole-
filling, texturing surfaces
’  Need to model the whole

spectrum: from repeated to
stochastic texture

Some History Statistical modeling of texture

« Stochastic textures + Assume st(_)chastic model of texture (Markov
— [Heeger & Bergen,’95] Ran-dom '_:'eld) ) )
— [DeBonet,"97] . Statlczjr;arlty:fthe g:_ochastlc model is the same
— [Portilla & Simoncelli,’98] regardiess of position
« Structured textures
— [Liu, ‘04]
+ Both
— [Efros & Leung,’99]
— [Efros & Freeman,’01]
— [Kwatra, "05]

stationary texture non-stationary texture



Statistical modeling of texture Motivation from Language

Assume stochastic model of texture (Markov Shannon (1948) proposed a way to generate
Random Field)

English-looking text using N-grams
Stationarity: the stochastic model is the same _ Assume a Markov model
regardless of position

] — Use a large text to compute probability distributions
Ma_rkolv prope;t_y.  otoixel | neiahborhood of each letter given N—1 previous letters
p(pixel | rest of image) = p(pixel | neighborhood) — Starting from a seed repeatedly sample the

i o conditional probabilities to generate new letters

— One can use whole words instead of letters too

Mark V. Shaney (Bell Labs) Efros & Leung Algorithm

+ Results (using alt.singles corpus): input
( g X P ) Input image completed portion (grey)
— “ds I've commented before, really relating to
someone involves standing next to impossible.”

candidate pixel
— “One morning I shot an elephant in my arms and and comparison Ej
kissed him.” region
— “I spent an interesting evening recently with a
grain of salt.”
+ Notice how well local structure is preserved! _
— Now let’s try this in 2D... ouiputimage

Idea initially proposed in 1981 (Garber *81), but dismissed as too
computationally expensive!

Efros & Leung Algorithm Finding matches

I _ » Sum of squared differences (SSD)
bl non-parametric

sampling

Input image | | i r | |2
Synthesizing a pixel b —
» Assume Markov property, sample from P(p|N(p))

— Building explicit probability tables infeasible

— Instead, we search the input image for all sufficiently
similar neighborhoods and pick one match at random




Finding matches Implementation Details

« Sum of squared differences (SSD) * Initialization

— Gaussian-weighted to make sure closer — Start with a few rows of white noise and grow in scanline order
neighbors are in better agreement — Start with a “seed” in the middle and grow outward in layers

+ Sampling

2 — Random sampling from the set of candidates vs. picking the
* n— best candidate

Synthesis Results More Result

) white bread brick wall
french canvas raffia weave

Homage to Shannon Varying Window Size
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Varying Window Size
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Hole Filling and Extrapolation

* Grow in “onion skin” order
— Within each “layer”, pixels with most neighbors are
synthesized first

— Normalize error by the number of known pixels
— If no close match can be found, the pixel is not synthesized

until the end

Extrapolation

Failure Cases

tdak { ok
Growing garbage

Hole Filling

Summary

» The Efros & Leung algorithm
— Very simple
— Surprisingly good results

* Problems?




Accelerating texture synthesis Indexed Similarity Search

+ Indexed similarity search « Perform fast approximate nearest neighbor
+ Coherence search using spatial search structure

« Multiresolution — tree-structured vector quantization (TSVQ)

+ Patches — kd-tree

Indexed Similarity Search Indexed Similarity Search

» Perform fast approximate nearest neighbor search .
using e.g. tree-structured vector quantization « Can degrade quality (blur)
— Use all neighborhoods of the exemplar texture to build
a tree-structured codebook

— To find a match for a new neighborhood, follow the
tree in best-first order (at each level, choose child
codeword closest to the query)

— Example running times from the paper:

« Exhaustive search: 360 sec
« Building codebook: 22 sec, synthesis: 7.5 sec

— Shortcomings?

Coherence Coherence

input image

* Use original position of
already synthesized e
neighborhood pixels to create | s o
a “short list” of candidates for
the current pixel

completed portion (grey)

o

output image

Ashikhmin01 Ashikhmin01




Multiresolution Multiresolution

« For textures with large-scale « For textures with large-scale
structures, use a Gaussian structures, use a Gaussian
pyramid to reduce required pyramid to reduce required
neighborhood size 3 — e, neighborhood size

B, ¥ — Lowe-resolution image is
synthesized first

— For synthesis at a given pyramid
level, the neighborhood consists of
already generated pixels at this
level plus all neighboring pixels at
the lower level

Multiresolution Multiresolution

» Results
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Patch-Based Synthesis

« Copy patches of pixels rather than pixels

llllllll=llllll-IL non-parametric

L sampling

Input image
Synthesizing a block

 Observation: neighbor pixels are highly correlated
¢ Exactly the same as Efros & Leung but P(B|N(B))
e Much faster: synthesize all pixels in a block at once

Efros01

Chaos Mosaic

Process: 1) tile input image; 2) pick random
blocks and place them in random locations 3)
Smooth edges

Image Quilting [Efros & Freeman]

* Regularly arranged patches
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Patch-Based Synthesis

 General approach:
— Copy large blocks from input image
— Then hide the seams

+ Rationale:

— Texture blocks are by definition correct samples of
texture so problem only connecting them together

Efros01

Chaos Mosalc

* Of course, doesn’t work for structured textures

Algorithm

— Pick size of block and size of overlap
— Synthesize blocks in raster order

— Search input texture for block that satisfies overlap
constraints (above and left)

— Paste new block into resulting texture

« use dynamic programming to compute minimal error
boundary cut

Efros01



Minimal error boundary

overlapping blocks vertical boundary
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Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut
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Summary

» Texture synthesis
— create new samples of a given texture

+ Non-parametric methods
— Copy samples from input based on neighborhood similarity

» Acceleration techniques
— Multiresolution
— Indexing
Coherence
Patches




