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Texture 

• Texture has spatially repeating patterns 

• It lacks the full range of complexity of 

photographic imagery, but makes a good starting 

point for study of image-based techniques 

radishes rocks yogurt 

Texture Synthesis 

• Goal of Texture Synthesis: create new samples of 
a given texture 

• Many applications: virtual environments, hole-
filling, texturing surfaces  

The Challenge 

 

 

• Need to model the whole 

spectrum: from repeated to 

stochastic texture 

repeated 

stochastic 

Both? 

Some History 

• Stochastic textures 

– [Heeger & Bergen,‟95]  

– [DeBonet,‟97] 

– [Portilla & Simoncelli,‟98]  

• Structured textures 

– [Liu, „04] 

• Both 

– [Efros & Leung,‟99]  

– [Efros & Freeman,‟01]  

– [Kwatra, `05] 

Statistical modeling of texture 
• Assume stochastic model of texture (Markov 

Random Field) 

• Stationarity: the stochastic model is the same 

regardless of position 

stationary texture non-stationary texture 
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Statistical modeling of texture 
• Assume stochastic model of texture (Markov 

Random Field) 

• Stationarity: the stochastic model is the same 

regardless of position 

• Markov property:  

p(pixel | rest of image) = p(pixel | neighborhood) 

? 

Motivation from Language 

• Shannon (1948) proposed a way to generate 

English-looking text using N-grams 

– Assume a Markov model 

– Use a large text to compute probability distributions 

of each letter given N–1 previous letters  

– Starting from a seed repeatedly sample the 

conditional probabilities to generate new letters 

– One can use whole words instead of letters too 

Efros 

Mark V. Shaney (Bell Labs) 

• Results (using alt.singles corpus): 

–  “As I've commented before, really relating to 

someone involves standing next to impossible.” 

– “One morning I shot an elephant in my arms and 

kissed him.” 

– “I spent an interesting evening recently with a 

grain of salt.” 

• Notice how well local structure is preserved! 

– Now let‟s try this in 2D... 

Efros 

Efros & Leung Algorithm 

Idea initially proposed in 1981 (Garber ‟81), but dismissed as too 

computationally expensive! 
Efros 

Efros & Leung Algorithm 

• Assume Markov property, sample from P(p|N(p)) 

– Building explicit probability tables infeasible  

p 

Synthesizing a pixel 

non-parametric 

sampling 

Input image  

– Instead, we search the input image for all sufficiently 
similar neighborhoods and pick one match at random 

Efros 

||      –      ||2 

Finding matches 

• Sum of squared differences (SSD) 

Efros 
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Finding matches 

• Sum of squared differences (SSD) 

– Gaussian-weighted to make sure closer 

neighbors are in better agreement 

Efros 

Implementation Details 

• Initialization 

– Start with a few rows of white noise and grow in scanline order 

– Start with a “seed” in the middle and grow outward in layers 

• Sampling 
– Random sampling from the set of candidates vs. picking the 

best candidate 

Efros 

Synthesis Results 

french canvas raffia weave 

Efros 

More Results 
white bread brick wall 

Efros 

Homage to Shannon 

Efros 

Varying Window Size 

input 

Efros 
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Varying Window Size 

Increasing window size 
Efros 

Failure Cases 

Growing garbage  Verbatim copying 
Efros 

Hole Filling and Extrapolation 

• Grow in “onion skin” order 

– Within each “layer”, pixels with most neighbors are 

synthesized first 

– Normalize error by the number of known pixels 

– If no close match can be found, the pixel is not synthesized 

until the end 

Efros 

Hole Filling 

Efros 

Extrapolation 

Efros 

Summary 

• The Efros & Leung algorithm 

– Very simple 

– Surprisingly good results 

 

• Problems? 
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Accelerating texture synthesis 

• Indexed similarity search 

• Coherence 

• Multiresolution 

• Patches 

Indexed Similarity Search 

• Perform fast approximate nearest neighbor 

search using spatial search structure  

– tree-structured vector quantization (TSVQ) 

– kd-tree 

Indexed Similarity Search 

• Perform fast approximate nearest neighbor search 

using e.g. tree-structured vector quantization 

– Use all neighborhoods of the exemplar texture to build 

a tree-structured codebook 

– To find a match for a new neighborhood, follow the 

tree in best-first order (at each level, choose child 

codeword closest to the query) 

– Example running times from the paper: 

• Exhaustive search: 360 sec 

• Building codebook: 22 sec, synthesis: 7.5 sec 

– Shortcomings? 

Wei00 

Indexed Similarity Search 

original Full search TSVQ 

• Can degrade quality (blur) 

Wei00 

Coherence 

• Use original position of 

already synthesized 

neighborhood pixels to create 

a “short list” of candidates for 

the current pixel 

Ashikhmin01 

Coherence 

Original sample Wei & Levoy 

Ashikhmin Boundaries 

Ashikhmin01 
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Multiresolution 

• For textures with large-scale 

structures, use a Gaussian 

pyramid to reduce required 

neighborhood size 

Wei00 

Multiresolution 

• For textures with large-scale 

structures, use a Gaussian 

pyramid to reduce required 

neighborhood size 

– Low-resolution image is 

synthesized first 

– For synthesis at a given pyramid 

level, the neighborhood consists of 

already generated pixels at this 

level plus all neighboring pixels at 

the lower level 

Wei00 

noise 

noise 

Search 

Copy 

input 
output 

• Example: 

Wei00 

Multiresolution 

• Results 

1 level 

55 

3 levels 

55 

1 level 

1111 

Multiresolution 

Wei00 

Multiresolution 

Random Oriented 

Regular Semi-regular 

Wei00 

Multiresolution 

Wei00 



7 

Patch-Based Synthesis 

• Copy patches of pixels rather than pixels 

p 

• Observation: neighbor pixels are highly correlated 

Input image  

non-parametric 

sampling 

B 

• Exactly the same as Efros & Leung but P(B|N(B)) 

• Much faster: synthesize all pixels in a block at once 

Synthesizing a block 

Efros01 

Patch-Based Synthesis 

• General approach: 

– Copy large blocks from input image 

– Then hide the seams 

• Rationale:   

– Texture blocks are by definition correct samples of 

texture so problem only connecting them together 

Efros01 

Chaos Mosaic 

• Process: 1) tile input image; 2) pick random 

blocks and place them in random locations 3) 

Smooth edges 

input 

idea result 

Xu00 

Chaos Mosaic 

• Of course, doesn‟t work for structured textures 

input 

result 

Xu00 

Image Quilting [Efros & Freeman] 

• Regularly arranged patches 

Efros01 

Algorithm 

– Pick size of block and size of overlap 

– Synthesize blocks in raster order 

 

 

– Search input texture for block that satisfies overlap 

constraints (above and left) 

– Paste new block into resulting texture 

• use dynamic programming to compute minimal error 
boundary cut 

Efros01 
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Input texture 

B1 B2 

Random placement  

of blocks  

block 

B1 B2 

Neighboring blocks 

constrained by overlap 

B1 B2 

Minimal error 

boundary cut 

Efros01 
min. error boundary 

Minimal error boundary 

overlapping blocks vertical boundary 

_ = 

2 

overlap error 
Efros01 

Efros01 Efros01 

Efros01 Efros01 
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Efros01 Efros01 

Summary 

• Texture synthesis 

– create new samples of a given texture  
 

• Non-parametric methods 

– Copy samples from input based on neighborhood similarity 

 

• Acceleration techniques 

– Multiresolution 

– Indexing 

– Coherence 

– Patches  


