Toy Example

We have a dataset D_1 represented by the following pattern:

```
+  +  -
+  +  -
+  -  -
+  -  -
```

weak hypotheses = vertical or horizontal half-planes
Round 1

\[h_1 \]

\[D_2 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

\[\alpha_3 = 0.92 \]

\[\varepsilon_3 = 0.14 \]
Final Hypothesis

\[H_{\text{final}} = \text{sign} \left(\begin{array}{c}
0.42 \\
+ 0.65 \\
+ 0.92
\end{array} \right) \]
Actual Typical Run

(boosting C4.5 on “letter” dataset)

- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

<table>
<thead>
<tr>
<th># rounds</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>train error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- Occam’s razor wrongly predicts “simpler” rule is better
The Margin Distribution

- margin distribution

= cumulative distribution of margins of training examples

![Graph showing error and margin distribution](image)

<table>
<thead>
<tr>
<th># rounds</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>train error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>% margins ≤ 0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Application: Detecting Faces

- problem: find faces in photograph or movie
- weak hypotheses: detect light/dark rectangles in image

- many clever tricks to make extremely fast and accurate