COS 402: Artificial Intelligence

Written exercises W5 Fall 2012
MDP’s Due: Thursday, December 6

Approximate point values are given in brackets. Be sure ¢gvsfour work and justify all of your
answers. See the course home page for information on whewlzre to submit written exercises,
and grading criteria.

1. [10] Exercise 15.4 in R&N.

2. [15] Consider the following MDP:

Y a1
b

There are five statesd, B, C, D andG. The reward at every state-isl, except atz where the
reward is). There are two actiong,andb, and the effect of each action is deterministic as indicated
in the figure. For instance, executingn stateB leads to statel. Assumey = 1 in this problem.

[Note: If you understand the algorithms, this problem camd(should) be solved without a lot
of tedious calculations, and without the use of a comput@&ven a calculator. You do not need to
show easy calculations in detail, but should neverthelest#fy your reasoning.]

a. Show the sequence of utility estimatésthat would result from executing value iteration on
this MDP. Also show the optimal policy that is computed udiing final utility estimate.

b. Show the sequence of policies and corresponding utility functiong™ that would result
from executing policy iteration on this MDP. Assume that wbart with a policy that assigns
actiona to every state. The utility functiong™ should be computed exactly; note that these
utilities may be infinite for some states. Also, assume thdies between the actionsand
b in the policy improvement step are always broken in favai.of

¢. Generalizing this example, suppose we are given a graplawlistinguished node (i.e., state)
G, andk edges emanating from every node corresponding (deterministic) actions. As
in this example, all of the edges emanating fréirare self-loops, the nod€' is assigned
reward0, and all other nodes are assigned rewafdd In terms of properties of the graph,
what is the optimal utility functio/*, and what is the optimal policy*? If value iteration is
applied to this graph (viewed as an MDP), exactly how mamgiiens will be needed until
the algorithm converges? How about for policy iteration?



3. [10] Sometimes MDP’s are formulated with a reward functi®s, «) that depends on the
action taken (so that rewar@(s, a) is received when action is executed from state), or a reward
function R(s, a, s’) that also depends on the outcome stétso that this reward is received when
states’ is reached after executing actiarfrom states). For each of these formulations, show how
to appropriately modify each of the following:

¢ the Bellman equation (Eq. (17.5) in R&N);

¢ the formula for converting the optimal utility* (denoted simply/ in R&N) into an optimal
policy 7* (Eq. (17.4) in R&N);

¢ the value iteration algorithm;

e the policy iteration algorithm.

4. [15] Let B(U) and||-|| be as defined in class. (This is the sameBds and ||-|| defined
in Section 17.2 of R&N.) The purpose of this exercise is tosprthatB is acontraction, i.e., that
|B(U) — B(U")]|leo < 7|lU—U'||~. As discussed in the book and lecture, this is the key step in
showing that value iteration converges to the right answer.

We will begin by proving some basic facts. Be sure to give gemunathematical proofs for
each part of this problem. Also, your proofs should use efgarg facts — in other words, do not
give proofs that rely on mathematical sledge-hammers likeQauchy-Schwartz inequality.

a. Letuy,...,u, andvy,...,v, be any sequences of real numbers. Prove that i v; for all
¢ then
maxu; < maxuvj;.
(] (]

b. Letzq,...,z, andyy,...,y, be any sequences of real numbers. Prove that
(maX wz) - (max yz> < max(z; — i),
(] 1 1
and also that
mzax(xi —y;) < max |z; — yil.

(Hint: both of these inequalities can be proved using partqiaan appropriate choice af;
andwv;.)

Finally, use these facts to prove that

(o) - o)
K] K]

c. Letxy,...,z, beanyreal numbers, and suppose that. . , p,, are nonnegative real numbers
such thad”, p; = 1. Use the fact thau + b| < |a| + |b| for any real numbers andb to prove

that
Zpixi

(2

< max |z; — yil.
3

< max [w;].
3

d. Now lets be any state, and I1€B3(U))(s) denote the value aB(U) at states. By plugging
in the definition of B, and using the properties proved above, prove that

[(BU))(s) = (BW))(s)| < AU = U'llos.

Conclude that
|B(U) = B(U")loo <ANU = U0



5. [optional — 8 hops] This optional exercise asks you to provegblécy improvement theorem
which, as discussed in class, is the basis for proving thiatypiteration is an effective method for
finding an optimal policy. (As a side note, the theorem caa bésused to prove thexistence of an
optimal policy=*, that is, a policy that is optimal for all states simultanggy)

Let 7 be any policy, and let’ be the result of applying the policy improvement step of goli
iteration. That is, for all states

7'(s) = argmngP(s'|s,a) Um(s'),

where, as usual, theaf'g max” returns any actior that realizes the maximum of the value on the

right.
We make the usual assumptions that the number of states amuenwof actions are both finite,

thaty < 1, etc.
Let us define the following function&’;(s) defined over states. The first of thesdJ is

identical toU™ so thatUy(s) = U™(s) for all s. And for k& > 1, and for alls, we define

Uk(s) = R(s) +7 3 P(s/]s, 7' (5)) Up1(s).

a. Prove by induction ok thatUy(s) > U™ (s) for all statess and for allk > 0.

b. Prove that|U;, — U™ || — 0 ask — oc.

c. Combine parts (a) and (b) to prove tHiat (s) > U™ (s) for all statess. This shows that
policy iteration can only produce policies that are at lessgood as the preceding policy at
every state.

d. Prove thatr is an optimal policy if and only it/™ (s) = U™ (s) for all statess. This implies
that if 7 is not already optimal, then each policy improvement stdple@ad to a new policy
that is strictly better than the last one for at least onestat



