Sampling and Aliasing

COS 323

Signal Processing

• Sampling a continuous function

• Convolve with reconstruction filter to re-create signal

How to Sample?

 Reconstructed signal might be very different from original: "aliasing"

Why Does Aliasing Happen?

 Sampling = multiplication by shah function III(x) (also known as impulse train)

Digression: Delta Function

• Can think of as $\delta(x) = \lim_{\sigma \to 0^+} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$

Scaled and Translated Dirac Delta

$$c\delta(x-x_0) = \begin{cases} 0 \text{ if } x \neq x_0 \\ \infty \text{ if } x = x_0 \end{cases}$$
$$\int c\delta(x-x_0) dx = c$$

Impulse Train

$III(x) = \dots + \partial(x+2) + \partial(x+1) + \partial(x) + \partial(x-1) + \partial(x-2) + \dots$

III(x)

Why Does Aliasing Happen?

 Sampling = multiplication by shah function III(x) (also known as impulse train)

Fourier Analysis

Multiplication in primal space = convolution in frequency space

$$\mathcal{F}(f(x)g(x)) = \mathcal{F}(f(x)) * \mathcal{F}(g(x))$$

Fourier Analysis

• Result: high frequencies can "alias" into low frequencies

Aliasing

Fourier Analysis

 Convolution with reconstruction filter = multiplication in frequency space

Aliasing in Frequency Space

- Conclusions:
 - High frequencies can alias into low frequencies
 - Can't be cured by a different reconstruction filter
 - Nyquist limit: capture all frequencies iff bandlimited maximum frequency $< \frac{1}{2}$ sampling rate

Aliasing strikes!

Other Aliasing Examples

• Car wheel "spins backwards" on film

• Jaggies in graphics

• "Crawling jaggies" on edges of objects as they move

Filters for Sampling

- Solution: insert filter *before* sampling
 - "Sampling" or "bandlimiting" or "antialiasing" filter

- Low-pass filter
- Eliminate frequency content above Nyquist limit
- Result: aliasing replaced by blur
- Partial alternative: oversampling, digital filtering

Antialiasing Jaggies

Aliased

Postfiltered: blurry jaggies Correctly prefiltered

Ideal Sampling Filter

 "Brick wall" filter: box in frequency

- In space: sinc function
 - $-\operatorname{sinc}(x) = \operatorname{sin}(x) / x$
 - Infinite support
 - Possibility of "ringing"

Cheap Sampling Filter

- Box in space
 - Cheap to evaluate
 - Finite support

In frequency: sinc
Imperfect bandlimiting

Gaussian Sampling Filter

- Fourier transform of Gaussian = Gaussian
- Good compromise as sampling filter:
 - Well approximated by function w. finite support
 - Good bandlimiting performance