Signal Processing

COS 323

- Signal processing introduction
 - Filtering
 - Sampling and Aliasing
 - Fourier Analysis

- 1D: functions of space or time (e.g., sound)
- 2D: often functions of 2 spatial dimensions (e.g. images)
- 3D: functions of 3 spatial dimensions (CAT, MRI scans) or 2 space, 1 time (video)

Digital Signal Processing

- 1. Understand analogues of filters
- 2. Understand nature of sampling

Filtering

- Consider a noisy 1D signal f(t)
- One basic operation: smooth the signal
 Output = new function h(t)

Filtering

- Consider a noisy 1D signal f(t)
- One basic operation: smooth the signal
 Output = new function h(t)
- Linear Shift-Invariant Filters
 - If you double input, double output
 - If you shift input by Δt , shift output by Δt

Simplest smoothing filter

Take average of nearby points:

Convolution

- Output signal at each point = weighted average of local region of input signal
 - Depends on input signal, pattern of weights
 - "Filter" g(x) = function of weights for linear combination
 - Basic operation = move filter to some position x, add up f times g

Convolution

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(t) g(x-t) dt$$

Try for yourself: http://jhu.edu/~signals/convolve/

Convolution

- f is called "signal" and g is "filter" or "kernel", but the operation is symmetric
- But: usually desirable to leave a constant signal unchanged: choose g such that

$$\int_{-\infty}^{\infty} g(t) dt = 1$$

Filter Choices

• Simple filters: box, triangle

Gaussian Filter

• Commonly used filter

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

2D Gaussian Filter

Example: Smoothing

Original image

Smoothed with 2D Gaussian kernel

Example: Edge Detection

Consider magnitude of 1st derivative

Smoothed Derivative

- Derivative of noisy signal = more noisy
- Solution: smooth with a Gaussian *before* taking derivative
- Differentiation and convolution both linear operators: they "commute"

$$\frac{d}{dx}(f * g) = \frac{df}{dx} * g = f * \frac{dg}{dx}$$

Smoothed Derivative

• Result: good way of finding derivative = convolution with derivative of Gaussian

Results in 1D: Peak appears at edge

Sigma = 50

Smoothed Derivative in 2D

• What is "derivative" in 2D? Gradient:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

• Gaussian is separable! $G_2(x, y) = G_1(x)G_1(y)$

• Combine smoothing, differentiation:

$$\nabla (f(x,y) * G_2(x,y)) = \begin{bmatrix} f(x,y) * (G_1'(x)G_1(y)) \\ f(x,y) * (G_1(x)G_1'(y)) \end{bmatrix} = \begin{bmatrix} f(x,y) * G_1'(x) * G_1(y) \\ f(x,y) * G_1(x) * G_1'(y) \end{bmatrix}$$

Smoothed Derivative in 2D

$$\nabla (f(x,y) * G_2(x,y)) = \begin{bmatrix} f(x,y) * (G_1'(x)G_1(y)) \\ f(x,y) * (G_1(x)G_1'(y)) \end{bmatrix} = \begin{bmatrix} f(x,y) * G_1'(x) * G_1(y) \\ f(x,y) * G_1(x) * G_1'(y) \end{bmatrix}$$

Edge detection using derivative of Gaussian

Original Image

Smoothed Gradient Magnitude

Canny Edge Detector

- Smooth
- Find derivative
- Find maxima
- Threshold

Canny Edge Detector

Original Image

Sampling

Sampled Signals

- Analog domain: Continuous signals
- Digital domain: Can't store continuous signal: instead store "samples"

- Usually evenly sampled:

$$f_0 = f(x_0), f_1 = f(x_0 + \Delta x), f_2 = f(x_0 + 2\Delta x), f_3 = f(x_0 + 3\Delta x), \dots$$

3 Hz sine wave

3Hz sine sampled at 15Hz

3Hz sine sampled at 15Hz

5Hz sine sampled at 27 Hz

5Hz sine sampled at 15Hz

5Hz sine sampled at 6Hz

5Hz sine sampled at 6Hz

Aliasing!

Aliasing

- Need to sample **at least twice per period** to capture the signal unambiguously
- Nyquist's theorem: Highest allowed signal frequency is half the sampling frequency = Nyquist frequency
- E.g., CD quality audio is 44,100 Hz
 Highest frequency representable is 22,050 Hz
 - Limit of human hearing: ~ 17 kHz to 20kHz

Aliasing strikes!

Preventing aliasing

- Use a sample rate high enough to capture frequencies of interest (i.e., > twice the highest frequency of interest)
- Apply a low-pass filter to remove frequencies above the Nyquist frequency, before sampling.

Discrete Convolution

• Integral becomes sum over samples

$$f \ast g = \sum_{i} f_{i} g_{x-i}$$

Normalization condition is

$$\sum_{i} g_{i} = 1$$

Computing Discrete Convolutions

$$f \ast g = \sum_{i} f_{i} g_{x-i}$$

- If f has n samples and g has m nonzero samples, straightforward computation takes time O(nm)
- OK for small filter kernels, bad for large ones

Fourier Analysis

Frequency Domain

 Any signal can be represented as a sum of sinusoids at discrete frequencies, each with a given magnitude and phase

Frequency content in audio

- Frequency related to pitch:
 - "A 440": 440 Hz
 - 880Hz: one octave above
- Frequency also related to timbre:
 - Real sounds contain many frequencies
 - Higher frequency content can make sounds "brighter"
- In speech, higher frequencies are related to vowels, consonants (independent of spoken/sung pitch)

Fourier Transform

- Transform applied to function to analyze a signal's frequency content
- Several versions:

	Continuous Time	Discrete Time
Aperiodic / unbounded time, continuous frequency	Fourier Transform	Discrete-time Fourier Transform (DTFT)
Periodic or bounded time, discrete frequency	Fourier Series	Discrete Fourier Transform (DFT) (FFT used here)

Fourier Series

• Periodic function
$$f(x)$$

defined over $[-\pi ... \pi]$
 $f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$
where
 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$

Applying Euler's Formula

• Euler's formula: $e^{ix} = \cos(x) + i\sin(x)$

~~

• Apply:
$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

becomes
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

where $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$

Fourier Transform

• [Continuous] Fourier transform:

$$F(k) = \mathcal{F}(f(x)) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

Discrete Fourier transform:

$$F_{k} = \sum_{x=0}^{n-1} f_{x} e^{-2\pi i \frac{k}{n}x}$$

- *F* is a function of frequency describes how much of each frequency *f* contains
- Fourier transform is invertible

The Convolution Theorem

• Fourier transform turns convolution into multiplication:

$$\mathcal{F}(f(x) * g(x)) = \mathcal{F}(f(x)) \mathcal{F}(g(x))$$

(and vice versa):

$$\mathcal{F}(f(x) | g(x)) = \mathcal{F}(f(x)) * \mathcal{F}(g(x))$$

- Useful application #1: Use frequency space to understand effects of filters
 - Example: Fourier transform of a Gaussian is a Gaussian
 - Thus: attenuates high frequencies

• Box function?

- In frequency space: sinc function
 - $-\operatorname{sinc}(x) = \operatorname{sin}(x) / x$
 - Not as good at attenuating high frequencies

• Fourier transform of derivative:

$$\mathcal{F}\left(\frac{d}{dx}f(x)\right) = 2\pi i k \,\mathcal{F}(f(x))$$

- Blows up for high frequencies!
 - After Gaussian smoothing, doesn't blow up

- Useful application #2: Efficient computation
 Fast Fourier Transform (FFT) takes time
 O(n log n)
 - Thus, convolution can be performed in time $O(n \log n + m \log m)$
 - Greatest efficiency gains for large filters