
Simulation wrap-up 



Last time 

• Time-driven, event-driven 

• “Simulation” from differential equations 

• Cellular automata, microsimulation, agent-based 

simulation 

– see e.g. 

http://www.microsimulation.org/IMA/What%20is%20

microsimulation.htm 

• Example applications: SIR disease model, 

population genetics 

http://www.microsimulation.org/IMA/What is microsimulation.htm
http://www.microsimulation.org/IMA/What is microsimulation.htm


Simulation: Pros and Cons 

• Pros: 

– Building model can be easy (easier) than other approaches 

– Outcomes can be easy to understand 

– Cheap, safe 

– Good for comparisons 

• Cons: 

– Hard to debug 

– No guarantee of optimality 

– Hard to establish validity 

– Can’t produce absolute numbers 



Simulation: Important Considerations 

• Are outcomes statistically significant? (Need 

many simulation runs to assess this) 

• What should initial state be? 

• How long should the simulation run? 

• Is the model realistic? 

• How sensitive is the model to parameters, initial 

conditions? 

 



Statistics Overview 



Descriptive statistics 

experiment 

data 

sample statistics: 

μ, σ2, … 

Model for probabilistic  

mechanism… 

estimates with  

confidence intervals inferences 
predictions 

Inferential statistics 



Random Variables 

• A random variable is any “probabilistic outcome” 

– e.g., a coin flip, height of someone randomly chosen from a 

population 

• A R.V. takes on a value in a sample space 

– space can be discrete, e.g., {H, T} 

– or continuous, e.g. height in (0, infinity) 

• R.V. denoted with capital letter (X), a realization with 

lowercase letter (x) 

– e.g., X is a coin flip, x is the value (H or T) of that coin flip 



Probability Mass Function 

• Describes probability for a discrete R.V. 

• e.g.,  



Probability Density Function 

• Describes probability for a continuous R.V. 

• e.g.,  



[Population] Mean of a Random Variable 

• aka expected value, first moment 

• for discrete RV: 

 

 

• for continuous RV: 
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• for discrete RV: 

 

• for continuous RV: 

 

[Population] Variance 
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Sample mean and sample variance 

• Suppose we have N independent observations 

of X: x
1
, x

2
, …x

N 

• Sample mean: 

 

 

• Sample variance: 
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1/(N-1) and the sample variance 

• The N differences             are not independent: 

 

• If you know N-1 of these values, you can deduce the 

last one 

– i.e., only N-1 degrees of freedom 

• Could treat sample as population and compute 

population variance: 

 

– BUT this underestimates true population variance (especially 

bad if sample is small) 

 

 

 



xi  x 



(xi  x )  0



1

N
(xi  x )2

i1

N





Sample variance using 1/(N-1) is unbiased 
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Computing Sample Variance 

• Can compute as 

 

 

• Prefer: 

 

 

 

(one pass, fewer operations, more accurate) 
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The Gaussian Distribution 
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Why so important? 

• sum of independent observations of random 

variables converges to Gaussian *
(with some assumptions) 

• in nature, events having variations resulting 

from many small, independent effects tend to 

have Gaussian distributions 

– demo: http://www.mongrav.org/math/falling-balls-

probability.htm 

– e.g., measurement error 

– if effects are multiplicative, logarithm is often 

normally distributed 

 

http://www.mongrav.org/math/falling-balls-probability.htm
http://www.mongrav.org/math/falling-balls-probability.htm
http://www.mongrav.org/math/falling-balls-probability.htm
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Central Limit Theorem 

• Suppose we sample x
1
, x

2
, … x

N
 from a 

distribution with mean μ and variance σ2 

• Let 

 

• then 

 

• i.e.,    distributed normally with mean μ, 

variance σ2/N    
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Important Properties of Normal Distribution 

1. Family of normal distributions closed under linear 

transformations: 

 if X ~ N(μ, σ2
) then  

 (aX + b) ~ N(aμ+b, a
2σ2) 

2. Linear combination of normals is also normal: 
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Important Properties of Normal Distribution 

3. Of all distributions with mean and variance, normal has 

maximum entropy 

 Information theory: Entropy like “uninformativeness” 

 Principle of maximum entropy: choose to represent 

the world with as uninformative a distribution as 

possible, subject to “testable information” 

If we know x is in [a, b], then uniform distribution on [a, b] 

has least entropy 

If we know distribution has mean μ, variance σ2
, normal 

distribution N(μ, σ2
) has least entropy 



Important Properties of Normal Distribution 

4. If errors are normally distributed, a least-squares fit 

yields the maximum likelihood estimator 

Finding least-squares x st Ax ≈ b finds the value of x that 

maximizes the likelihood of data A under some model 

 

 



Important Properties of Normal Distribution 

5. Many derived random variables have 

analytically-known densities  

 e.g., sample mean, sample variance 

6. Sample mean and variance of n identical 

independent samples are independent; sample 

mean is a normally-distributed random variable  
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Distribution of Sample Variance 

(For Gaussian R.V. X) 
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The Gamma Function 



The Chi-Squared Distribution 



What if we don’t know true variance? 

• Sample mean is normally distributed R.V. 

 

• Taking advantage of this presumes we know σ2
 

 

•             has a t distribution with (n-1) d.o.f.
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[Student’s] t-distribution 



Forming a confidence interval 

• e.g., given that I observed a sample mean of ____, I’m 

99% confident that the true mean lies between ____ 

and ____. 

• Know that               has t distribution 

 

 

• Choose q
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probability of lying between q
1
, q

2
 
 



x  

sn / n



Confidence interval for the mean 
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Interpreting Simulation Outcomes 

• How long will customers have to wait, on 

average? 

– e.g., for given # tellers, arrival rate, service time 

distribution, etc. 



Interpreting Simulation Outcomes 

• Simulate bank for N customers 

• Let x
i 
be the wait time of customer i 

• Is mean(x) a good estimate for μ? 

• How to compute a 95% confidence interval for μ? 

– Problem: x
i
 are not independent! 



Replications 

• Run simulation to get M observations 

• Repeat simulation N times (different random 

numbers each time) 

• Treat the sample mean of different runs as 

approximately uncorrelated 
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