Poisson Image Editing
The Challenge

- Cut-and-paste of dissimilar regions
The Approach

• Modify colors within each pasted region to agree with destination at boundary

• Want smoothest-possible change to colors
 – In general, can’t simply offset colors by a constant
 – But still want spatial smoothness (low-frequency)
 – This is less perceptible to human visual system
Digression: Contrast Sensitivity

• Ideal contrast sensitivity for humans about 1%
 – 8-bit image (barely) adequate

• But: frequency dependent
 – sensitivity lower for high and very low frequencies
Digression: Contrast Sensitivity

- Campbell-Robson contrast sensitivity chart
The Approach

• Modify colors within each pasted region to agree with destination at boundary
 – For each color channel (R, G, B), let \(g(x, y) = \) source, \(f^*(x, y) = \) destination, \(f(x, y) = \) modified
 – Let \(\Omega = \) region, \(\partial \Omega = \) boundary
The Approach

• Key idea: satisfy Poisson equation within Ω

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \nabla \cdot g$$

– with boundary conditions

$$f = f^* \big|_{\partial \Omega}$$

• Yields a function that is smooth overall ("soap bubble") but contains details of g
Other Results from Paper

poisson-image-editing.pdf