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Smoothers

Disappointing convergence rates observed for stationary
iterative methods are asymptotic

Much better progress may be made initially before
eventually settling into slow asymptotic phase

Many stationary iterative methods tend to reduce
high-frequency (i.e., oscillatory) components of error
rapidly, but reduce low-frequency (i.e., smooth)
components of error much more slowly, which produces
poor asymptotic rate of convergence

For this reason, such methods are sometimes called
smoothers

< interactive example >
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Multigrid Methods

Smooth or oscillatory components of error are relative to
mesh on which solution is defined

Component that appears smooth on fine grid may appear
oscillatory when sampled on coarser grid

If we apply smoother on coarser grid, then we may make
rapid progress in reducing this (now oscillatory) component
of error

After few iterations of smoother, results can then be
interpolated back to fine grid to produce solution that has
both higher-frequency and lower-frequency components of
error reduced
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Multigrid Methods, continued

Multigrid methods : This idea can be extended to multiple
levels of grids, so that error components of various
frequencies can be reduced rapidly, each at appropriate
level

Transition from finer grid to coarser grid involves restriction
or injection

Transition from coarser grid to finer grid involves
interpolation or prolongation
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Residual Equation

If x̂ is approximate solution to Ax = b, with residual
r = b−Ax̂, then error e = x− x̂ satisfies equation
Ae = r

Thus, in improving approximate solution we can work with
just this residual equation involving error and residual,
rather than solution and original right-hand side

One advantage of residual equation is that zero is
reasonable starting guess for its solution
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Two-Grid Algorithm

1 On fine grid, use few iterations of smoother to compute
approximate solution x̂ for system Ax = b

2 Compute residual r = b−Ax̂

3 Restrict residual to coarse grid

4 On coarse grid, use few iterations of smoother on residual
equation to obtain coarse-grid approximation to error

5 Interpolate coarse-grid correction to fine grid to obtain
improved approximate solution on fine grid

6 Apply few iterations of smoother to corrected solution on
fine grid
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Multigrid Methods, continued

Multigrid method results from recursion in Step 4: coarse
grid correction is itself improved by using still coarser grid,
and so on down to some bottom level

Computations become progressively cheaper on coarser
and coarser grids because systems become successively
smaller

In particular, direct method may be feasible on coarsest
grid if system is small enough
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Cycling Strategies

Common strategies for cycling through grid levels
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Cycling Strategies, continued

V-cycle starts with finest grid and goes down through
successive levels to coarsest grid and then back up again
to finest grid

W-cycle zig-zags among lower level grids before moving
back up to finest grid, to get more benefit from coarser
grids where computations are cheaper

Full multigrid starts at coarsest level, where good initial
solution is easier to come by (perhaps by direct method),
then bootstraps this solution up through grid levels,
ultimately reaching finest grid
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Multigrid Methods, continued

By exploiting strengths of underlying iterative smoothers
and avoiding their weaknesses, multigrid methods are
capable of extraordinarily good performance, linear in
number of grid points in best case

At each level, smoother reduces oscillatory component of
error rapidly, at rate independent of mesh size h, since few
iterations of smoother, often only one, are performed at
each level

Since all components of error appear oscillatory at some
level, convergence rate of entire multigrid scheme should
be rapid and independent of mesh size, in contrast to other
iterative methods
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Multigrid Methods, continued

Moreover, cost of entire cycle of multigrid is only modest
multiple of cost of single sweep on finest grid

As result, multigrid methods are among most powerful
methods available for solving sparse linear systems arising
from PDEs

They are capable of converging to within truncation error of
discretization at cost comparable with fast direct methods,
although latter are much less broadly applicable
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