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Partial Differential Equations

Partial differential equations (PDEs) involve partial
derivatives with respect to more than one independent
variable

Independent variables typically include one or more space
dimensions and possibly time dimension as well

More dimensions complicate problem formulation: we can
have pure initial value problem, pure boundary value
problem, or mixture of both

Equation and boundary data may be defined over irregular
domain
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Partial Differential Equations, continued

For simplicity, we will deal only with single PDEs (as
opposed to systems of several PDEs) with only two
independent variables, either

two space variables, denoted by x and y, or
one space variable denoted by x and one time variable
denoted by t

Partial derivatives with respect to independent variables
are denoted by subscripts, for example

ut = ∂u/∂t

uxy = ∂2u/∂x∂y
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Example: Advection Equation

Advection equation

ut = −c ux

where c is nonzero constant

Unique solution is determined by initial condition

u(0, x) = u0(x), −∞ < x < ∞

where u0 is given function defined on R

We seek solution u(t, x) for t ≥ 0 and all x ∈ R

From chain rule, solution is given by u(t, x) = u0(x− c t)

Solution is initial function u0 shifted by c t to right if c > 0, or
to left if c < 0
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Example, continued

Typical solution of advection equation, with initial function
“advected” (shifted) over time < interactive example >
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Characteristics
Characteristics for PDE are level curves of solution

For advection equation ut = −c ux, characteristics are
straight lines of slope c

Characteristics determine where boundary conditions can
or must be imposed for problem to be well-posed
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Classification of PDEs

Order of PDE is order of highest-order partial derivative
appearing in equation

For example, advection equation is first order

Important second-order PDEs include

Heat equation : ut = uxx

Wave equation : utt = uxx

Laplace equation : uxx + uyy = 0
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Classification of PDEs, continued

Second-order linear PDEs of general form

auxx + buxy + cuyy + dux + euy + fu + g = 0

are classified by value of discriminant b2 − 4ac

b2 − 4ac > 0: hyperbolic (e.g., wave equation)

b2 − 4ac = 0: parabolic (e.g., heat equation)

b2 − 4ac < 0: elliptic (e.g., Laplace equation)
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Classification of PDEs, continued

Classification of more general PDEs is not so clean and simple,
but roughly speaking

Hyperbolic PDEs describe time-dependent, conservative
physical processes, such as convection, that are not
evolving toward steady state

Parabolic PDEs describe time-dependent, dissipative
physical processes, such as diffusion, that are evolving
toward steady state

Elliptic PDEs describe processes that have already
reached steady state, and hence are time-independent
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Time-Dependent Problems

Time-dependent PDEs usually involve both initial values
and boundary values
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Semidiscrete Methods

One way to solve time-dependent PDE numerically is to
discretize in space but leave time variable continuous

Result is system of ODEs that can then be solved by
methods previously discussed

For example, consider heat equation

ut = c uxx, 0 ≤ x ≤ 1, t ≥ 0

with initial condition

u(0, x) = f(x), 0 ≤ x ≤ 1

and boundary conditions

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0
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Semidiscrete Finite Difference Method

Define spatial mesh points xi = i∆x, i = 0, . . . , n + 1,
where ∆x = 1/(n + 1)
Replace derivative uxx by finite difference approximation

uxx(t, xi) ≈
u(t, xi+1)− 2u(t, xi) + u(t, xi−1)

(∆x)2

Result is system of ODEs

y′i(t) =
c

(∆x)2
(yi+1(t)− 2yi(t) + yi−1(t)) , i = 1, . . . , n

where yi(t) ≈ u(t, xi)

From boundary conditions, y0(t) and yn+1(t) are identically
zero, and from initial conditions, yi(0) = f(xi), i = 1, . . . , n

We can therefore use ODE method to solve IVP for this
system — this approach is called Method of Lines
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Method of Lines

Method of lines uses ODE solver to compute
cross-sections of solution surface over space-time plane
along series of lines, each parallel to time axis and
corresponding to discrete spatial mesh point
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Stiffness

Semidiscrete system of ODEs just derived can be written
in matrix form

y′ =
c

(∆x)2


−2 1 0 · · · 0

1 −2 1 · · · 0
0 1 −2 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 −2

y = Ay

Jacobian matrix A of this system has eigenvalues between
−4c/(∆x)2 and 0, which makes ODE very stiff as spatial
mesh size ∆x becomes small

This stiffness, which is typical of ODEs derived from PDEs,
must be taken into account in choosing ODE method for
solving semidiscrete system
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Semidiscrete Collocation Method

Spatial discretization to convert PDE into system of ODEs
can also be done by spectral or finite element approach

Approximate solution is expressed as linear combination of
basis functions, but with time dependent coefficients

Thus, we seek solution of form

u(t, x) ≈ v(t, x, α(t)) =
n∑

j=1

αj(t)φj(x)

where φj(x) are suitably chosen basis functions

If we use collocation, then we substitute this approximation
into PDE and require that equation be satisfied exactly at
discrete set of points xi
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Semidiscrete Collocation, continued

For heat equation, this yields system of ODEs

n∑
j=1

α′
j(t)φj(xi) = c

n∑
j=1

αj(t)φ′′
j (xi)

whose solution is set of coefficient functions αi(t) that
determine approximate solution to PDE

Implicit form of this system is not explicit form required by
standard ODE methods, so we define n× n matrices M
and N by

mij = φj(xi), nij = φ′′
j (xi)
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Semidiscrete Collocation, continued

Assuming M is nonsingular, we then obtain system of
ODEs

α′(t) = cM−1Nα(t)

which is in form suitable for solution with standard ODE
software

As usual, M need not be inverted explicitly, but merely
used to solve linear systems

Initial condition for ODE can be obtained by requiring
solution to satisfy given initial condition for PDE at mesh
points xi

Matrices involved in this method will be sparse if basis
functions are “local,” such as B-splines
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Semidiscrete Collocation, continued

Unlike finite difference method, spectral or finite element
method does not produce approximate values of solution u
directly, but rather it generates representation of
approximate solution as linear combination of basis
functions

Basis functions depend only on spatial variable, but
coefficients of linear combination (given by solution to
system of ODEs) are time dependent

Thus, for any given time t, corresponding linear
combination of basis functions generates cross section of
solution surface parallel to spatial axis

As with finite difference methods, systems of ODEs arising
from semidiscretization of PDE by spectral or finite element
methods tend to be stiff
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Fully Discrete Methods

Fully discrete methods for PDEs discretize in both time
and space dimensions

In fully discrete finite difference method, we

replace continuous domain of equation by discrete mesh of
points
replace derivatives in PDE by finite difference
approximations
seek numerical solution as table of approximate values at
selected points in space and time
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Fully Discrete Methods, continued

In two dimensions (one space and one time), resulting
approximate solution values represent points on solution
surface over problem domain in space-time plane

Accuracy of approximate solution depends on step sizes in
both space and time

Replacement of all partial derivatives by finite differences
results in system of algebraic equations for unknown
solution at discrete set of sample points

Discrete system may be linear or nonlinear, depending on
underlying PDE
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Fully Discrete Methods, continued

With initial-value problem, solution is obtained by starting
with initial values along boundary of problem domain and
marching forward in time step by step, generating
successive rows in solution table

Time-stepping procedure may be explicit or implicit,
depending on whether formula for solution values at next
time step involves only past information

We might expect to obtain arbitrarily good accuracy by
taking sufficiently small step sizes in time and space

Time and space step sizes cannot always be chosen
independently of each other, however
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Example: Heat Equation

Consider heat equation

ut = c uxx, 0 ≤ x ≤ 1, t ≥ 0

with initial and boundary conditions

u(0, x) = f(x), u(t, 0) = α, u(t, 1) = β

Define spatial mesh points xi = i∆x, i = 0, 1, . . . , n + 1,
where ∆x = 1/(n + 1), and temporal mesh points
tk = k∆t, for suitably chosen ∆t

Let uk
i denote approximate solution at (tk, xi)
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Heat Equation, continued

Replacing ut by forward difference in time and uxx by
centered difference in space, we obtain

uk+1
i − uk

i

∆t
= c

uk
i+1 − 2uk

i + uk
i−1

(∆x)2
, or

uk+1
i = uk

i + c
∆t

(∆x)2
(
uk

i+1 − 2uk
i + uk

i−1

)
, i = 1, . . . , n

Stencil : pattern of mesh points involved at each level
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Heat Equation, continued

Boundary conditions give us uk
0 = α and uk

n+1 = β for all k,
and initial conditions provide starting values u0

i = f(xi),
i = 1, . . . , n

So we can march numerical solution forward in time using
this explicit difference scheme

Local truncation error is O(∆t) +O((∆x)2), so scheme is
first-order accurate in time and second-order accurate in
space

< interactive example >
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Example: Wave Equation

Consider wave equation

utt = c uxx, 0 ≤ x ≤ 1, t ≥ 0

with initial and boundary conditions

u(0, x) = f(x), ut(0, x) = g(x)

u(t, 0) = α, u(t, 1) = β
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Example: Wave Equation, continued

With mesh points defined as before, using centered
difference formulas for both utt and uxx gives finite
difference scheme

uk+1
i − 2uk

i + uk−1
i

(∆t)2
= c

uk
i+1 − 2uk

i + uk
i−1

(∆x)2
, or

uk+1
i = 2uk

i −uk−1
i +c

(
∆t

∆x

)2 (
uk

i+1 − 2uk
i + uk

i−1

)
, i = 1, . . . , n
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Wave Equation, continued

Using data at two levels in time requires additional storage

We also need u0
i and u1

i to get started, which can be
obtained from initial conditions

u0
i = f(xi), u1

i = f(xi) + (∆t)g(xi)

where latter uses forward difference approximation to initial
condition ut(0, x) = g(x)

< interactive example >
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Stability

Unlike Method of Lines, where time step is chosen
automatically by ODE solver, user must choose time step
∆t in fully discrete method, taking into account both
accuracy and stability requirements

For example, fully discrete scheme for heat equation is
simply Euler’s method applied to semidiscrete system of
ODEs for heat equation given previously

We saw that Jacobian matrix of semidiscrete system has
eigenvalues between −4c/(∆x)2 and 0, so stability region
for Euler’s method requires time step to satisfy

∆t ≤ (∆x)2

2 c

Severe restriction on time step can make explicit methods
relatively inefficient < interactive example >
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Implicit Finite Difference Methods

For ODEs we saw that implicit methods are stable for much
greater range of step sizes, and same is true of implicit
methods for PDEs

Applying backward Euler method to semidiscrete system
for heat equation gives implicit finite difference scheme

uk+1
i = uk

i + c
∆t

(∆x)2
(
uk+1

i+1 − 2uk+1
i + uk+1

i−1

)
, i = 1, . . . , n
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Implicit Finite Difference Methods, continued

This scheme inherits unconditional stability of backward
Euler method, which means there is no stability restriction
on relative sizes of ∆t and ∆x

But first-order accuracy in time still severely limits time step

< interactive example >
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Crank-Nicolson Method

Applying trapezoid method to semidiscrete system of
ODEs for heat equation yields implicit Crank-Nicolson
method

uk+1
i = uk

i +c
∆t

2(∆x)2
(
uk+1

i+1 − 2uk+1
i + uk+1

i−1 + uk
i+1 − 2uk

i + uk
i−1

)

This method is unconditionally stable and second-order
accurate in time < interactive example >
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Implicit Finite Difference Methods, continued

Much greater stability of implicit finite difference methods
enables them to take much larger time steps than explicit
methods, but they require more work per step, since
system of equations must be solved at each step

For both backward Euler and Crank-Nicolson methods for
heat equation in one space dimension, this linear system is
tridiagonal, and thus both work and storage required are
modest

In higher dimensions, matrix of linear system does not
have such simple form, but it is still very sparse, with
nonzeros in regular pattern
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