Finite Difference Approximations For Derivatives

Taylor Series

- Goal: given smooth function $f: \Re \to \Re$, find approximate derivatives at some point x
- Consider Taylor series expansions around x:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{2}h^3 + \dots$$
$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{2}h^3 + \dots$$

Forward Difference

Starting from first equation,

$$f(x+h) \approx f(x) + f'(x)h + O(h^2)$$
$$f'(x) \approx \frac{f(x+h) - f(x)}{h} + O(h)$$

 This is the forward-difference approximation to the first derivative: first-order accurate

Backward Difference

Similarly, starting from second equation,

$$f(x-h) \approx f(x) - f'(x)h + O(h^2)$$
$$f'(x) \approx \frac{f(x) - f(x-h)}{h} + O(h)$$

 This is the backward-difference approximation to the first derivative: also first-order accurate

Centered Difference

Subtract the two Taylor-series expansions:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{2}h^3 + \dots$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{2}h^3 + \dots$$

$$f(x+h) - f(x-h) \approx 2f'(x)h + O(h^3)$$

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

 This is the centered-difference approximation to the first derivative: second-order accurate

Second Derivative

Now add the two Taylor-series expansions:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{2}h^3 + \dots$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{2}h^3 + \dots$$

$$f(x+h) + f(x-h) \approx 2f(x) + f''(x)h^2 + O(h^4)$$

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

 This is the centered-difference approximation to the second derivative: second-order accurate