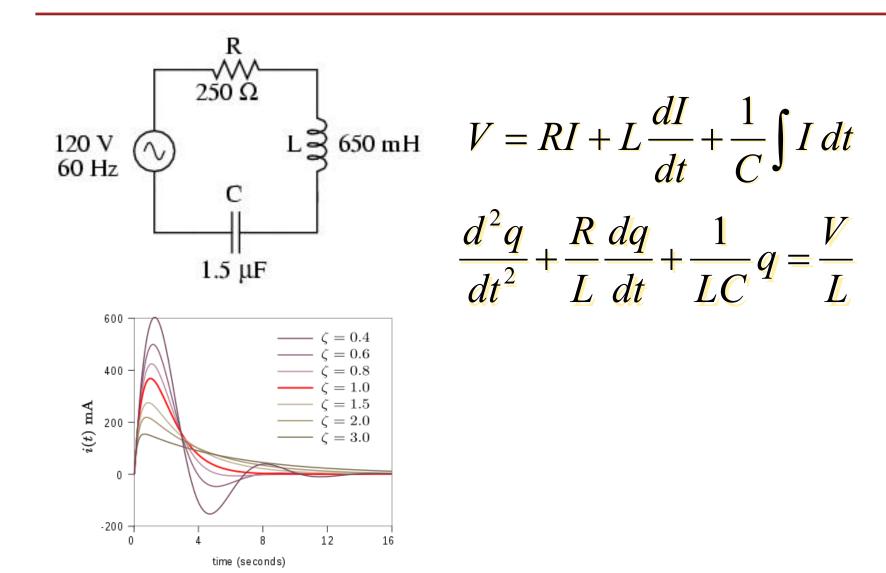
Ordinary Differential Equations Part 1

COS 323

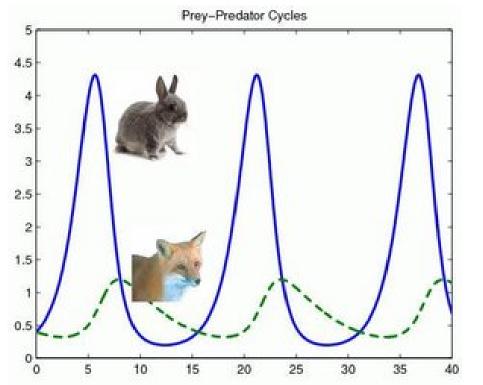
Ordinary Differential Equations (ODEs)

- Differential equations are ubiquitous: the lingua franca of the sciences. Many different fields are linked by having similar differential equations
 - electrical circuits
 - Newtonian mechanics
 - chemical reactions
 - population dynamics
 - economics... and so on, ad infinitum
- ODEs: 1 independent variable (PDEs have more)

ODE Example: RLC circuit

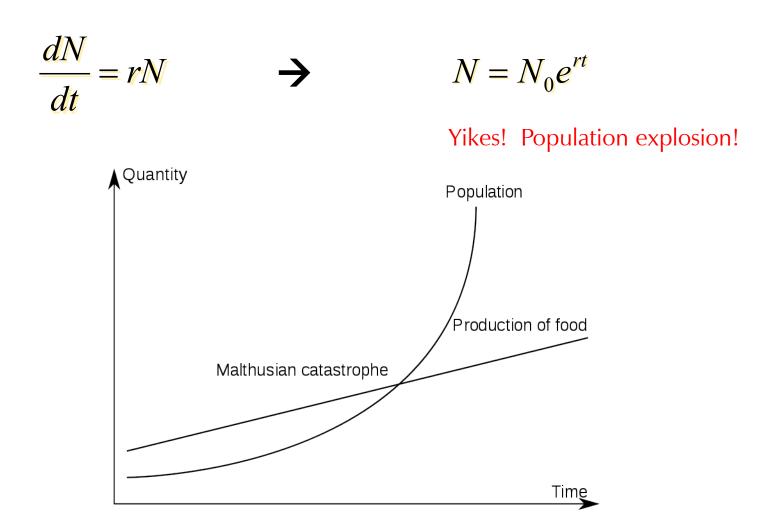


ODE Example: Population Dynamics



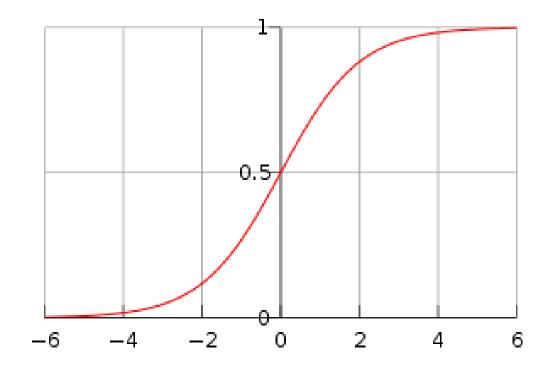
- 1798 Malthusian catastrophe
- 1838 Verhulst, logistic growth
- Predator-prey systems, Volterra-Lotka

Malthusian Population Dynamics



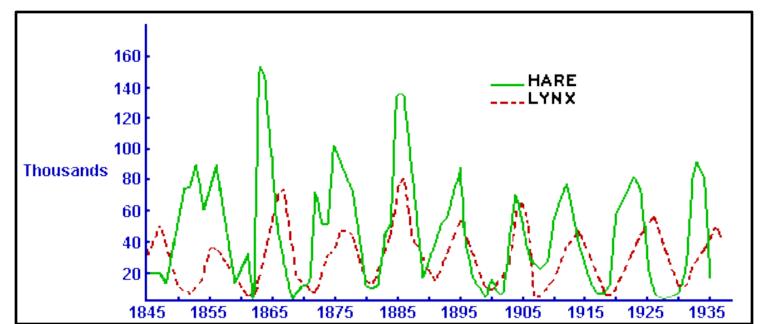
Verhulst: Logistic growth

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) \quad \Rightarrow \quad N = \frac{N_0 e^{rt}}{1 + \frac{N_0}{K} \left(e^{rt} - 1\right)}$$



Predator-Prey Population Dynamics

Hudson Bay Company



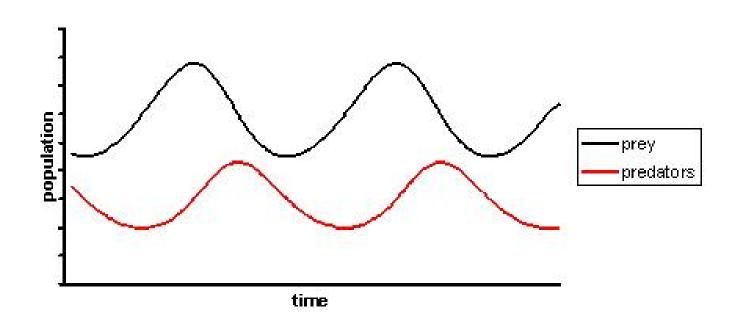
Predator-Prey Population Dymanics

V .Volterra, commercial fishing in the Adriatic

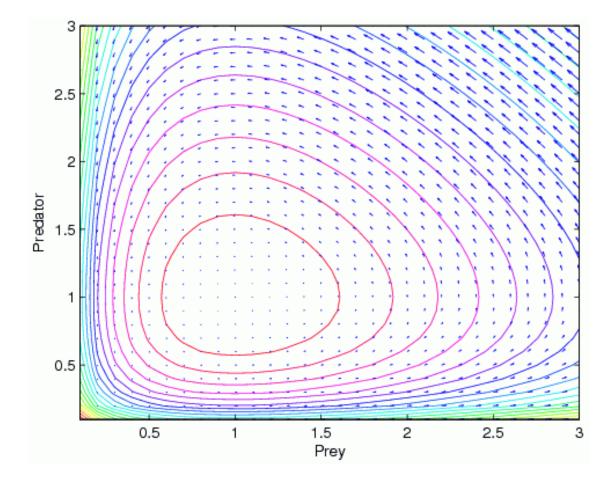
$$x_1$$
 = biomass of predators (sharks)
 x_2 = biomass of prey (fish)

$$\frac{\dot{x}_1}{x_1} = b_{12}x_2 - a_1 \qquad \qquad \frac{\dot{x}_2}{x_2} = a_2 - b_{21}x_1$$

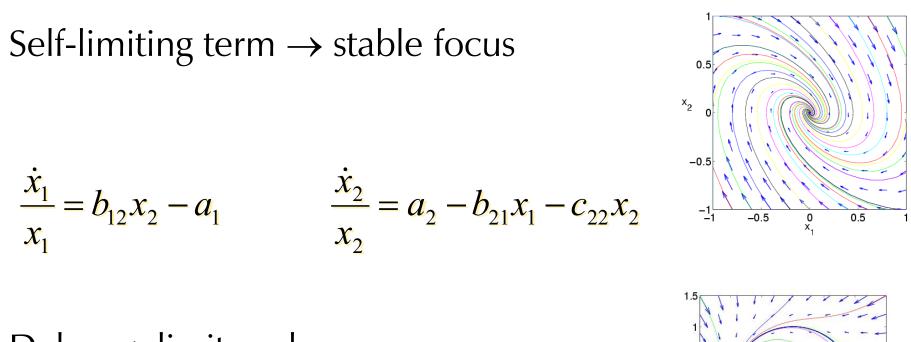
As Functions of Time



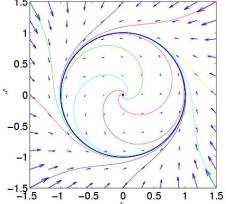
State-Space Diagram: The x₁-x₂ Plane



More Behaviors



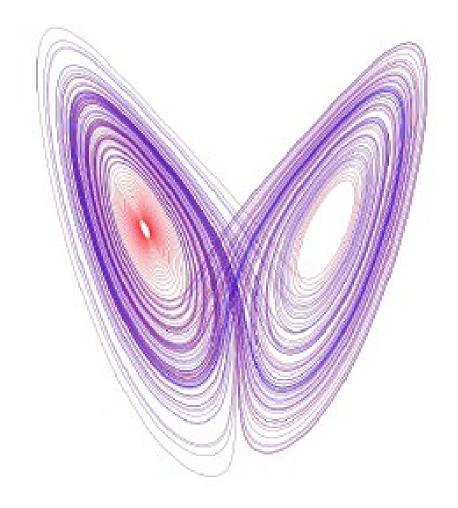
Delay \rightarrow limit cycle



Varieties of Behavior

- Stable focus
- Periodic
- Limit cycle

Varieties of Behavior



- Stable focus
- Periodic
- Limit cycle
- Chaos

Terminology

- Order: highest order of derivative determines order of ODE
- Explicit: Can express k-th derivative in terms of lower orders
- Implicit: More general

$$F\left(t, y(t), \frac{dy(t)}{dt}\right) = m\frac{d^2 y(t)}{dt^2}$$
$$y'' = F / m$$

$$y^{(k)} = f(t, y, y', y'', ..., y^{(k-1)})$$

 $y'' = F/m$

$$f(t, y, y', y'', ..., y^{(k)}) = 0$$

Notational Conventions

- t is independent variable (scalar for ODEs)
- y is dependent variable
 may be vector-valued
- focus exclusively here on explicit, first-order ODEs:

$$\mathbf{y}' = f(t, \mathbf{y})$$
 where $f : \mathfrak{R}^{n+1} \to \mathfrak{R}^n$

 Special case: f does not depend explicitly on t: autonomous ODE

$$\mathbf{y'} = f(\mathbf{y})$$

Transforming a higher-order ODE into a system of first-order ODEs

For *k*-th order ODE

$$y^{(k)}(t) = f(t, y, y', \dots, y^{(k-1)})$$

define k new unknown functions

$$u_1(t) = y(t), \ u_2(t) = y'(t), \ \dots, \ u_k(t) = y^{(k-1)}(t)$$

Then original ODE is equivalent to first-order system

$$\begin{bmatrix} u_1'(t) \\ u_2'(t) \\ \vdots \\ u_{k-1}'(t) \\ u_k'(t) \end{bmatrix} = \begin{bmatrix} u_2(t) \\ u_3(t) \\ \vdots \\ u_k(t) \\ f(t, u_1, u_2, \dots, u_k) \end{bmatrix}$$

Newton's second law as first-order system

$$y'' = F/m$$

Defining $u_1 = y$ and $u_2 = y'$ yields equivalent system of two first-order ODEs

$$\begin{bmatrix} u_1' \\ u_2' \end{bmatrix} = \begin{bmatrix} u_2 \\ F/m \end{bmatrix}$$

Solving ODEs

What does it mean to solve an ODE?

• Analytically:

transform f(t, y, y', y''... $y^{(k)}$) into equation of form y = ...

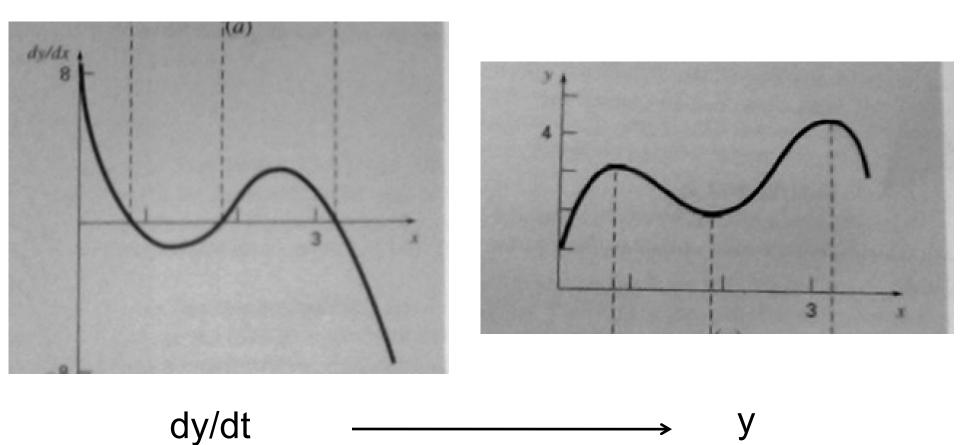
e.g., transform
$$\frac{dy}{dx} = -2x^3 - 12x^2 - 20x + 8.5$$

into $y = -0.5x^4 + 4x^3 - 10x^2 + 8.5x + C$

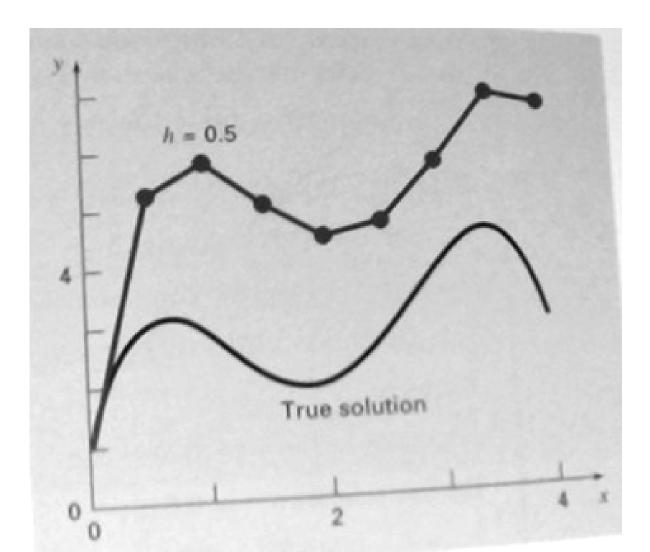
• Numerically:

use f(t, y, y', y''... y^(k)) to compute approximations of y for discrete values of t $- e.g., (y_1, t_1), (y_2, t_2), ...(y_n, t_n)$

Analytically-derived solution

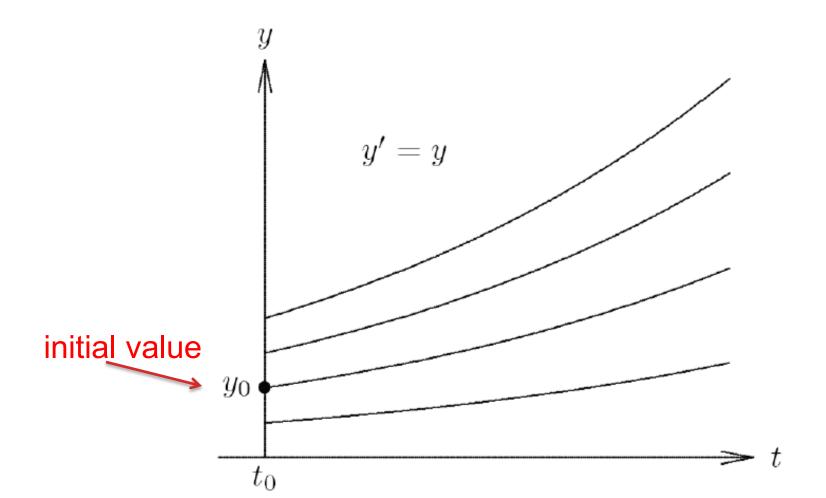


Numerically-derived Solution



ODEs have many solutions

Family of solutions for ODE y' = y



IVP vs BVP

- Today: Initial Value Problems
 - Complete state known at $t = t_0$
- As opposed to Boundary Value Problems
 - Parts of state known at multiple values of *t*

ODEs and integration

• If y' = f(t, y) and $y(t_0) = y_0$, then

$$y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds$$

• This directly useful only if *f* is independent of *y*, but helps us understand why there are so many parallels to numerical integration

Numerical Methods for ODEs

Need for numerical methods

• Linear ODEs are nice:

 $a_n(t) y^{(n)} + \dots a_1(t) y' + a_0(t) y = f(t)$

- No analytical solutions for most nonlinear ODEs
- Can sometimes locally linearize non-linear ODEs; e.g., pendulum equation

$$\frac{d^2\theta}{dt} + \frac{g}{l}\sin\theta = 0$$

can be estimated as
$$\frac{d^2\theta}{dt} + \frac{g}{l}\theta = 0$$

Numerical methods for ODEs

- Can't solve many (most) interesting problems analytically
- Numerical methods find y_k at a discrete set of t_k given f(y, t) and y_0
- Important considerations:
 - Accuracy / error analysis
 - Efficiency: running time, number of steps
 - Stability: will estimate of $y(t_k)$ diverge from true value?

"Simplest possible" method

• Known:
$$\frac{dy}{dt} = f(t,y)$$

 $y = y_0$ at $t = t_0$

• What is
$$y_1$$
 at time $t_1 = t_0 + h$?

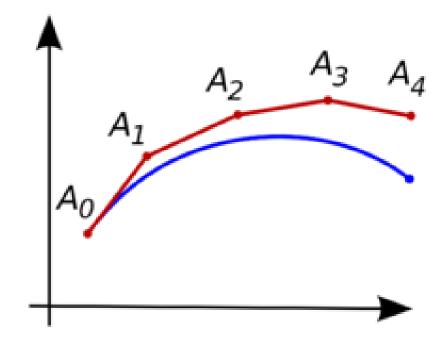
$$y_1 = y_0 + f(t_0, y_0)h$$

Euler's method
$$y_0 = y_0 + f(t_0, y_0)h$$

Forward (Explicit) Euler's method

• Can repeat for subsequent estimates:

$$y_{i+1} = y_i + f(t_i, y_i)h$$



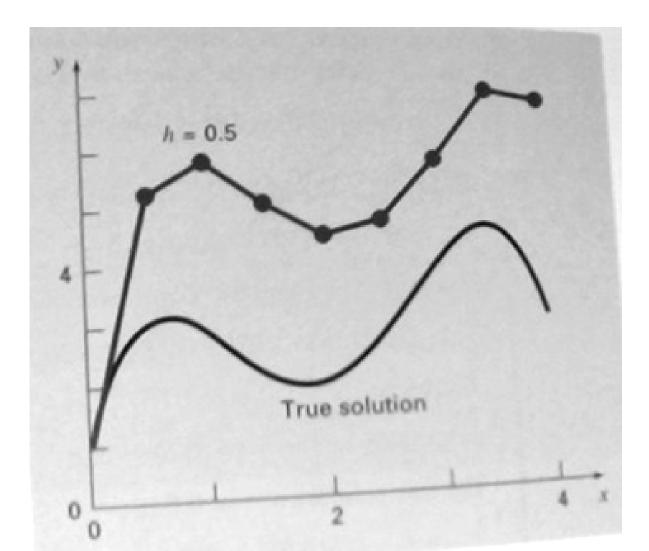
Example

from Chapra & Canale

Solve
$$\frac{dy}{dt} = -2t^3 - 12t^2 - 20t + 8.5$$

for $t = 1$ given $y = 1$ at $t = 0$, and for step size 0.5:
Step 1:
 $y(0.5) = y(0) + f(0,1) * 0.5$
where $y(0,1) = -2(0)^3 + 12(0)^2 - 20(0) + 8.5 = 8.5$
so $y(0.5) = 5.25$
Step 2:
 $y(1.0) = y(0.5) + f(0.5,5.25) * 0.5$
 $= 5.25 + [-2(0.5)^3 + 12(0.5)^2 - 20(0.5) + 8.5] * 0.5$

Sequence of Euler solutions



Error analysis of Euler's method

Derive y_{i+1} using Taylor series expansion around (t_i, y_i) :

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{f'(t_i, y_i)h^2}{2!} + \dots + \frac{f^{(n-1)}(t_i, y_i)h^n}{n!} + O(h^{n+1})$$

Euler's method uses first two terms of this, so we have **truncation error**:

$$E_{t} = \frac{f'(t_{i}, y_{i})h^{2}}{2!} + \dots + \frac{f^{(n-1)}(t_{i}, y_{i})h^{n}}{n!} + O(h^{n+1})$$
$$E = O(h^{2})$$

This is **local error.** Works perfectly if solution is linear: it's a **first-order method** Local and Global Error

Global error: difference between computed solution and true solution y(t) passing through initial point (t_0, y_0)

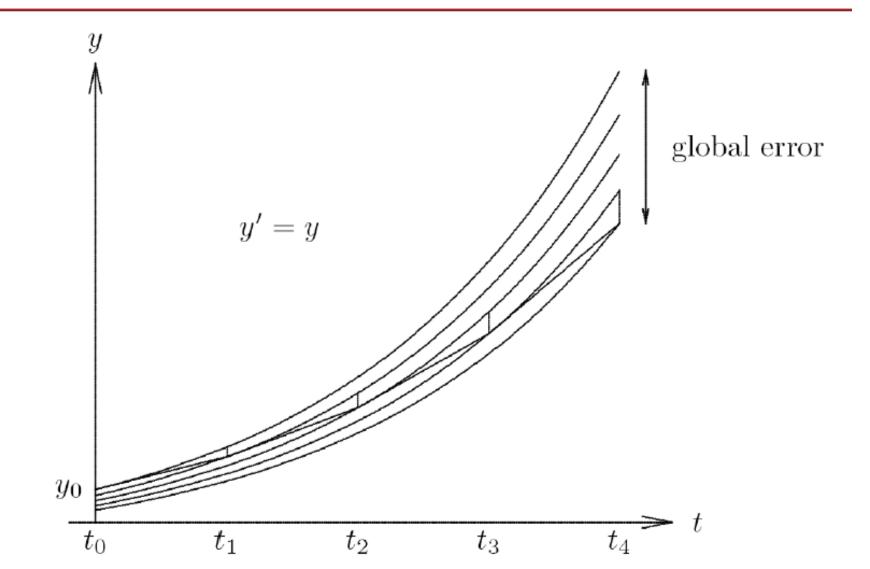
$$\boldsymbol{e}_k = \boldsymbol{y}_k - \boldsymbol{y}(t_k)$$

Local error: error made in one step of numerical method

$$\boldsymbol{\ell}_k = \boldsymbol{y}_k - \boldsymbol{u}_{k-1}(t_k)$$

where $u_{k-1}(t)$ is true solution passing through previous point (t_{k-1}, y_{k-1})

Local and Global error



Error analysis, in general

- Local error: concerned with **accuracy** at each step
 - Euler's method: $O(h^2)$
- Global error: concerned with stability over multiple steps
 - Euler's method: O(h)
- In general, for nth-order method:
 - Local error $O(h^{n+1})$, global error $O(h^n)$
- Stability is **not guaranteed**

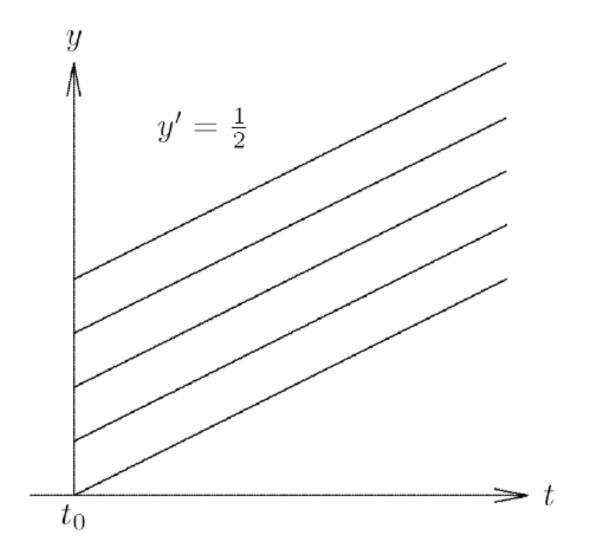
Stability of ODE

Solution of ODE is

- Stable if solutions resulting from perturbations of initial value remain close to original solution
- Asymptotically stable if solutions resulting from perturbations converge back to original solution
- Unstable if solutions resulting from perturbations diverge away from original solution without bound

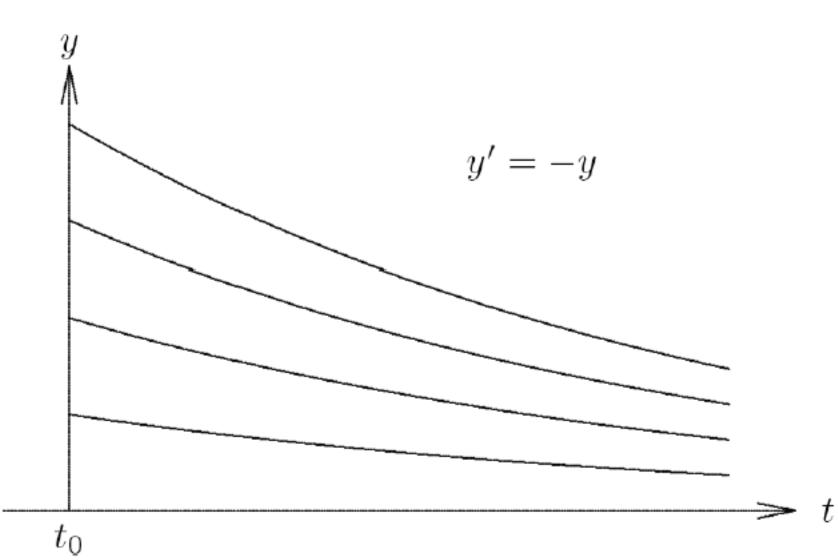
Stable

Family of solutions for ODE $y' = \frac{1}{2}$



Asymptotically Stable

Family of solutions for ODE y' = -y



Stability of Method

- Possible to have instability (divergence from true solution) even when solutions to ODE are stable
- Euler's method sensitive to choice of *h*:
 - Consider $dy/dt = -\lambda y$
 - Analytic solution is $y(t) = y_0 e^{-\lambda t}$
 - Forward Euler step is $y_{k+1} = y_k \lambda y_k h = y_k (1 \lambda h)$
 - Euler's method unstable if $h > 2/\lambda$

Other methods often have better stability.

Taylor Series Methods

- Euler's method can be derived from Taylor series expansion
- By retaining more terms in Taylor series, we can generate higher-order single-step methods
- For example, retaining one additional term in Taylor series

$$y(t+h) = y(t) + h y'(t) + \frac{h^2}{2} y''(t) + \frac{h^3}{6} y'''(t) + \cdots$$

gives second-order method

$$\boldsymbol{y}_{k+1} = \boldsymbol{y}_k + h_k \, \boldsymbol{y}'_k + \frac{h_k^2}{2} \, \boldsymbol{y}''_k$$

Why not use TS methods?

- Requires higher-level derivatives of y
- Ugly and hard to compute!
- More efficient higher-order methods exist

Runge-Kutta Methods

Runge-Kutta

- Family of techniques
- Achieves accuracy of Taylor Series without needing higher derivatives
- Accomplishes this by evaluating f several times between t_k and t_{k+1}

Runge-Kutta: General Form

$$y_{i+1} = y_i + \phi(t_i, y_i, h)h$$

where $\phi = a_1k_1 + a_2k_2 + ... + a_nk_n$
and

$$k_{1} = f(t_{i}, y_{i})$$

$$k_{2} = f(t_{i} + p_{1}h, y_{i} + q_{11}k_{1}h)$$

$$k_{3} = f(t_{i} + p_{2}h, y + q_{21}k_{1}h + q_{22}k_{2}h)$$

$$\vdots$$

$$k_{n} = f(t_{i} + p_{n-1}h, y_{i} + q_{n-1,1}k_{1}h + q_{n-1,2}k_{2}h + \dots + q_{n-1,n-1}k_{n-1}h)$$

Euler as R-K

• Let n = 1

$$y_{i+1} = y_i + \phi(t_i, y_i, h)h$$

where $\phi = a_1 k_1$
and

$$k_1 = f(t_i, y_i)$$
$$a_1 = 1$$

Higher-Order RK

Midpoint method
 4th-order Runge Kutta

$$a = hf(x^{(k)})$$

$$b = hf(x^{(k)} + a/2)$$

$$x^{(k+1)} = x^{(k)} + b + O(h^3)$$

$$a = hf(x^{(k)})$$

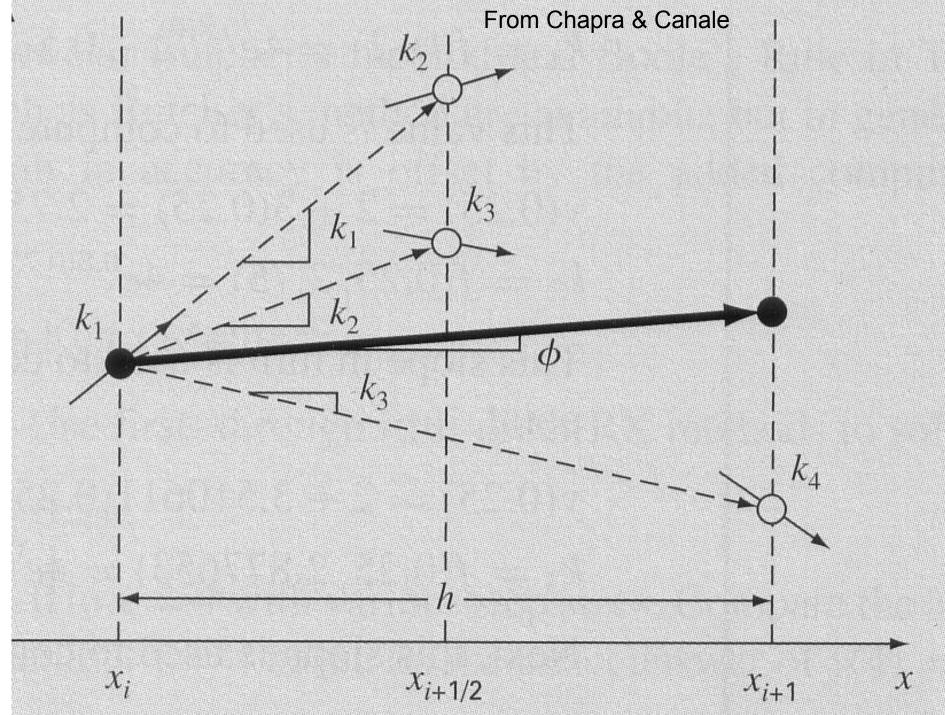
$$b = hf(x^{(k)} + a/2)$$

$$c = hf(x^{(k)} + b/2)$$

$$d = hf(x^{(k)} + c)$$

$$x^{(k+1)} = x^{(k)} + \frac{1}{6}(a + 2b + 2c + d)$$

$$+ O(h^5)$$



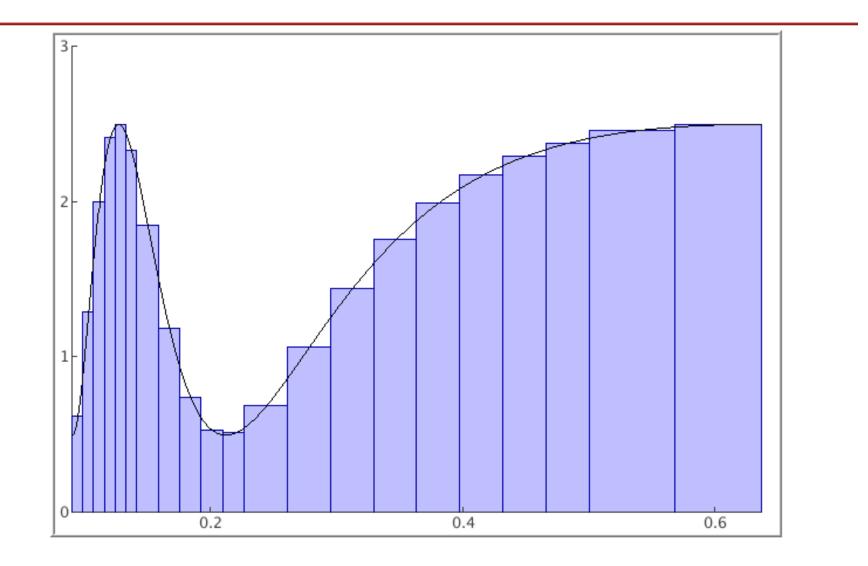
Usual Bag of Tricks: Extrapolation

- Richardson: compute for several values of h, combine to cancel error: higher-order method
 - As with integration, yields some "classical"
 algorithms: Euler + Richardson → Runge Kutta
- Burlisch-Stoer: fit function (polynomial or rational) to approximation as a function of h; extrapolate to h=0

Usual Bag of Tricks: Adaptive Solvers

- Change step size to get better coverage when function is chanigng quickly
- Determine appropriate step size by estimating error
 - Method 1: Halve the RK step size and compare results: Error = $y_2 y_1$
 - Method 2: Compute RK predictions of different
 order

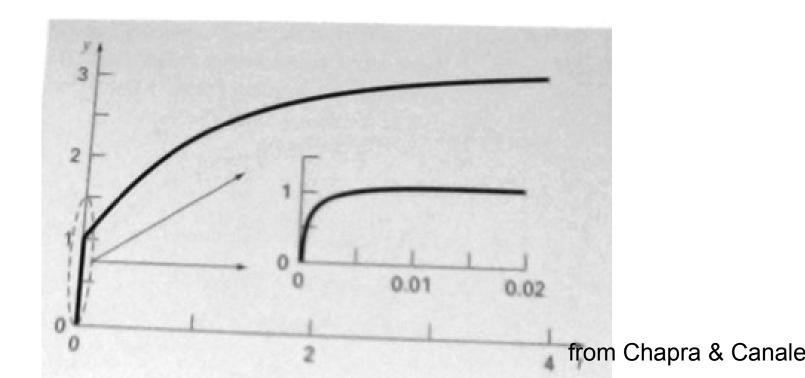
Adaptive Quadrature



Stiff ODEs and Implicit Methods

Stiff ODE

 May involve transients, rapidly oscillating components: rates of change much smaller than interval of study



Another Stiff ODE

Consider scalar ODE

$$y' = -100y + 100t + 101$$

with initial condition y(0) = 1

- General solution is y(t) = 1 + t + ce^{-100t}, and particular solution satisfying initial condition is y(t) = 1 + t
 (i.e., c = 0)
- Since solution is linear, Euler's method is theoretically exact for this problem
- However, to illustrate effect of using finite precision arithmetic, let us perturb initial value slightly

 With step size h = 0.1, first few steps for given initial values are

t	0.0	0.1	0.2	0.3	0.4
exact sol.	1.00	1.10	1.20	1.30	1.40
Euler sol.	0.99	1.19	0.39	8.59	-64.2
Euler sol.	1.01	1.01	2.01	-5.99	67.0

- Computed solution is incredibly sensitive to initial value, as each tiny perturbation results in wildly different solution
- Any point deviating from desired particular solution, even by only small amount, lies on different solution, for which c ≠ 0, and therefore rapid transient of general solution is present

See http://www.cse.illinois.edu/iem/ode/stiff/

Backward (Implicit) Euler

$$x^{(k+1)} = x^{(k)} + g(x^{(k+1)})h$$

- Local error still O(h²)
- Stable for large step size! (At least on $\dot{x} = -\lambda x$)
- In general, requires nonlinear root finding
- Implicit and semi-implicit methods for higher orders

Predictor-Corrector Methods

Heun's method

Euler: Assumes derivative at t_{i-1} is a good estimate for whole interval

• Heun: average derivative at t_i , t_{i+1}

$$y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1})}{2}h$$

y_i

t_i

 $y_i + f(t_i, y_i)h$

t_{i+1}

Heun's method

- Predict y_{i+1} , then use slope at y_{i+1} to correct the prediction
- Predictor:

$$y_{i+1}^0 = y_i + f(t_i, y_i)h$$

• Corrector:

$$y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}h$$

Heun: An iterative method!

- Corrector: $y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_i, y_{i+1}^0)}{2}h$
- Can apply corrector once (so it's a 2nd order RK) or iteratively

• Error estimate:
$$|E| = \left| \frac{y_{i+1}^{j} - y_{i+1}^{j-1}}{y_{i+1}^{j}} \right|$$

- guaranteed to converge to something, not necessarily 0

• Error might not decrease monotonically, but should decrease eventually for sufficiently small h

Heun: Example

Solve
$$\frac{dy}{dt} = 4e^{0.8t} - 0.5y$$

for $t = 1$ given $y = 2$ at $t = 0$, and for step size 1:
Step 1, Predict :
 $y_1^0 = y_0 + f(t_0, y_0)h = 2 + 4e^0 - 0.5(2) = 3$
Step 2, Correct :
 $f(t_0, y_0) + f(t_0, y_0) = 3 + 6.402164$

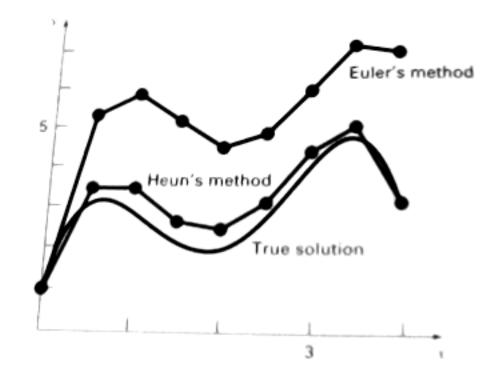
$$y_1^1 = y_0 + \frac{f(t_0, y_0) + f(t_1, y_1^\circ)}{2}h = 2 + \frac{3 + 6.402164}{2}(1) = 6.701082$$

Step 3, Correct again:

$$y_1^2 = y_0 + \frac{f(t_0, y_0) + f(t_1, y_1^1)}{2}h = 6.275811$$

Error of Heun's method

- Local: O(h³)
- Global: O(h²) (i.e., it's a 2nd-order method)



Relationship between Heun and Trapezoid

• when dy/dt depends only on t:

