
Ordinary Differential Equations 
Part 1 

COS 323 



Ordinary Differential Equations (ODEs) 

• Differential equations are ubiquitous: the lingua 
franca of the sciences.  Many different fields are 
linked by having similar differential equations 
– electrical circuits 

– Newtonian mechanics 

– chemical reactions 

– population dynamics 

– economics… and so on, ad infinitum 

• ODEs: 1 independent variable (PDEs have more) 



ODE Example: RLC circuit 
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ODE Example: Population Dynamics 

• 1798  Malthusian 
catastrophe 

• 1838  Verhulst, 
logistic growth 

• Predator-prey systems, 
Volterra-Lotka 



Malthusian Population Dynamics 
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Yikes!  Population explosion! 



Verhulst:  Logistic growth 
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Self-limiting 



Predator-Prey Population Dynamics 

Hudson Bay Company 



Predator-Prey Population Dymanics 

V .Volterra, commercial fishing in the Adriatic 
 

 x1= biomass of predators (sharks) 

 x2 = biomass of prey (fish) 
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As Functions of Time  



State-Space Diagram: The x1-x2 Plane  



More Behaviors 
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Self-limiting term → stable focus 

Delay → limit cycle 



Varieties of Behavior 

• Stable focus 

• Periodic 

• Limit cycle 



Varieties of Behavior 

• Stable focus 

• Periodic 

• Limit cycle 

• Chaos 



Terminology 

• Order: highest order of 
derivative determines 
order of ODE 

• Explicit: Can express 
k-th derivative in terms 
of lower orders 

• Implicit: More general 
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y(k ) = f (t,y, ′ y , ′ ′ y ,..., y(k −1))
′ ′ y = F /m

 

f (t,y, ′ y , ′ ′ y ,..., y(k )) = 0



Notational Conventions 

• t is independent variable (scalar for ODEs) 

• y is dependent variable 
– may be vector-valued 

• focus exclusively here on explicit, first-order 
ODEs: 

 

• Special case: f does not depend explicitly on t: 
autonomous ODE  

  

′ y = f (t,y) where f : ℜn +1 →ℜn

 

′ y = f (y)



Transforming a higher-order ODE into a 
system of first-order ODEs 



Newton’s second law as first-order system 



Solving ODEs 



What does it mean to solve an ODE? 

• Analytically:  
transform f(t, y, y’, y’’… y(k)) 
into equation of form y = … 

 

 

• Numerically: 
use f(t, y, y’, y’’… y(k)) to compute 
approximations of y for discrete values of t 
– e.g., (y1, t1), (y2, t2), …(yn, tn) 

 

e.g.,  transform 
dy
dx

= −2x 3 −12x 2 − 20x + 8.5

into y = −0.5x 4 + 4x 3 −10x 2 + 8.5x + C



Analytically-derived solution 

dy/dt y 



Numerically-derived Solution 

 



ODEs have many solutions 

initial value 



IVP vs BVP 

• Today: Initial Value Problems 
– Complete state known at t=t0 

• As opposed to Boundary Value Problems 
– Parts of state known at multiple values of t 



ODEs and integration 

• If y’ = f(t, y) and y(t0) = y0, then 

 

 

 

• This directly useful only if f is independent of y, 
but helps us understand why there are so many 
parallels to numerical integration  

y(t) = y0 + f (s,y(s))ds
t0

t∫



Numerical Methods for ODEs 



Need for numerical methods 

• Linear ODEs are nice: 
 an(t) y(n)+…a1(t) y’+a0(t) y = f(t) 

• No analytical solutions for most nonlinear ODEs 

• Can sometimes locally linearize non-linear 
ODEs; e.g., pendulum equation 
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Numerical methods for ODEs 

• Can’t solve many (most) interesting problems 
analytically 

• Numerical methods find yk at a discrete set of tk 
given f(y, t) and y0 

• Important considerations: 
– Accuracy / error analysis 

– Efficiency: running time, number of steps 

– Stability: will estimate of y(tk) diverge from true value? 



“Simplest possible” method 

• Known: 

 

 

• What is y1 at time t1=t0 + h? 

 

dy
dt

= f (t,y)

y = y0 at t = t 0

 

y1 = y0 + f (t0,y0)h

t0 t1 

y0 
y0+f(t0,y0)h Euler’s method 



Forward (Explicit) Euler’s method 

• Can repeat for subsequent estimates: 

 

yi+1 = yi + f (ti,yi)h



Example 
from Chapra & Canale 

 

Solve dy
dt

= −2t 3 −12t 2 − 20t + 8.5

for t =1 given y =1 at t = 0, and for step size 0.5 :

 

Step 1:
y(0.5) = y(0) + f (0,1)*0.5
where y(0,1) =  − 2(0)3 +  12(0)2 - 20(0) +8.5 = 8.5
so y(0.5) =  5.25

 

Step 2 :
y(1.0) = y(0.5) + f (0.5,5.25) *0.5
         = 5.25 + [−2(0.5)3 +12(0.5)2 − 20(0.5) + 8.5]*0.5



Sequence of Euler solutions 

 



Error analysis of Euler’s method 

Derive yi+1 using Taylor series expansion around (ti, yi): 

 

 

Euler’s method uses first two terms of this, so we have 
truncation error: 

 

 

 

yi+1 = yi + f (ti, yi)h + ′ f (ti,yi)h
2

2!
+ ...+

f (n −1)(ti,yi)h
n

n!
+ O(hn +1)

 

Et = ′ f (ti,yi)h
2

2!
+ ...+ f (n −1)(ti,yi)h

n

n!
+ O(hn +1)

E = O(h2)
This is local error. 
Works perfectly if solution is linear: it’s a first-order method 



Local and Global Error 

 



Local and Global error 



Error analysis, in general 

• Local error: concerned with accuracy at each 
step 
– Euler’s method: O(h2) 

• Global error: concerned with stability over 
multiple steps 
– Euler’s method: O(h) 

• In general, for nth-order method:  
– Local error O(hn+1), global error O(hn) 

• Stability is not guaranteed 



Stability of ODE 



 

Stable 



Asymptotically Stable 

 



Stability of Method 

• Possible to have instability (divergence from true 
solution) even when solutions to ODE are stable 

• Euler’s method sensitive to choice of h: 
– Consider dy/dt = –λy 

– Analytic solution is y(t) = y0 e–λt 

– Forward Euler step is yk+1 = yk – λykh = yk (1 – λh) 

– Euler’s method unstable if h > 2/λ 

Other methods often have better stability. 



Taylor Series Methods 



Why not use TS methods? 

• Requires higher-level derivatives of y 

• Ugly and hard to compute! 

• More efficient higher-order methods exist 

 



Runge-Kutta Methods 



Runge-Kutta 

• Family of techniques 

• Achieves accuracy of Taylor Series without 
needing higher derivatives 

• Accomplishes this by evaluating f several times 
between tk and tk+1 



Runge-Kutta: General Form 

)...,(

),(
),(

),(
 and

... where
),,(

11,122,111,11

22212123

11112

1

2211

1

hkqhkqhkqyhptfk

hkqhkqyhptfk
hkqyhptfk

ytfk

kakaka
hhytyy

nnnnninin

i

ii

ii

nn

iiii

−−−−−−

+

+++++=

+++=
++=

=

+++=
+=



φ
φ



Euler as R-K 

• Let n = 1 
 

 

yi+1 = yi + φ(ti,yi,h)h
where φ = a1k1

and 
k1 = f (ti,yi)
a1 =1



Higher-Order RK 

• Midpoint method • 4th-order Runge Kutta 
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4th order RK 

 

From Chapra & Canale 



Usual Bag of Tricks: Extrapolation 

• Richardson: compute for several values of h, 
combine to cancel error: higher-order method 
– As with integration, yields some “classical” 

algorithms: Euler + Richardson → Runge Kutta 

• Burlisch-Stoer: fit function (polynomial or 
rational) to approximation as a function of h; 
extrapolate to h=0 



Usual Bag of Tricks: Adaptive Solvers 

• Change step size to get better coverage when 
function is chanigng quickly 

• Determine appropriate step size by estimating 
error 
– Method 1: Halve the RK step size and compare 

results: Error = y2 – y1 

– Method 2: Compute RK predictions of different 
order 

 



Adaptive Quadrature 



Stiff ODEs and Implicit Methods 



Stiff ODE 

• May involve transients, rapidly oscillating 
components: rates of change much smaller than 
interval of study 

from Chapra & Canale 



Another Stiff ODE 



 

See http://www.cse.illinois.edu/iem/ode/stiff/ 



Backward (Implicit) Euler 

 

 

• Local error still O(h2) 

• Stable for large step size!  (At least on              ) 

• In general, requires nonlinear root finding 

• Implicit and semi-implicit methods for higher orders 

hxgxx kkk )( )1()()1( ++ +=
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Predictor-Corrector Methods 



Heun’s method 

• Euler: Assumes derivative at ti-1 is a good estimate for 
whole interval 

 

 

 

 

• Heun: average derivative at ti, ti+1 
ti ti+1 

yi 
yi+f(ti,yi)h 

 

yi+1 = yi +
f (ti,yi) + f (ti+1,yi+1)

2
h



Heun’s method 

• Predict yi+1, then use slope at yi+1 to correct the 
prediction 

• Predictor:  

 

• Corrector: 

 

yi+1
0 = yi + f (ti,yi)h

 

yi+1 = yi +
f (ti,yi) + f (ti+1,yi+1

0 )
2

h



Heun: An iterative method! 

• Corrector: 

• Can apply corrector once (so it’s a 2nd order RK) 
or iteratively 

• Error estimate: 
 

– guaranteed to converge to something, not necessarily 0 

• Error might not decrease monotonically, but 
should decrease eventually for sufficiently small h 

 

 

yi+1 = yi +
f (ti,yi) + f (ti,yi+1

0 )
2

h

 

E =
yi+1

j − yi+1
j −1

yi+1
j



Heun: Example 

 

Solve dy
dt

= 4e0.8t − 0.5y

for t =1 given y = 2 at t = 0, and for step size 1:

 

Step 1, Predict :
y1

0 = y0 + f (t0,y0)h = 2 + 4e0 − 0.5(2) = 3

 

Step 2, Correct :

y1
1 = y0 +

f (t0,y0) + f (t1,y1
0)

2
h = 2 +

3+ 6.402164
2

(1) = 6.701082

 

Step 3, Correct again :

y1
2 = y0 +

f (t0,y0) + f (t1,y1
1)

2
h = 6.275811



Error of Heun’s method 

• Local: O(h3) 

• Global: O(h2) (i.e., it’s a 2nd-order method) 



Relationship between Heun and Trapezoid 

• when dy/dt depends only on t: 

 

 

 

dy /dt = f (t)

dy
yi

yi+1∫ = f (t)dt
ti

ti+1∫
yi+1 − yi = f (t)dt

ti

ti+1∫

yi+1 ≅ yi +
f (ti) + f (ti+1)

2
(ti+1 − ti)
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