Part 2: Kalman Filtering

COS 323

On-Line Estimation

- Have looked at "off-line" model estimation: all data is available
- For many applications, want best estimate immediately when each new datapoint arrives
 - Take advantage of noise reduction
 - Predict (extrapolate) based on model
- Additionally: Take advantage of multiple sensors (in a principled way)
- Applications: controllers, tracking, ...

Face Tracking

On-Line Estimation

- Have looked at "off-line" model estimation: all data is available
- For many applications, want best estimate immediately when each new datapoint arrives
 - Take advantage of noise reduction
 - Predict (extrapolate) based on model
 - Applications: controllers, tracking, ...
- How to do this without storing all data points?

Kalman Filtering

- Assume that results of experiment are noisy measurements of "system state"
- Use a model of how system evolves
- Combine system model and observations to deduce "true" state
- Prediction / correction framework

Rudolf Emil Kalman

Acknowledgment: much of the following material is based on the SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC)

Simple Example

- Measurement of a single point z₁
- Variance σ_1^2 (uncertainty σ_1)
- Best estimate of true position $\hat{x}_1 = z_1$
- Uncertainty in best estimate $\hat{\sigma}_1^2 = \sigma_1^2$

Simple Example

- Second measurement z_2 , variance σ_2^2
- Best estimate of true position?

Simple Example

- Second measurement z_2 , variance σ_2^2
- Best estimate of true position: weighted average

$$\hat{x}_{2} = \frac{\frac{\frac{1}{\sigma_{1}^{2}} Z_{1} + \frac{1}{\sigma_{2}^{2}} Z_{2}}{\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}}}$$

$$= \hat{x}_{1} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} (z_{2} - \hat{x}_{1})$$

• Uncertainty in best estimate: $\hat{\sigma}_2^2 = \frac{1}{\frac{1}{\hat{\sigma}_1^2} + \frac{1}{\sigma_2^2}}$

Online Weighted Average

- Combine successive measurements into constantly-improving estimate
- Uncertainty usually decreases over time
- Only need to keep current measurement, last estimate of state, and uncertainty

Terminology

- In this example, position is *state* (in general, any vector)
- State can be assumed to evolve over time according to a system model or process model (in previous example, "nothing changes")
- Measurements (possibly incomplete, possibly noisy) according to a measurement model
- Best estimate of state \hat{x} with covariance P

Gaussian Review

Linear Models

- For "standard" Kalman filtering, everything must be linear
- System model:

$$x_{k} = \Phi_{k-1} x_{k-1} + \xi_{k-1}$$

- The matrix Φ_k is state transition matrix
- The vector ξ_k represents additive noise, assumed to have mean $\mathbf{0}$ and covariance Q

$$\mathbf{x}_{k} = \begin{bmatrix} x \\ \frac{dx}{dt} \end{bmatrix}, \quad \Phi_{k} = \begin{bmatrix} 1 & \Delta t_{k} \\ 0 & 1 \end{bmatrix}$$

Linear Models

Measurement model:

$$z_k = H_k x_k + \mu_k$$

- Matrix H is measurement matrix
- The vector μ is measurement noise, assumed to have mean $\bf 0$ and covariance R

Position + Velocity Model

$$x_{k} = \Phi_{k-1} x_{k-1} + \xi_{k-1} \qquad \mathbf{x}_{k} = \begin{bmatrix} x \\ dx/dt \end{bmatrix}$$

$$z_{k} = H_{k} x_{k} + \mu_{k} \qquad \Phi_{k} = \begin{bmatrix} 1 & \Delta t_{k} \\ 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Prediction/Correction

- Multiple values around at each iteration:
 - x_k'' is prediction of new state on the basis of past data (i.e., our "a priori" estimate)
 - $-z_k'$ is predicted observation
 - Z_k is new observation
 - $-\hat{x}_k$ is new estimate of state ("a posteriori")

Prediction/Correction

1: Predict new state

$$x'_{k} = \Phi_{k-1} \hat{x}_{k-1}$$

$$P'_{k} = \Phi_{k-1} P_{k-1} \Phi_{k-1}^{T} + Q_{k-1}$$

$$z'_{k} = H_{k} x'_{k}$$

2: Correct to take new measurements into account

$$\hat{x}_k = x_k' + K_k (z_k - H_k x_k')$$

$$P_k = (I - K_k H_k) P_k'$$

Kalman Gain

$$\hat{x}_k = x_k' + K_k (z_k - H_k x_k')$$

$$P_k = (I - K_k H_k) P_k'$$

• K is weighting of process model vs. measurements, chosen to minimize P_k :

$$K_k = P_k' H_k^{\mathrm{T}} \left(H_k P_k' H_k^{\mathrm{T}} + R_k \right)^{-1}$$

• Compare to what we saw earlier: $\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$

Example: Estimate Random Constant

offline case: compute μ , σ^2

Example: Estimate Random Constant

Example: Estimate Random Constant

Predict:

$$x'_{k} = \Phi_{k-1} \hat{x}_{k-1}$$
 becomes $x'_{k} = \hat{x}_{k-1}$

$$P'_{k} = \Phi_{k-1} P_{k-1} \Phi_{k-1}^{T} + Q_{k-1} \text{ becomes } P'_{k} = P_{k-1} + Q_{k-1}$$

$$z'_{k} = H_{k} x'_{k} + \mu_{k} \text{ becomes } z'_{k} = x'_{k} + \mu_{k}$$

Update:

$$K = P'_k / (P'_k + R)$$

$$\hat{x}_k = x'_k + K_k (z_k - x'_k)$$

$$P_k = (I - K_k) P'_k$$

Simulation: R selected to be true measurement error variance

Pk decreasing with each iteration

Simulation:

R overestimates measurement error

Simulation:

R underestimates measurement error

Results: Position-Only Model

Results: Position-Velocity Model

Extension: Multiple Models

- Simultaneously run many KFs with different system models
- Estimate probability each KF is correct
- Final estimate: weighted average

Results: Multiple Models

[Welch & Bishop]

Results: Multiple Models

[Welch & Bishop]

UNC HiBall

- 6 cameras, looking at LEDs on ceiling
- LEDs flash over time

[Welch & Bishop]

Extension: Nonlinearity (EKF)

- HiBall state model has nonlinear degrees of freedom (rotations)
- Extended Kalman Filter allows nonlinearities by:
 - Using general functions instead of matrices
 - Linearizing functions to project forward
 - Like 1st order Taylor series expansion
 - Only have to evaluate Jacobians (partial derivatives),
 not invert process/measurement functions

Other Extensions & Related Concepts

- Using known system input (e.g. actuators)
- Using information from both past and future
- Non-Gaussian noise and particle filtering
- Hidden Markov Models: discrete state space
- Read the Welch & Bishop tutorial on course webpage