
Part 2: Kalman Filtering 

COS 323 



On-Line Estimation 

• Have looked at “off-line” model estimation: 
all data is available 

• For many applications, want best estimate 
immediately when each new datapoint arrives 
– Take advantage of noise reduction 

– Predict (extrapolate) based on model 

• Additionally: Take advantage of multiple sensors 
(in a principled way) 

• Applications: controllers, tracking, … 
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Face Tracking 



On-Line Estimation 

• Have looked at “off-line” model estimation: 
all data is available 

• For many applications, want best estimate 
immediately when each new datapoint arrives 
– Take advantage of noise reduction 

– Predict (extrapolate) based on model 

– Applications: controllers, tracking, … 

• How to do this without storing all data points? 



Kalman Filtering 

• Assume that results of experiment 
are noisy measurements of 
“system state” 

• Use a model of how system evolves 

• Combine system model and  
observations to deduce “true” state 

• Prediction / correction framework 
Rudolf Emil Kalman 

Acknowledgment: much of the following material is based on the 
SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC) 



Simple Example 

• Measurement of a single point z1 

• Variance σ1
2 (uncertainty σ1) 

• Best estimate of true position  

• Uncertainty in best estimate 
11̂ zx =
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Simple Example 

• Second measurement z2, variance σ2
2 

• Best estimate of true position? 

z1 z2 



Simple Example 

• Second measurement z2, variance σ2
2 

• Best estimate of true position: weighted average  

 

 

 

 

• Uncertainty in best estimate: 
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Online Weighted Average 

• Combine successive measurements into 
constantly-improving estimate 

• Uncertainty usually decreases over time 

• Only need to keep current measurement, 
last estimate of state, and uncertainty 



Terminology 

• In this example, position is state 
(in general, any vector) 

• State can be assumed to evolve over time 
according to a system model or process model 
(in previous example, “nothing changes”) 

• Measurements (possibly incomplete, possibly 
noisy) according to a measurement model 

• Best estimate of state    with covariance P x̂



Gaussian Review 



Linear Models 

• For “standard” Kalman filtering, everything must be linear 

• System model: 

 

• The matrix Φk is state transition matrix 

• The vector ξk represents additive noise, assumed to have 
mean 0 and covariance Q 

111 −−− +Φ= kkkk xx ξ
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Linear Models 

• Measurement model: 

 

 

• Matrix H is measurement matrix 

• The vector µ is measurement noise, 
assumed to have mean 0 and covariance R 

kkkk xHz µ+=



Position + Velocity Model 
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Prediction/Correction 

• Multiple values around at each iteration:  
–      is prediction of new state on the basis of past data (i.e., 

our “a priori” estimate) 

–      is predicted observation 

–      is new observation 

–      is new estimate of state (“a posteriori”) 
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Prediction/Correction 

• 1: Predict new state 

 

 

 

• 2: Correct to take new measurements into 
account 

 

′ x k = Φk −1 ˆ x k −1

′ P k = Φk −1Pk −1Φk −1
T + Qk −1

′ z k = Hk ′ x k
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Kalman Gain 

 

• K is weighting of process model vs. 
measurements, chosen to minimize Pk: 

 

 

• Compare to what we saw earlier: 
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Example: Estimate Random Constant 

offline case: compute μ, σ2  



Example: Estimate Random Constant 

online case: compute xk (μk) Pk (σk
2) 



Example: Estimate Random Constant 

Predict: 

 

′ x k = Φk −1 ˆ x k −1 becomes ′ x k = ˆ x k −1

′ P k = Φk −1Pk −1Φk −1
T + Qk −1 becomes ′ P k = Pk −1 + Qk −1

′ z k = Hk ′ x k + µk becomes ′ z k = ′ x k + µk

Update: 

 

K = ′ P k /( ′ P k + R)
ˆ x k = ′ x k + Kk zk − ′ x k( )
Pk = I − Kk( ) ′ P k



Simulation: R selected to be true 
measurement error variance 



Pk decreasing with each iteration 



Simulation:  
R overestimates measurement error 



Simulation:  
R underestimates measurement error 



Results: Position-Only Model 

Moving Still 

[Welch & Bishop] 



Results: Position-Velocity Model 

[Welch & Bishop] 

Moving Still 



Extension: Multiple Models 

• Simultaneously run many KFs with different 
system models 

• Estimate probability each KF is correct 

• Final estimate: weighted average 



Results: Multiple Models 

[Welch & Bishop] 



Results: Multiple Models 

[Welch & Bishop] 



UNC HiBall 

• 6 cameras, looking at LEDs on ceiling 

• LEDs flash over time 

[Welch & Bishop] 



Extension: Nonlinearity (EKF) 

• HiBall state model has nonlinear degrees of 
freedom (rotations) 

• Extended Kalman Filter allows nonlinearities by: 
– Using general functions instead of matrices 

– Linearizing functions to project forward 

– Like 1st order Taylor series expansion 

– Only have to evaluate Jacobians (partial derivatives), 
not invert process/measurement functions 



Other Extensions & Related Concepts 

• Using known system input (e.g. actuators) 

• Using information from both past and future 

• Non-Gaussian noise and particle filtering 

• Hidden Markov Models: discrete state space 

• Read the Welch & Bishop tutorial on course 
webpage 
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