Part 2: Kalman Filtering

COS 323



On-lLine Estimation

* Have looked at “off-line” model estimation:
all data is available

* For many applications, want best estimate
immediately when each new datapoint arrives
— Take advantage of noise reduction

— Predict (extrapolate) based on model

* Additionally: Take advantage of multiple sensors
(in a principled way)

* Applications: controllers, tracking, ...



Face Tracking
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On-lLine Estimation

* Have looked at “off-line” model estimation:
all data is available

* For many applications, want best estimate
immediately when each new datapoint arrives
— Take advantage of noise reduction
— Predict (extrapolate) based on model

— Applications: controllers, tracking, ...

* How to do this without storing all data points?



Kalman Filtering

Assume that results of experiment
are noisy measurements of
“system state”

Use a model of how system evolves

Combine system model and

observations to deduce “true” state |
Rudolf Emil Kalman

Prediction / correction framework

Acknowledgment: much of the following material is based on the
SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC)



Simple Example

Measurement of a single point z,
Variance o;% (uncertainty o)
Best estimate of true position X, = z,

Uncertainty in best estimate 612 = 0'12



Simple Example

* Second measurement z,, variance o’

* Best estimate of true position?




Simple Example

* Second measurement z,, variance o’

* Best estimate of true position: weighted average
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* Uncertainty in best estimate: &5 =




Online Weighted Average

* Combine successive measurements into
constantly-improving estimate

* Uncertainty usually decreases over time

* Only need to keep current measurement,
last estimate of state, and uncertainty



Terminology

In this example, position is state
(in general, any vector)

State can be assumed to evolve over time
according to a system model or process model
(in previous example, “nothing changes”)

Measurements (possibly incomplete, possibly
noisy) according to a measurement model

Best estimate of state xwith covariance P



(Gaussian Review
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Linear Models

For “standard” Kalman filtering, everything must be linear
System model:

X = QX + 6
The matrix @, is state transition matrix

The vector & represents additive noise, assumed to have
mean 0 and covariance Q
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Linear Models

* Measurement model:
z, = Hx, + 1

e Matrix H is measurement matrix

* The vector i is measurement noise,
assumed to have mean 0 and covariance R



Position + Velocity Model

_ X
X, =D, X, +6, k dx

z, =Hx, + 1,

O
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Prediction/Correction

* Multiple values around at each iteration:

— X} is prediction of new state on the basis of past data (i.e.,
our “a priori” estimate)

— z/ is predicted observation
— z, IS new observation

— fck is new estimate of state (“a posteriori”)



Prediction/Correction

* 1: Predict new state
X, =0, x,,
T
P = (Dk—IP k—lq)k—l T Qk—l
z, = H\x;,

e 2: Correct to take new measurements into

account
A . /
X = X +Kk(Zk Hkxk)

Pk ([_Kka)})k’



Kalman Gain

A / /
X = X +Kk(Zk _Hkxk)
/
b= (1 — K, )Pk
* Kis weighting of process model vs.
measurements, chosen to minimize P, :

Kk :I)/c’Hl;r(Hk})lc’HicT "'Rk)_l

2
* Compare to what we saw earlier: o,

2, 2

o, + 0,



Example: Estimate Random Constant

offline case: compute y, 62
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Example: Estimate Random Constant

online case: compute X, (M) Py (0,%)
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Example: Estimate Random Constant

Predict:
x' =®, x,  becomes x! = Xx,_,
P{=®, P, ®, ,+0Q,  becomes P, =P, +0,
zl = H x' + 1, becomes z, = x + u,
Update:
K =P/ /(P! +R)
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Simulation: R selected to be true

measurement error variance
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Pk decreasing with each iteration
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Simulation:

R overestimates measurement error
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Simulation:

R underestimates measurement error
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Results: Position-Only Model
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Results: Position-Velocity Model
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Extension: Multiple Models

* Simultaneously run many KFs with different
system models

* Estimate probability each KF is correct

* Final estimate: weighted average



Results: Multiple Models
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Results: Multiple Models
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UNC HiBall

* 6 cameras, looking at LEDs on ceiling

* LEDs flash over time

[Welch & Bishop]



Extension: Nonlinearity (EKF)

* HiBall state model has nonlinear degrees of
freedom (rotations)

* Extended Kalman Filter allows nonlinearities by:
— Using general functions instead of matrices
— Linearizing functions to project forward
— Like 15t order Taylor series expansion

— Only have to evaluate Jacobians (partial derivatives),
not invert process/measurement functions



Other Extensions & Related Concepts

* Using known system input (e.g. actuators)
* Using information from both past and future
* Non-Gaussian noise and particle filtering

* Hidden Markov Models: discrete state space

* Read the Welch & Bishop tutorial on course
webpage
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