# Part 2: Kalman Filtering

**COS** 323

## On-Line Estimation

- Have looked at "off-line" model estimation: all data is available
- For many applications, want best estimate immediately when each new datapoint arrives
  - Take advantage of noise reduction
  - Predict (extrapolate) based on model
- Additionally: Take advantage of multiple sensors (in a principled way)
- Applications: controllers, tracking, ...

# Face Tracking





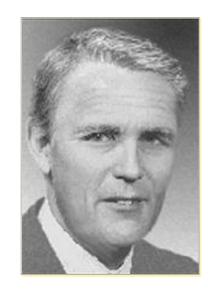


## On-Line Estimation

- Have looked at "off-line" model estimation: all data is available
- For many applications, want best estimate immediately when each new datapoint arrives
  - Take advantage of noise reduction
  - Predict (extrapolate) based on model
  - Applications: controllers, tracking, ...
- How to do this without storing all data points?

# Kalman Filtering

- Assume that results of experiment are noisy measurements of "system state"
- Use a model of how system evolves
- Combine system model and observations to deduce "true" state
- Prediction / correction framework



Rudolf Emil Kalman

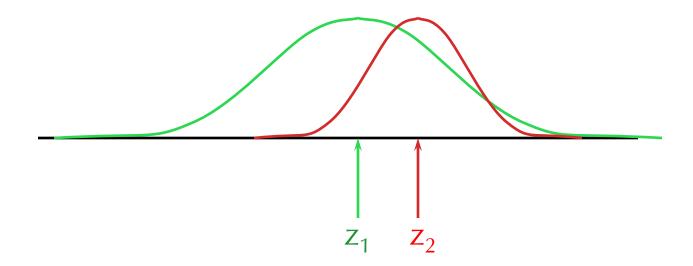
Acknowledgment: much of the following material is based on the SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC)

## Simple Example

- Measurement of a single point z<sub>1</sub>
- Variance  $\sigma_1^2$  (uncertainty  $\sigma_1$ )
- Best estimate of true position  $\hat{x}_1 = z_1$
- Uncertainty in best estimate  $\hat{\sigma}_1^2 = \sigma_1^2$

## Simple Example

- Second measurement  $z_2$ , variance  $\sigma_2^2$
- Best estimate of true position?



# Simple Example

- Second measurement  $z_2$ , variance  $\sigma_2^2$
- Best estimate of true position: weighted average

$$\hat{x}_{2} = \frac{\frac{\frac{1}{\sigma_{1}^{2}} Z_{1} + \frac{1}{\sigma_{2}^{2}} Z_{2}}{\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}}}$$

$$= \hat{x}_{1} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} (z_{2} - \hat{x}_{1})$$

• Uncertainty in best estimate:  $\hat{\sigma}_2^2 = \frac{1}{\frac{1}{\hat{\sigma}_1^2} + \frac{1}{\sigma_2^2}}$ 

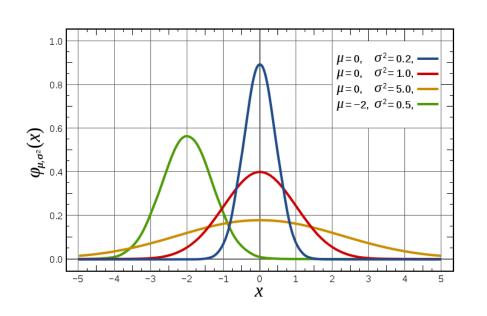
# Online Weighted Average

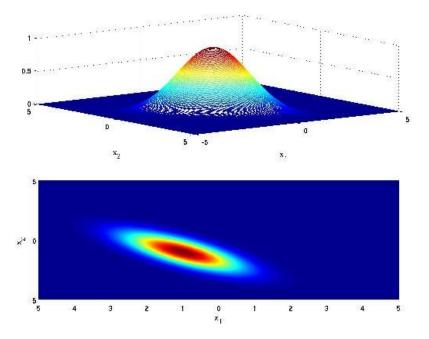
- Combine successive measurements into constantly-improving estimate
- Uncertainty usually decreases over time
- Only need to keep current measurement, last estimate of state, and uncertainty

# Terminology

- In this example, position is *state* (in general, any vector)
- State can be assumed to evolve over time according to a system model or process model (in previous example, "nothing changes")
- Measurements (possibly incomplete, possibly noisy) according to a measurement model
- Best estimate of state  $\hat{x}$  with covariance P

## Gaussian Review





## Linear Models

- For "standard" Kalman filtering, everything must be linear
- System model:

$$x_{k} = \Phi_{k-1} x_{k-1} + \xi_{k-1}$$

- The matrix  $\Phi_k$  is state transition matrix
- The vector  $\xi_k$  represents additive noise, assumed to have mean  $\mathbf{0}$  and covariance Q

$$\mathbf{x}_{k} = \begin{bmatrix} x \\ \frac{dx}{dt} \end{bmatrix}, \quad \Phi_{k} = \begin{bmatrix} 1 & \Delta t_{k} \\ 0 & 1 \end{bmatrix}$$

## Linear Models

Measurement model:

$$z_k = H_k x_k + \mu_k$$

- Matrix H is measurement matrix
- The vector  $\mu$  is measurement noise, assumed to have mean  $\bf 0$  and covariance R

## Position + Velocity Model

$$x_{k} = \Phi_{k-1} x_{k-1} + \xi_{k-1} \qquad \mathbf{x}_{k} = \begin{bmatrix} x \\ dx/dt \end{bmatrix}$$

$$z_{k} = H_{k} x_{k} + \mu_{k} \qquad \Phi_{k} = \begin{bmatrix} 1 & \Delta t_{k} \\ 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

## Prediction/Correction

- Multiple values around at each iteration:
  - $x_k''$  is prediction of new state on the basis of past data (i.e., our "a priori" estimate)
  - $-z_k'$  is predicted observation
  - $Z_k$  is new observation
  - $-\hat{x}_k$  is new estimate of state ("a posteriori")

## Prediction/Correction

1: Predict new state

$$x'_{k} = \Phi_{k-1} \hat{x}_{k-1}$$

$$P'_{k} = \Phi_{k-1} P_{k-1} \Phi_{k-1}^{T} + Q_{k-1}$$

$$z'_{k} = H_{k} x'_{k}$$

2: Correct to take new measurements into account

$$\hat{x}_k = x_k' + K_k (z_k - H_k x_k')$$

$$P_k = (I - K_k H_k) P_k'$$

## Kalman Gain

$$\hat{x}_k = x_k' + K_k (z_k - H_k x_k')$$

$$P_k = (I - K_k H_k) P_k'$$

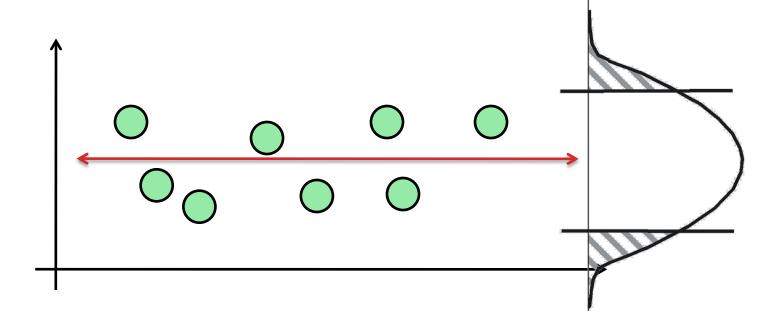
• K is weighting of process model vs. measurements, chosen to minimize  $P_k$ :

$$K_k = P_k' H_k^{\mathrm{T}} \left( H_k P_k' H_k^{\mathrm{T}} + R_k \right)^{-1}$$

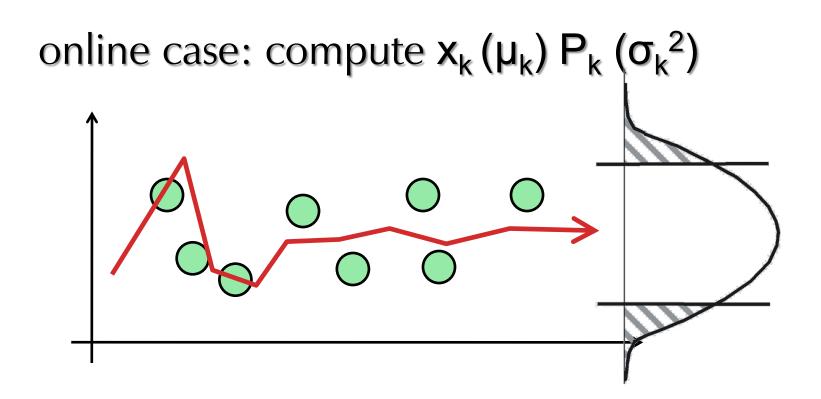
• Compare to what we saw earlier:  $\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$ 

## Example: Estimate Random Constant

offline case: compute  $\mu$ ,  $\sigma^2$ 



## Example: Estimate Random Constant



# Example: Estimate Random Constant

#### **Predict:**

$$x'_{k} = \Phi_{k-1} \hat{x}_{k-1}$$
 becomes  $x'_{k} = \hat{x}_{k-1}$ 

$$P'_{k} = \Phi_{k-1} P_{k-1} \Phi_{k-1}^{T} + Q_{k-1} \text{ becomes } P'_{k} = P_{k-1} + Q_{k-1}$$

$$z'_{k} = H_{k} x'_{k} + \mu_{k} \text{ becomes } z'_{k} = x'_{k} + \mu_{k}$$

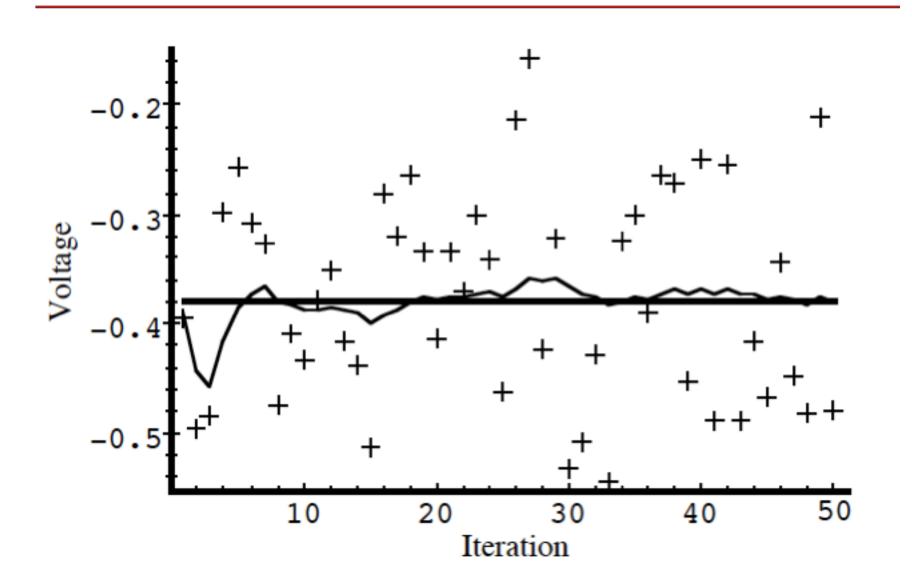
### **Update:**

$$K = P'_k / (P'_k + R)$$

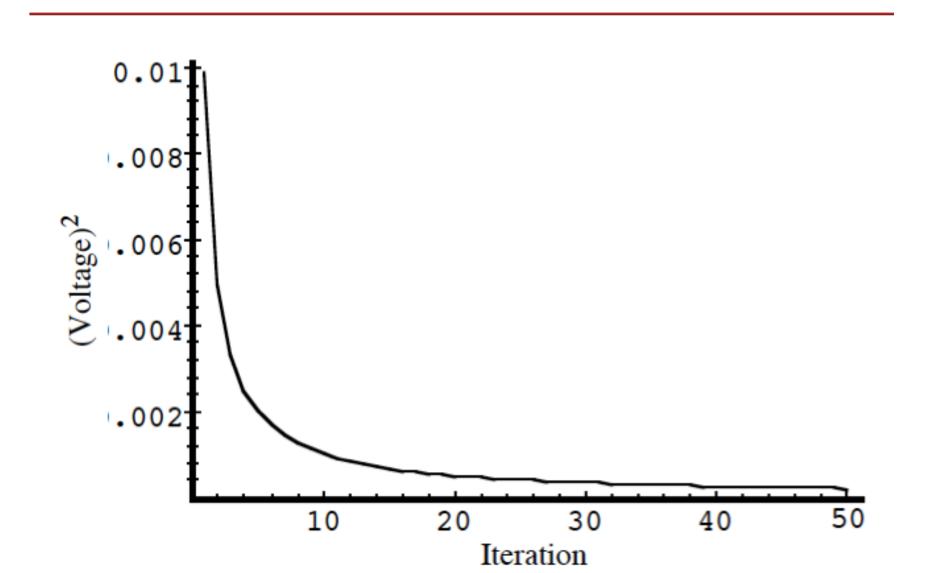
$$\hat{x}_k = x'_k + K_k (z_k - x'_k)$$

$$P_k = (I - K_k) P'_k$$

# Simulation: R selected to be true measurement error variance

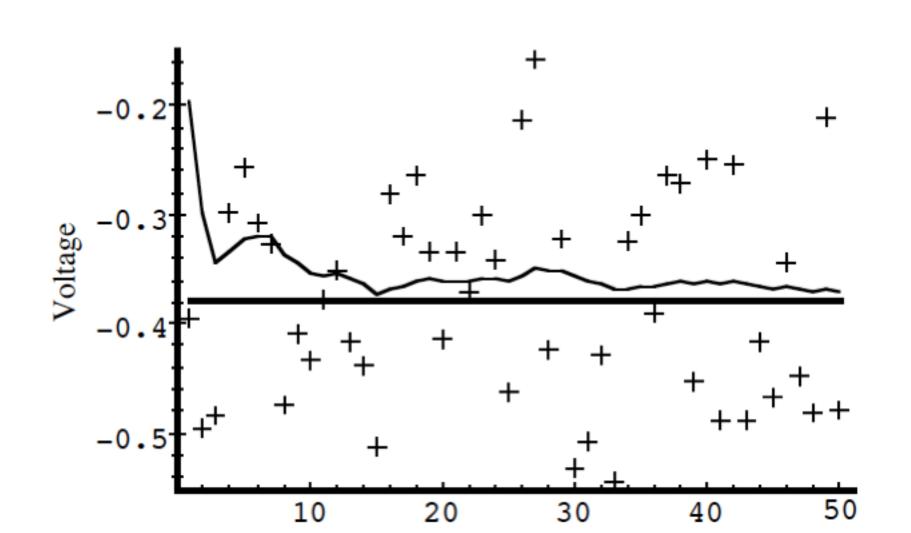


# Pk decreasing with each iteration



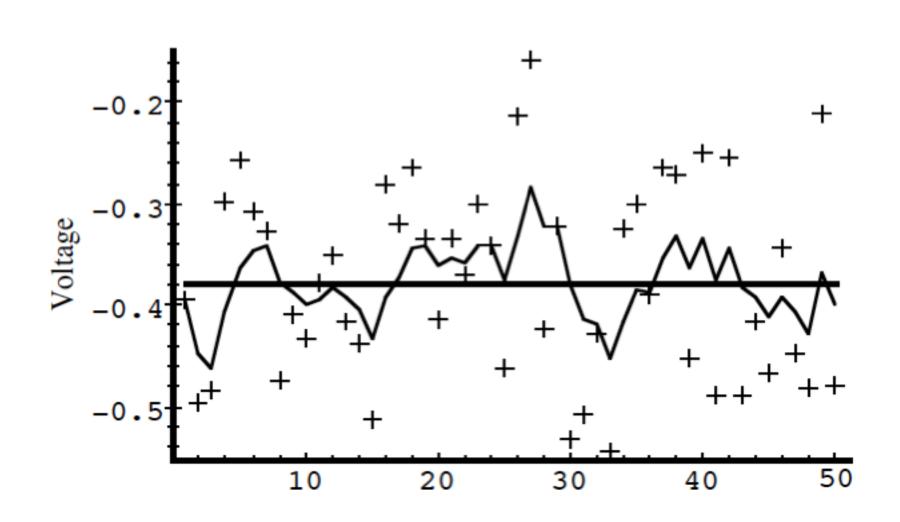
## Simulation:

## R overestimates measurement error

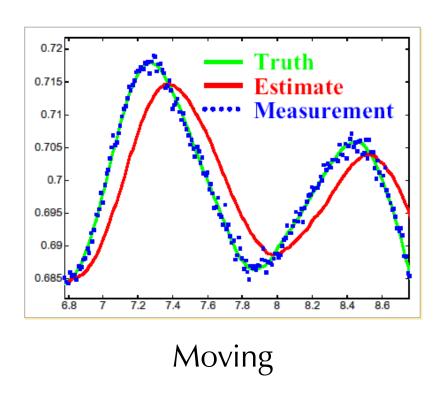


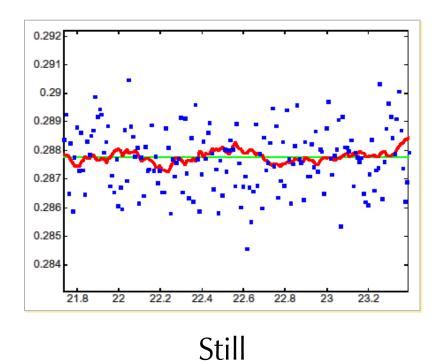
## Simulation:

## R underestimates measurement error

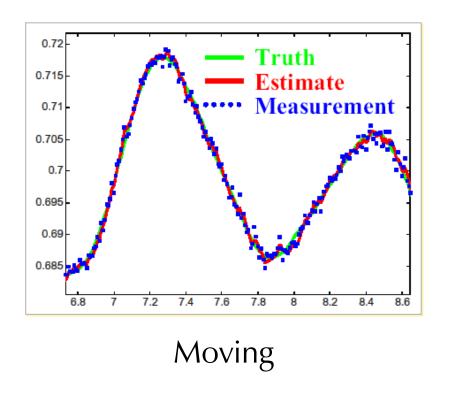


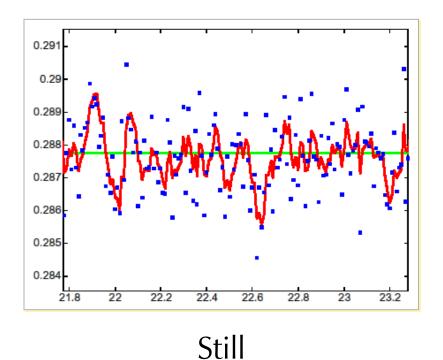
## Results: Position-Only Model





## Results: Position-Velocity Model

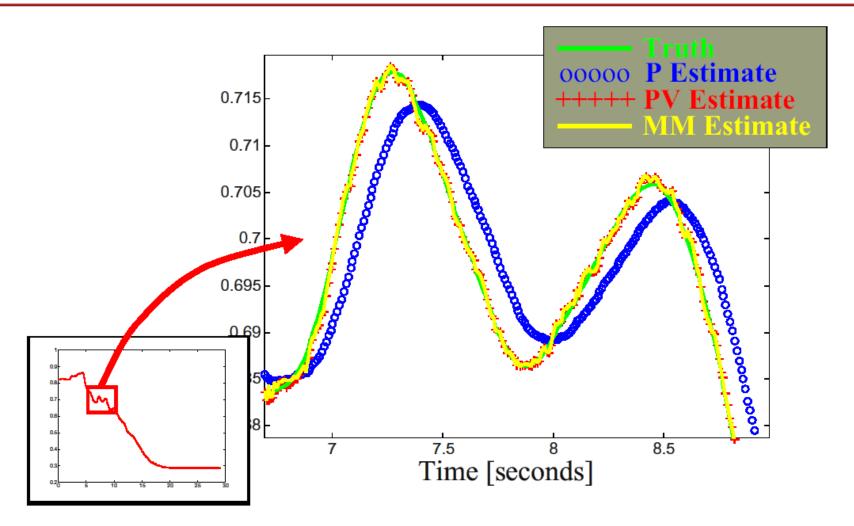




## Extension: Multiple Models

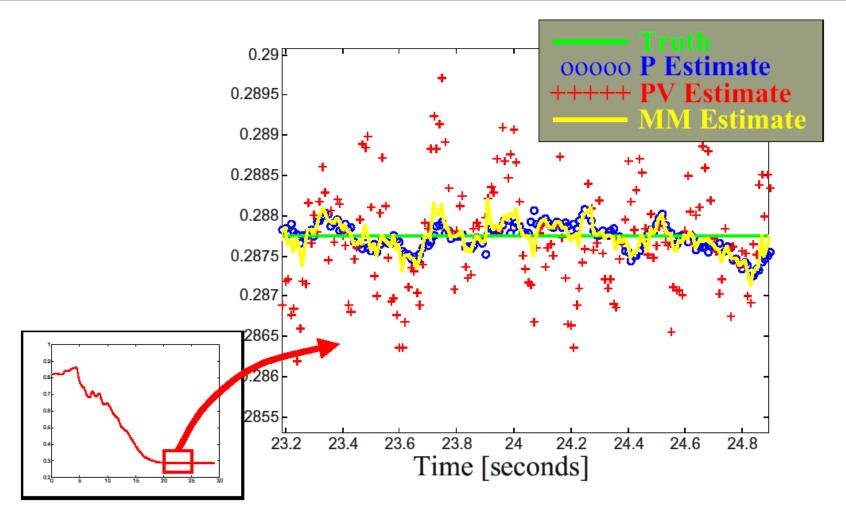
- Simultaneously run many KFs with different system models
- Estimate probability each KF is correct
- Final estimate: weighted average

## Results: Multiple Models



[Welch & Bishop]

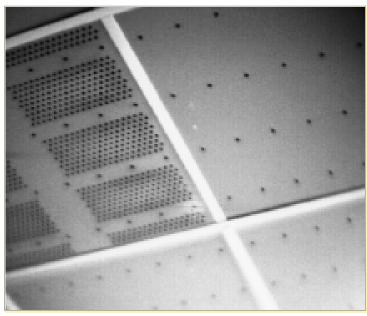
## Results: Multiple Models



[Welch & Bishop]

## UNC HiBall





- 6 cameras, looking at LEDs on ceiling
- LEDs flash over time

## [Welch & Bishop]

## Extension: Nonlinearity (EKF)

- HiBall state model has nonlinear degrees of freedom (rotations)
- Extended Kalman Filter allows nonlinearities by:
  - Using general functions instead of matrices
  - Linearizing functions to project forward
  - Like 1<sup>st</sup> order Taylor series expansion
  - Only have to evaluate Jacobians (partial derivatives),
     not invert process/measurement functions

## Other Extensions & Related Concepts

- Using known system input (e.g. actuators)
- Using information from both past and future
- Non-Gaussian noise and particle filtering
- Hidden Markov Models: discrete state space
- Read the Welch & Bishop tutorial on course webpage