
QR Factorization and

Singular Value Decomposition

COS 323

Today

• How do we solve least-squares…

– without incurring condition-squaring effect of normal equations

(A
T
Ax = A

T
b)

– when A is singular, “fat”, or otherwise poorly-specified?

• QR Factorization

– Householder method

• Singular Value Decomposition

• Total least squares

• Practical notes

Review: Condition Number

• Cond(A) is function of A

• Cond(A) >= 1, bigger is bad

• Measures how change in input propagates to

output:

• E.g., if cond(A) = 451 then can lose

log(451)= 2.65 digits of accuracy in x,

compared to precision of A



|| x ||

|| x ||
 cond(A)

|| A ||

|| A ||

Normal Equations are Bad

• Normal equations involves solving A
T
Ax = A

T
b

• cond(A
T
A) = [cond(A)]2

• E.g., if cond(A) = 451 then can lose log(451
2
) = 5.3

digits of accuracy, compared to precision of A



|| x ||

|| x ||
 cond(A)

|| A ||

|| A ||

QR Decomposition

What if we didn’t have to use ATA?

• Suppose we are “lucky”:

• Upper triangular matrices are nice!

bx
O

R
x 



































































#

#

#

#

#

#

#

000

00

#00

00

##0

###













How to make A upper-triangular?

• Gaussian elimination?

– Applying elimination yields MAx = Mb

– Want to find x s.t. minimizes ||Mb-MAx||
2

– Problem: ||Mv||
2

!= ||v||
2
 (i.e., M might “stretch”

a vector v)

– Another problem: M may stretch different vectors

differently

– i.e., M does not preserve Euclidean norm

– i.e., x that minimizes ||Mb-MAx|| may not be

same x that minimizes Ax=b

QR Factorization

• Can’t usually find R such that

• Can find R and orthogonal Q such that

• Doesn’t change least-squares solution

– Q
T
Q=I, columns of Q are orthonormal

– i.e., Q preserves Euclidean norm: ||Qv||
2
=||v||

2

bQx
O

R

O

R
QA T
















 so ,











O

R
A

Goal of QR





































0000

000

?0

0

0

???











Q
O

R
QA

m×n

m×m m×n

R:

n×n,

upper tri.

O:

(m-n)×n,

all zeros

Reformulating Least Squares using QR



r
2

2
 b  Ax

2

2

 b Q
R

O









x

2

2

 QTb QTQ
R

O









x

2

2

 QTb 
R

O









x

2

2

 c1  Rx  c2 2

2

 c1  Rx 2

2
 c2 2

2

 c2 2

2



A Q
R

O









because

because Q is orthogonal (Q
T
Q=I)

if we call 









2

1

c

c
bQT

if we choose x such that Rx=c
1

Householder Method for Computing

QR Decomposition

Orthogonalization for Factorization

• Rough idea:

– For each i-th column of A, “zero out” rows i+1 and

lower

– Accomplish this by multiplying A with an orthogonal

matrix H
i

– Equivalently, apply an orthogonal transformation to

the i-th column (e.g., rotation, reflection)

– Q becomes product H
1
*…*H

n,
R contains zero-ed

out columns











O

R
QA

Householder Transformation

• Accomplishes the critical sub-step of

factorization:

– Given any vector (e.g., a column of A), reflect it so

that its last p elements become 0.

– Reflection preserves length (Euclidean norm)

(4, 3)

(-5, 0)

Computing Householder

 

vv

vv

aasigne
a

v

k-ak
a

a

kk

T

T

2
2

2

1

th

2

1

2construct and

 where
0

let then

1height of with column, theis a If























IH



p.124) see - shortcuts some(*with 2

:right the tocolumns and a toHApply

v
vv

av
aHa

T

T











Computing Householder – Example

 





























































































0

0

3

2 and ,

2

1

5

 so

2

1

2

2 where

0

0

1

2

1

2

 Choose

zero. tocomponent first below everything setsthat

mationr transforHouseholde find and ,

2

1

2

Let

T

T

2

v
vv

av
aav

signv

a

H



Outcome of Householder
























O

R

HHQ

HHQ

O

R
AHH

n

n

T

n

Q=A so

 so

 where

1

1

1







Review: Least Squares using QR



r
2

2
 b  Ax

2

2

 b Q
R

O









x

2

2

 QTb QTQ
R

O









x

2

2

 QTb 
R

O









x

2

2

 c1  Rx  c2 2

2

 c1  Rx 2

2
 c2 2

2

 c2 2

2



A Q
R

O









because

because Q is orthogonal (Q
T
Q=I)

if we call



QTb 
c1

c2











if we choose x such that Rx=c
1

Using Householder

• Iteratively compute H
1
, H

2
, … H

n
and apply to

A to get R

– also apply to b to get

• Solve for Rx=c
1
 using back-substitution











2

1

c

c
bQT

Alternative Orthogonalization Methods

• Givens:

– Don’t reflect; rotate instead

– Introduces zeroes into A one at a time

– More complicated implementation than Householder

– Useful when matrix is sparse

• Gram-Schmidt

– Iteratively express each new column vector as a linear

combination of previous columns, plus some (normalized)

orthogonal component

– Conceptually nice, but suffers from subtractive cancellation

Singular Value Decomposition

Motivation #1

• Diagonal matrices are even nicer than triangular

ones:



























































#

#

#

#

#

#

#

000

00

#00

000

00#0

000#

x











Motivation #2

• What if you have fewer data points than

parameters in your function?

– i.e., A is “fat”

– Intuitively, can’t do standard least squares

– Recall that solution takes the form A
T
Ax = A

T
b

– When A has more columns than rows,

A
T
A is singular: can’t take its inverse, etc.

Motivation #3

• What if your data poorly constrains the

function?

• Example: fitting to y=ax
2
+bx+c

Underconstrained Least Squares

• Problem: if problem very close to singular,

roundoff error can have a huge effect

– Even on “well-determined” values!

• Can detect this:

– Uncertainty proportional to covariance C = (A
T
A)

-1

– In other words, unstable if A
T
A has small values

– More precisely, care if x
T
(A

T
A)x is small for any x

• Idea: if part of solution unstable, set answer to 0

– Avoid corrupting good parts of answer

Singular Value Decomposition (SVD)

• Handy mathematical technique that has

application to many problems

• Given any mn matrix A, algorithm to find

matrices U, V, and W such that

A = U W V
T

U is mn and orthonormal

W is nn and diagonal

V is nn and orthonormal

SVD

• Based on Householder reduction, QR

decomposition, but treat as black box:

code widely available

e.g., in Matlab: [U,W,V]=svd(A,0)

T

1

00

00

00















































































VUA

nw

w



SVD

• The w
i
 are called the singular values of A

• If A is singular, some of the w
i
 will be 0

• In general rank(A) = number of nonzero w
i

• SVD is mostly unique (up to permutation of

singular values, or if some w
i
 are equal)

SVD and Inverses

• Why is SVD so useful?

• Application #1: inverses

• A
-1

=(V
T
)
-1

 W
-1

 U
-1

 = V W
-1

 U
T

– Using fact that inverse = transpose

for orthogonal matrices

– Since W is diagonal, W
-1

 also diagonal with

reciprocals of entries of W

SVD and the Pseudoinverse

• A
-1

=(V
T
)
-1

 W
-1

 U
-1

 = V W
-1

 U
T

• This fails when some w
i
 are 0

– It’s supposed to fail – singular matrix

– Happens when rectangular A is rank deficient

• Pseudoinverse: if w
i
=0, set 1/w

i
 to 0 (!)

– “Closest” matrix to inverse

– Defined for all (even non-square, singular, etc.)

matrices

– Equal to (A
T
A)

-1
A

T
 if A

T
A invertible

SVD and Condition Number

• Singular values used to compute Euclidean

(spectral) norm for a matrix:



cond(A) 
max (A)

min (A)

SVD and Least Squares

• Solving Ax=b by least squares:

• A
T
Ax = A

T
b  x = (A

T
A)

-1
A

T
b

• Replace with A
+

: x = A
+

b

• Compute pseudoinverse using SVD

– Lets you see if data is singular (< n nonzero singular

values)

– Even if not singular, condition number tells you

how stable the solution will be

– Set 1/w
i
 to 0 if w

i
 is small (even if not exactly 0)

SVD and Matrix Similarity

• One common definition for the norm of a matrix is the

Frobenius norm:

• Frobenius norm can be computed from SVD

• Euclidean (spectral) norm can also be computed:

• So changes to a matrix can be evaluated by looking at

changes to singular values


i j

ija
2

F
A


i

iw
2

F
A



A
2
{max  : (A)}

SVD and Matrix Similarity

• Suppose you want to find best rank-k

approximation to A

• Answer: set all but the largest k singular values

to zero

• Can form compact representation by eliminating

columns of U and V corresponding to zeroed w
i

SVD and Eigenvectors

• Let A=UWV
T
, and let x

i
 be i

th
 column of V

• Consider A
T
A x

i
:

• So elements of W are sqrt(eigenvalues) and

columns of V are eigenvectors of A
T
A

iiiiii xwwxxx
222T2TTTT

0

0

0

1

0



























































VVWVVWUWVUVWAA

Total Least Squares

• One final least squares application

• Fitting a line: vertical vs. perpendicular error

Total Least Squares

• Distance from point to line:

where n is normal vector to line, a is a constant

• Minimize:

an
y

x
d

i

i

i 














































i i

i

i

i an
y

x
d

2

22 


Total Least Squares

• First, let’s pretend we know n, solve for a

• Then

n
y

x

m
a

an
y

x

i i

i

i i

i





















































1

2

2

n
y

x
an

y

x
d

m

y

i

m

x

i

i

i

i
i

i 







































Total Least Squares

• So, let’s define

and minimize






































m

y

i

m

x

i

i

i

i

i

y

x

y

x

~

~




























i i

i
n

y

x
2

~

~


Total Least Squares

• Write as linear system

• Have An=0

– Problem: lots of n are solutions, including n=0

– Standard least squares will, in fact, return n=0

0
~~

~~

~~

33

22

11








































y

x

n

n

yx

yx

yx

Constrained Optimization

• Solution: constrain n to be unit length

• So, try to minimize |An|
2
 subject to |n|

2
=1

• Expand in eigenvectors e
i
 of A

T
A:

where the 
i
 are eigenvalues of A

T
A

    nnnnn


AAAAA
TTT2



 
2

2

2

1

2

2

22

2

11

TT

2211













n

nn

n







AA

ee

Constrained Optimization

• To minimize subject to

set 
min

 = 1, all other 
i
 = 0

• That is, n is eigenvector of A
T
A with

the smallest corresponding eigenvalue

2

22

2

11   12

2

2

1  

Comparison of Least Squares Methods

• Normal equations (A
T
Ax

= A
T
b)

– O(mn
2
) (using Cholesky)

– cond(A
T
A)=[cond(A)]

2

– Cholesky fails if

cond(A)~1/sqrt(machine

epsilon)

• Householder

– Usually best

orthogonalization method

– O(mn
2
- n

3
/3) operations

– Relative error is best

possible for least squares

– Breaks if cond(A) ~

1/(machine eps)

• SVD

– Expensive: mn
2
 + n

3
with

bad constant factor

– Can handle rank-deficiency,

near-singularity

– Handy for many different

things

Matlab functions

• qr: explicit QR factorization

• svd

• A\b: (‘\’ operator)

– Performs least-squares if A is m-by-n

– Uses QR decomposition

• pinv: pseudoinverse

• rank: Uses SVD to compute rank of a matrix

