QR Factorization and

Singular Value Decomposition

COS 323

Today

How do we solve least-squares...

— without incurring condition-squaring effect of normal equations
(ATAX = ATb)

— when A is singular, “fat”, or otherwise poorly-specified?

QR Factorization

— Householder method
Singular Value Decomposition
Total least squares

Practical notes

Review: Condition Number

Cond(A) is function of A
Cond(A) >= 1, bigger is bad
Measures how change in input propagates to
output: || Ax || | _ | A4 ||
ond(A)———
Ixl 1A |
E.g., if cond(A) = 451 then can lose

log(451)= 2.65 digits of accuracy in x,
compared to precision of A

Normal Equations are Bad

| Ax | _ | A4 ||
IxIl A 1A |

* Normal equations involves solving ATAx = A'b

e cond(ATA) = [cond(A)]?

* E.g., if cond(A) = 451 then can lose log(451%) = 5.3
digits of accuracy, compared to precision of A

QR Decomposition

What if we didn’t have to use ATA?

* Suppose we are “lucky”:

¥ # ... # #

0 # # #

o 0 . : #
R

0 0 #I|x=|# { }x:b
O

0 ... 0 #

: : #

0 0 - 0] #

* Upper triangular matrices are nice!

How to make A upper-triangular?

* Gaussian elimination?
— Applying elimination yields MAx = Mb
— Want to find x s.t. minimizes | |Mb-MAXx| |,

— Problem: | |Mv]|,!= |]|v]|], (i.e., M might “stretch”
a vector v)

— Another problem: M may stretch different vectors
differently

— i.e., M does not preserve Euclidean norm

— i.e., x that minimizes | | Mb-MAx| | may not be
same x that minimizes Ax=b

QR Factorization

* Can’t usually find R such that A=

* Can find R and orthogonal Q such that

A—QR SO Rx—QTb
=Q| 5 | 50| 5 [X=

* Doesn’t change least-squares solution
— Q'Q=I, columns of Q are orthonormal

— i.e., Q preserves Euclidean norm: | |Qv| |,=||Vv]]|,

Goal of QR

A=Q

mXn
/\

mXm

Y
0
. 0
Q.
0 0
0 0 0

J \

——

R:
nXxn,

upper tri.

>_(

O:
m-n)Xn,
all zeros

Reformulating Least Squares using QR

Irlly =116~ Ax;

I I

b0 | =lob-070 " | because 4 Q[RJ
= | — = — ecause 4 =
O] |, O] |, O
R ,
= QTb— 0 X because Q is orthogonal (Q'Q=1)
LY, o
2 T C,
=lle =Ry +c,f, ifwecall QD=
2
2 2 - -
= 1S _R‘tz +‘62H2
= Czui if we choose x such that Rx=c;

Householder Method for Computing
QR Decomposition

Orthogonalization for Factorization

R
O

A=Q

* Rough idea:

— For each i-th column of A, “zero out” rows i+1 and
lower

— Accomplish this by multiplying A with an orthogonal
matrix H,

— Equivalently, apply an orthogonal transformation to
the i-th column (e.g., rotation, reflection)

— Q becomes product H;*...*H,, R contains zero-ed
out columns

Householder Transformation

* Accomplishes the critical sub-step of
factorization:

— Given any vector (e.g., a column of A), reflect it so
that its last p elements become 0.

— Reflection preserves length (Euclidean norm)

(4, 3)

Computing Householder

If a= Zl is the k™ column, with a, of height k-1
|72 _
o |
then letv = |- where o = —sign(a,)Ha2H2
- w'
and constructH =1-2—
v'v

Apply H to a and columns to the right :

.
Ha=a- (2 VT—ajv (*with some shortcuts - see p.124)
V'V

Computing Householder — Example

Leta=|1 | and find Householder transformation

that sets_e\;erything below first component to zero.

1
Choosev =| 1 [—a| 0 | where a = —sign(2)|1
R _O_ 2
5 _[-3
sov=|1|and Haza—zgv: 0
v'v 0

Outcome of Householder

Review: Least Squares using QR

Irlly =116~ Ax;

I I

=Ib-0 K x| =|l0'b-0"0) X because A4 = Q[RJ
O], O], O
b
=0"b - 0 x|| because Q is orthogonal (Q'Q=I)
=l
=|lc, —Rx +c, E if we call QTb=tlJ
2

2 2
= ||, —RxH2 +‘02H2

2
= 02H2 if we choose x such that Rx=c;

Using Householder

* lteratively compute H;, H,, ... H, and apply to
A to get R
— also apply to b to get

Gy
C,

Q'b=

* Solve for Rx=c, using back-substitution

Alternative Orthogonalization Methods

* (ivens:
— Don't reflect; rotate instead
— Introduces zeroes into A one at a time

— More complicated implementation than Householder

— Useful when matrix is sparse

e Gram-Schmidt

— lteratively express each new column vector as a linear
combination of previous columns, plus some (normalized)
orthogonal component

— Conceptually nice, but suffers from subtractive cancellation

Singular Value Decomposition

Motivation #1

* Diagonal matrices are even nicer than triangular

ones:
0 0 0| [#]

0O # 0 O #

0O 0 -. 0 #

0 --- 0 #|xz|#

0o ... 0 H#

#

0 0 0| |#

Motivation #2

* What if you have fewer data points than
parameters in your function?
— i.e., A'is “fat”
— Intuitively, can’t do standard least squares
— Recall that solution takes the form ATAx = ATb

— When A has more columns than rows,
ATA is singular: can’t take its inverse, etc.

Motivation #3

* What if your data poorly constrains the
function?

* Example: fitting to y=ax*+bx+c

Underconstrained Least Squares

* Problem: if problem very close to singular,
roundoff error can have a huge effect

— Even on “well-determined” values!

* Can detect this:
— Uncertainty proportional to covariance C = (ATA)

— In other words, unstable if ATA has small values

— More precisely, care if x'(ATA)x is small for any x

* |dea: if part of solution unstable, set answer to 0O

— Avoid corrupting good parts of answer

Singular Value Decomposition (SVD)

* Handy mathematical technique that has
application to many problems

* Given any mxn matrix A, algorithm to find
matrices U, V, and W such that
A=UWV!
U is mxn and orthonormal
W is nxn and diagonal

V is nxn and orthonormal

SVD

\

Y

\

(W,
0
L0

Y

0 0)
- 0
0 w,)

* Based on Householder reduction, QR
decomposition, but treat as black box:
code widely available
e.g., in Matlab: [U,W,V]=svd (a,0)

SVD

The w; are called the singular values of A
If A'is singular, some of the w; will be O
In general rank(A) = number of nonzero w;,

SVD is mostly unique (up to permutation of
singular values, or if some w; are equal)

SVD and Inverses

* Why is SVD so useful?
* Application #1: inverses

e A=V TW1U! = VW UT
— Using fact that inverse = transpose

for orthogonal matrices

— Since W is diagonal, W also diagonal with
reciprocals of entries of W

SVD and the Pseudoinverse

e A :(VT)—1 W-1 U—1 — VW-! UT

* This fails when some w. are O
— It's supposed to fail — singular matrix

— Happens when rectangular A is rank deficient

* Pseudoinverse: if w,=0, set 1/w, to O (!)
— “Closest” matrix to inverse

— Defined for all (even non-square, singular, etc.)
matrices

— Equal to (ATA)TAT if ATA invertible

SVD and Condition Number

* Singular values used to compute Euclidean
(spectral) norm for a matrix:

(4)
min ()

cond(A4) = O

SVD and Least Squares

Solving Ax=Db by least squares:
ATAx = ATb - x = (ATA)'ATb
Replace with A*: x = A*b

Compute pseudoinverse using SVD

— Lets you see if data is singular (< n nonzero singular
values)

— Even if not singular, condition number tells you
how stable the solution will be

— Set 1/w; to O if w; is small (even if not exactly 0)

SVD and Matrix Similarity

One common definition for the norm of a matrix is the

Frobenius norm:
Al = ZZaijz
i

Frobenius norm can be computed from SVD
Al = 2w
Euclidean (spectral) norm can also be computed:
|A], = {max|2]: 2 € o(A)}

So changes to a matrix can be evaluated by looking at
changes to singular values

SVD and Matrix Similarity

* Suppose you want to find best rank-k
approximation to A

* Answer: set all but the largest k singular values
to zero

* Can form compact representation by eliminating
columns of U and V corresponding to zeroed w;

SVD and |

Eigenvectors

* Let A=UWVT, and let x; be i column of V

* Consider ATA x::

(0) (0)

ATAX = VWTUTUWV X = VW?VTx = VW?| 1 |=V| w? | = w’x

* So elements of W are

0, (0
sqrt(eigenvalues) and

columns of V are eigenvectors of ATA

Total Least Squares

* One final least squares application

* Fitting a line: vertical vs. perpendicular error

Total Least Squares

* Distance from point to line:

X;
di:[)-ﬁ—a
Y

where n is normal vector to line, a is a constant

* Minimize:

;(Z:de:Z '"|-fi—-a

i |\ Yi

Total Least Squares

* First, let’s pretend we know n, solve for a
- -2

)

Y _
-3}

* Then

Total Least Squares

* So, let’s define

and minimize

Total Least Squares

* Write as linear system

tA

)?2 Vz [n)‘]:a
i?, . y?, y
N

* Have An=0

— Problem: lots of n are solutions, including n=0

— Standard least squares will, in fact, return n=0

Constrained Optimization

* Solution: constrain n to be unit length

* So, try to minimize |An|? subjectto |n|?=1
|AR|" = (AR) (AR)=R"ATAR
* Expand in eigenvectors e; of ATA:

N = 148 + 1,8,
AT — A + i

—]2
Al = + 1y
where the 4, are eigenvalues of ATA

Constrained Optimization

* To minimize Ayl + A,u? subjectto uf + =1
set ¢... = 1, all other . = O

* That is, n is eigenvector of ATA with
the smallest corresponding eigenvalue

Comparison of Least Squares Methods

* Normal equations (ATAx — Relative error is best
— ATh) possible for least squares
— Breaks if cond(A) ~

— O(mn?) (using Cholesky)
1/(machine eps)

— cond(ATA)=[cond(A)]?

— Cholesky fails if * SVD
cond(A)~1/sqrt(machine — Expensive: mn? + n3 with
epsilon) bad constant factor

e Householder — Can handle rank-deficiency,

near-singularit
— Usually best 5 Y

orthogonalization method — Handy for many different

thi
— O(mn2- n3/3) operations ne>

Matlab functions

qr: explicit QR factorization
svd

A\b: (‘\" operator)
— Performs least-squares if A is m-by-n

— Uses QR decomposition
pinv: pseudoinverse

rank: Uses SVD to compute rank of a matrix

