QR Factorization and Singular Value Decomposition

COS 323
Today

• How do we solve least-squares…
 – without incurring condition-squaring effect of normal equations
 \(A^T A x = A^T b \)
 – when A is singular, “fat”, or otherwise poorly-specified?

• QR Factorization
 – Householder method

• Singular Value Decomposition

• Total least squares

• Practical notes
Review: Condition Number

- Cond(A) is function of A
- Cond(A) \(\geq 1\), bigger is **bad**
- Measures how change in input propagates to output: \[
\frac{||\Delta x||}{||x||} \leq \text{cond}(A) \frac{||\Delta A||}{||A||}
\]
- E.g., if \text{cond}(A) = 451 then can lose \(\log(451) = 2.65\) digits of accuracy in \(x\), compared to precision of \(A\)
Normal Equations are Bad

\[
\frac{\| \Delta x \|}{\| x \|} \leq \text{cond}(A) \frac{\| \Delta A \|}{\| A \|}
\]

• Normal equations involves solving $A^T A x = A^T b$

• $\text{cond}(A^T A) = [\text{cond}(A)]^2$

• E.g., if $\text{cond}(A) = 451$ then can lose $\log(451^2) = 5.3$ digits of accuracy, compared to precision of A
QR Decomposition
What if we didn’t have to use $A^T A$?

- Suppose we are “lucky”:

\[
\begin{bmatrix}
\# & \# & \cdots & \# \\
0 & \# & \# & \\
0 & 0 & \ddots & \vdots \\
0 & \cdots & 0 & \# \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
\# \\
\# \\
\# \\
\# \\
\# \\
\#
\end{bmatrix}

= \begin{bmatrix}
R \\
O
\end{bmatrix} \begin{bmatrix}
x \\
b
\end{bmatrix}

- Upper triangular matrices are nice!
How to make A upper-triangular?

- Gaussian elimination?
 - Applying elimination yields $MAx = Mb$
 - Want to find x s.t. minimizes $||Mb-MAx||_2$
 - Problem: $||Mv||_2
eq ||v||_2$ (i.e., M might “stretch” a vector v)
 - Another problem: M may stretch different vectors differently
 - i.e., M does not preserve Euclidean norm
 - i.e., x that minimizes $||Mb-MAx||$ may not be same x that minimizes $Ax=b$
QR Factorization

• Can’t usually find R such that $A = \begin{bmatrix} R \\ O \end{bmatrix}$

• Can find R and **orthogonal** Q such that

\[
A = Q \begin{bmatrix} R \\ O \end{bmatrix}, \quad \text{so} \quad \begin{bmatrix} R \\ O \end{bmatrix} x = Q^T b
\]

• Doesn’t change least-squares solution

 – $Q^T Q = I$, columns of Q are orthonormal

 – i.e., Q preserves Euclidean norm: $\|Qv\|_2 = \|v\|_2$
Goal of QR

\[A = Q \begin{bmatrix} R \\ O \end{bmatrix} = Q \begin{bmatrix} \ast & \ast & \cdots & \ast \\ 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

R: \(n \times n \), upper tri.

O: \((m-n) \times n \), all zeros
Reformulating Least Squares using QR

$$\|r\|_2^2 = \|b - Ax\|_2^2$$

$$= \|b - Q \begin{bmatrix} R \\ O \end{bmatrix} x\|_2^2 = \|Q^T b - Q^T Q \begin{bmatrix} R \\ O \end{bmatrix} x\|_2^2 \text{ because } A = Q \begin{bmatrix} R \\ O \end{bmatrix}$$

$$= \|Q^T b - \begin{bmatrix} R \\ O \end{bmatrix} x\|_2^2 \text{ because } Q \text{ is orthogonal (}Q^T Q = I)$$

$$= \|c_1 - Rx + c_2\|_2^2 \text{ if we call } Q^T b = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$= \|c_1 - Rx\|_2^2 + \|c_2\|_2^2$$

$$= \|c_2\|_2^2 \text{ if we choose } x \text{ such that } Rx = c_1$$
Householder Method for Computing QR Decomposition
Orthogonalization for Factorization

\[A = Q \begin{bmatrix} R \\ O \end{bmatrix} \]

- Rough idea:
 - For each i-th column of A, “zero out” rows i+1 and lower
 - Accomplish this by multiplying A with an orthogonal matrix \(H_i \)
 - Equivalently, apply an orthogonal transformation to the i-th column (e.g., rotation, reflection)
 - \(Q \) becomes product \(H_1 \ast \cdots \ast H_n \), \(R \) contains zero-ed out columns
Householder Transformation

- Accomplishes the critical sub-step of factorization:
 - Given any vector (e.g., a column of A), reflect it so that its last p elements become 0.
 - Reflection preserves length (Euclidean norm)
Computing Householder

If \(a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \) is the \(k^{\text{th}} \) column, with \(a_1 \) of height \(k-1 \)

then let \(v = \begin{bmatrix} 0 \\ a_2 \end{bmatrix} - \alpha e_k \) where \(\alpha = -\text{sign}(a_k)\|a_2\|_2 \)

and construct \(H = I - 2 \frac{vv^T}{v^Tv} \)

Apply \(H \) to \(a \) and columns to the right :

\[
Ha = a - \left(2 \frac{v^Ta}{v^Tv} \right) v \quad (*\text{with some shortcuts - see p.124})
\]
Computing Householder – Example

Let $a = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, and find Householder transformation that sets everything below first component to zero.

Choose $v = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ where $\alpha = -\text{sign}(2) \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

So $v = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}$, and $Ha = a - 2 \frac{v^T a}{v^T v} v = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$.
Outcome of Householder

\[H_n \ldots H_1 A = \begin{bmatrix} R \\ O \end{bmatrix} \]

where \(Q^T = H_n \ldots H_1 \)

so \(Q = H_1 \ldots H_n \)

so \(A = Q \begin{bmatrix} R \\ O \end{bmatrix} \)
Review: Least Squares using QR

\[\|r\|_2^2 = \|b - Ax\|_2^2 \]

\[= \left\| b - Q \begin{bmatrix} R \\ O \end{bmatrix} x \right\|_2^2 = \left\| Q^T b - Q^T Q \begin{bmatrix} R \\ O \end{bmatrix} x \right\|_2^2 \quad \text{because } A = Q \begin{bmatrix} R \\ O \end{bmatrix} \]

\[= \left\| Q^T b - \begin{bmatrix} R \\ O \end{bmatrix} x \right\|_2^2 \quad \text{because } Q \text{ is orthogonal (}Q^T Q = I) \]

\[= \|c_1 - Rx + c_2\|_2^2 \quad \text{if we call } Q^T b = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \]

\[= \|c_1 - Rx\|_2^2 + \|c_2\|_2^2 \]

\[= \|c_2\|_2^2 \quad \text{if we choose } x \text{ such that } Rx = c_1 \]
Using Householder

- Iteratively compute H_1, H_2, \ldots, H_n and apply to A to get R
 - also apply to b to get
 \[
 Q^T b = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}
 \]

- Solve for $Rx = c_1$ using back-substitution
Alternative Orthogonalization Methods

• Givens:
 – Don’t reflect; rotate instead
 – Introduces zeroes into A one at a time
 – More complicated implementation than Householder
 – Useful when matrix is sparse

• Gram-Schmidt
 – Iteratively express each new column vector as a linear combination of previous columns, plus some (normalized) orthogonal component
 – Conceptually nice, but suffers from subtractive cancellation
Singular Value Decomposition
Motivation #1

• Diagonal matrices are even nicer than triangular ones:

\[
\begin{bmatrix}
& 0 & 0 & 0 \\
0 & # & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & \cdots & 0 & # \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\xRightarrow{\quad x \equiv \quad}
\begin{bmatrix}
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{bmatrix}
\]
Motivation #2

- What if you have fewer data points than parameters in your function?
 - i.e., A is “fat”
 - Intuitively, can’t do standard least squares
 - Recall that solution takes the form $A^T A x = A^T b$
 - When A has more columns than rows, $A^T A$ is singular: can’t take its inverse, etc.
Motivation #3

• What if your data poorly constrains the function?

• Example: fitting to $y=ax^2+bx+c$
Underconstrained Least Squares

• Problem: if problem very close to singular, roundoff error can have a huge effect
 – Even on “well-determined” values!

• Can detect this:
 – Uncertainty proportional to covariance $C = (A^T A)^{-1}$
 – In other words, unstable if $A^T A$ has small values
 – More precisely, care if $x^T (A^T A) x$ is small for any x

• Idea: if part of solution unstable, set answer to 0
 – Avoid corrupting good parts of answer
Singular Value Decomposition (SVD)

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix A, algorithm to find matrices U, V, and W such that
 \[A = U W V^T \]
 - U is $m \times n$ and orthonormal
 - W is $n \times n$ and diagonal
 - V is $n \times n$ and orthonormal
SVD

\[
\begin{pmatrix}
A
\end{pmatrix}
= \begin{pmatrix}
U
\end{pmatrix}
\begin{pmatrix}
w_1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & w_n
\end{pmatrix}
\begin{pmatrix}
V
\end{pmatrix}^T
\]

- Based on Householder reduction, QR decomposition, but treat as black box: code widely available
 e.g., in Matlab: \([U, W, V] = \text{svd}(A, 0)\)
• The w_i are called the singular values of A
• If A is singular, some of the w_i will be 0
• In general $\text{rank}(A) = \text{number of nonzero } w_i$
• SVD is mostly unique (up to permutation of singular values, or if some w_i are equal)
SVD and Inverses

• Why is SVD so useful?

• Application #1: inverses

• $A^{-1} = (V^T)^{-1} W^{-1} U^{-1} = VW^{-1} U^T$

 – Using fact that inverse = transpose for orthogonal matrices

 – Since W is diagonal, W^{-1} also diagonal with reciprocals of entries of W
SVD and the Pseudoinverse

- $A^{-1} = (V^T)^{-1} W^{-1} U^{-1} = VW^{-1} U^T$

- This fails when some w_i are 0
 - It’s supposed to fail – singular matrix
 - Happens when rectangular A is rank deficient

- Pseudoinverse: if $w_i = 0$, set $1/w_i$ to 0 (!)
 - “Closest” matrix to inverse
 - Defined for all (even non-square, singular, etc.) matrices
 - Equal to $(A^T A)^{-1} A^T$ if $A^T A$ invertible
SVD and Condition Number

- Singular values used to compute Euclidean (spectral) norm for a matrix:

\[
\text{cond}(A) = \frac{\sigma_{\text{max}}(A)}{\sigma_{\text{min}}(A)}
\]
SVD and Least Squares

• Solving $Ax = b$ by least squares:
• $A^T Ax = A^T b \rightarrow x = (A^T A)^{-1} A^T b$
• Replace with $A^+ : x = A^+ b$
• Compute pseudoinverse using SVD
 – Lets you see if data is singular ($< n$ nonzero singular values)
 – Even if not singular, condition number tells you how stable the solution will be
 – Set $1/w_i$ to 0 if w_i is small (even if not exactly 0)
SVD and Matrix Similarity

- One common definition for the norm of a matrix is the Frobenius norm:
 \[\|A\|_F = \sum_i \sum_j a_{ij}^2 \]

- Frobenius norm can be computed from SVD
 \[\|A\|_F = \sum_i w_i^2 \]

- Euclidean (spectral) norm can also be computed:
 \[\|A\|_2 = \{ \max |\lambda| : \lambda \in \sigma(A) \} \]

- So changes to a matrix can be evaluated by looking at changes to singular values
SVD and Matrix Similarity

• Suppose you want to find best rank-k approximation to A

• Answer: set all but the largest k singular values to zero

• Can form compact representation by eliminating columns of U and V corresponding to zeroed w_i
SVD and Eigenvectors

• Let $A = UWV^T$, and let x_i be i^{th} column of V

• Consider $A^T A x_i$:

$$A^T A x_i = VW^T U^T U W V^T x_i = VW^2 V^T x_i = VW^2 \left(\begin{array}{c} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{array} \right) = V \left(\begin{array}{c} 0 \\ \vdots \\ w_i^2 \\ \vdots \\ 0 \end{array} \right) = w_i^2 x_i$$

• So elements of W are $\sqrt{\text{eigenvalues}}$ and columns of V are eigenvectors of $A^T A$
Total Least Squares

- One final least squares application
- Fitting a line: vertical vs. perpendicular error
Total Least Squares

- Distance from point to line:

\[d_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix} \cdot \vec{n} - a \]

where \(n \) is normal vector to line, \(a \) is a constant

- Minimize:

\[\chi^2 = \sum_i d_i^2 = \sum_i \left[\begin{pmatrix} x_i \\ y_i \end{pmatrix} \cdot \vec{n} - a \right]^2 \]
Total Least Squares

• First, let’s pretend we know \(n \), solve for \(a \)

\[
\chi^2 = \sum_i \left[\left(\begin{array}{c} x_i \\ y_i \end{array} \right) \cdot \vec{n} - a \right]^2
\]

\[
a = \frac{1}{m} \sum_i \left(\begin{array}{c} x_i \\ y_i \end{array} \right) \cdot \vec{n}
\]

• Then

\[
d_i = \left(\begin{array}{c} x_i \\ y_i \end{array} \right) \cdot \vec{n} - a = \left(\begin{array}{c} x_i - \frac{\Sigma x_i}{m} \\ y_i - \frac{\Sigma y_i}{m} \end{array} \right) \cdot \vec{n}
\]
Total Least Squares

- So, let's define

\[
\begin{pmatrix}
\tilde{x}_i \\
\tilde{y}_i
\end{pmatrix} = \begin{pmatrix}
x_i - \frac{\Sigma x_i}{m} \\
y_i - \frac{\Sigma y_i}{m}
\end{pmatrix}
\]

and minimize

\[
\sum_i \left[\begin{pmatrix} \tilde{x}_i \\ \tilde{y}_i \end{pmatrix} \cdot \vec{n} \right]^2
\]
Total Least Squares

• Write as linear system

\[
\begin{pmatrix}
\tilde{x}_1 & \tilde{y}_1 \\
\tilde{x}_2 & \tilde{y}_2 \\
\tilde{x}_3 & \tilde{y}_3 \\
\vdots & \\
\end{pmatrix}
\begin{pmatrix}
n_x \\
n_y
\end{pmatrix} = \vec{0}
\]

• Have An=0
 – Problem: lots of n are solutions, including n=0
 – Standard least squares will, in fact, return n=0
Constrained Optimization

- Solution: constrain \(n \) to be unit length
- So, try to minimize \(|A n| \|^2 \) subject to \(|n| \|^2 = 1 \)

\[\|A \vec{n}\|^2 = (A \vec{n})^T (A \vec{n}) = \vec{n}^T A^T A \vec{n} \]

- Expand in eigenvectors \(e_i \) of \(A^T A \):

\[\vec{n} = \mu_1 e_1 + \mu_2 e_2 \]

\[\vec{n}^T (A^T A) \vec{n} = \lambda_1 \mu_1^2 + \lambda_2 \mu_2^2 \]

\[\|\vec{n}\|^2 = \mu_1^2 + \mu_2^2 \]

where the \(\lambda_i \) are eigenvalues of \(A^T A \)
Constrained Optimization

- To minimize $\lambda_1 \mu_1^2 + \lambda_2 \mu_2^2$ subject to $\mu_1^2 + \mu_2^2 = 1$
 - set $\mu_{\text{min}} = 1$, all other $\mu_i = 0$
- That is, n is eigenvector of $A^T A$ with the smallest corresponding eigenvalue
Comparison of Least Squares Methods

- **Normal equations** \((A^T A)x = A^T b)\)
 - \(O(mn^2)\) (using Cholesky)
 - \(\text{cond}(A^T A) = [\text{cond}(A)]^2\)
 - Cholesky fails if \(\text{cond}(A) \sim 1/\sqrt{\text{machine epsilon}}\)

- **Householder**
 - Usually best orthogonalization method
 - \(O(mn^2 - n^3/3)\) operations
 - Relative error is best possible for least squares
 - Breaks if \(\text{cond}(A) \sim 1/(\text{machine eps})\)

- **SVD**
 - Expensive: \(mn^2 + n^3\) with bad constant factor
 - Can handle rank-deficiency, near-singularity
 - Handy for many different things
Matlab functions

- **qr**: explicit QR factorization
- **svd**
- **A\b**: (‘\’ operator)
 - Performs least-squares if A is m-by-n
 - Uses QR decomposition
- **pinv**: pseudoinverse
- **rank**: Uses SVD to compute rank of a matrix