
QR Factorization and  

Singular Value Decomposition 

COS 323 



Today 

• How do we solve least-squares… 

– without incurring condition-squaring effect of normal equations 

(A
T
Ax = A

T
b) 

– when A is singular, “fat”, or otherwise poorly-specified? 

• QR Factorization 

– Householder method 

• Singular Value Decomposition 

• Total least squares 

• Practical notes 

 



Review: Condition Number 

• Cond(A) is function of A 

• Cond(A) >= 1, bigger is bad 

• Measures how change in input propagates to 

output: 

 

• E.g., if cond(A) = 451 then can lose 

log(451)= 2.65 digits of accuracy in x, 

compared to precision of A 

 



|| x ||

|| x ||
 cond(A)
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Normal Equations are Bad 

 

 

• Normal equations involves solving A
T
Ax = A

T
b 

• cond(A
T
A) = [cond(A)]2 

• E.g., if cond(A) = 451 then can lose log(451
2
) = 5.3 

digits of accuracy, compared to precision of A 

 



|| x ||

|| x ||
 cond(A)
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QR Decomposition 



What if we didn’t have to use ATA? 

• Suppose we are “lucky”: 

 

 

 

 

 

 

 

• Upper triangular matrices are nice! 
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How to make A upper-triangular? 

• Gaussian elimination? 

– Applying elimination yields MAx = Mb 

– Want to find x s.t. minimizes ||Mb-MAx||
2 

– Problem: ||Mv||
2 

!= ||v||
2
 (i.e., M might “stretch” 

a vector v) 

– Another problem: M may stretch different vectors 

differently 

– i.e., M does not preserve Euclidean norm 

– i.e., x that minimizes ||Mb-MAx|| may not be 

same x that minimizes Ax=b 



QR Factorization 

• Can’t usually find R such that 

 

• Can find R and orthogonal Q such that 

 

 

• Doesn’t change least-squares solution 

– Q
T
Q=I, columns of Q are orthonormal 

– i.e., Q preserves Euclidean norm: ||Qv||
2
=||v||

2
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Goal of QR 
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Reformulating Least Squares using QR 
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Householder Method for Computing 

QR Decomposition 



Orthogonalization for Factorization 

• Rough idea:  

– For each i-th column of A, “zero out” rows i+1 and 

lower 

– Accomplish this by multiplying A with an orthogonal 

matrix H
i 

– Equivalently, apply an orthogonal transformation to 

the i-th column (e.g., rotation, reflection) 

– Q becomes product H
1
*…*H

n, 
R contains zero-ed 

out columns
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Householder Transformation 

• Accomplishes the critical sub-step of 

factorization: 

– Given any vector (e.g., a column of A), reflect it so 

that its last p elements become 0. 

– Reflection preserves length (Euclidean norm) 

(4, 3) 

(-5, 0) 



Computing Householder 
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Computing Householder – Example 
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Outcome of Householder 
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Review: Least Squares using QR 
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Using Householder 

• Iteratively compute H
1
, H

2
, … H

n 
and apply to 

A to get R
  

– also apply to b to get 

 

  

• Solve for Rx=c
1
 using back-substitution 
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Alternative Orthogonalization Methods 

• Givens: 

– Don’t reflect; rotate instead 

– Introduces zeroes into A one at a time 

– More complicated implementation than Householder 

– Useful when matrix is sparse 

• Gram-Schmidt 

– Iteratively express each new column vector as a linear 

combination of previous columns, plus some (normalized) 

orthogonal component 

– Conceptually nice, but suffers from subtractive cancellation  



Singular Value Decomposition 



Motivation #1 

• Diagonal matrices are even nicer than triangular 

ones: 
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Motivation #2 

• What if you have fewer data points than 

parameters in your function? 

– i.e., A is “fat” 

– Intuitively, can’t do standard least squares 

– Recall that solution takes the form A
T
Ax = A

T
b 

– When A has more columns than rows, 

A
T
A is singular: can’t take its inverse, etc. 



Motivation #3 

• What if your data poorly constrains the 

function? 

• Example: fitting to y=ax
2
+bx+c 



Underconstrained Least Squares 

• Problem: if problem very close to singular, 

roundoff error can have a huge effect 

– Even on “well-determined” values! 

• Can detect this: 

– Uncertainty proportional to covariance C = (A
T
A)

-1
 

– In other words, unstable if A
T
A has small values 

– More precisely, care if x
T
(A

T
A)x is small for any x 

• Idea: if part of solution unstable, set answer to 0 

– Avoid corrupting good parts of answer 



Singular Value Decomposition (SVD) 

• Handy mathematical technique that has 

application to many problems 

• Given any mn matrix A, algorithm to find 

matrices U, V, and W such that 

A = U W V
T
 

U is mn and orthonormal 

W is nn and diagonal 

V  is nn and orthonormal 



SVD 

• Based on Householder reduction, QR 

decomposition, but treat as black box: 

code widely available 

e.g., in Matlab: [U,W,V]=svd(A,0) 
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SVD 

• The w
i
 are called the singular values of A 

• If A is singular, some of the w
i
 will be 0 

• In general rank(A) = number of nonzero w
i
 

• SVD is mostly unique (up to permutation of 

singular values, or if some w
i
 are equal) 



SVD and Inverses 

• Why is SVD so useful? 

• Application #1: inverses 

• A
-1

=(V
T
)
-1

 W
-1

 U
-1

 = V W
-1

 U
T 

– Using fact that inverse = transpose 

for orthogonal matrices 

– Since W is diagonal, W
-1

 also diagonal with 

reciprocals of entries of W
 



SVD and the Pseudoinverse 

• A
-1

=(V
T
)
-1

 W
-1

 U
-1

 = V W
-1

 U
T
 

• This fails when some w
i
 are 0 

– It’s supposed to fail – singular matrix 

– Happens when rectangular A is rank deficient 

• Pseudoinverse: if w
i
=0, set 1/w

i
 to 0 (!) 

– “Closest” matrix to inverse 

– Defined for all (even non-square, singular, etc.) 

matrices 

– Equal to (A
T
A)

-1
A

T
 if A

T
A invertible 



SVD and Condition Number 

• Singular values used to compute Euclidean 

(spectral) norm for a matrix: 
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cond(A) 
max (A)

min (A)



SVD and Least Squares 

• Solving Ax=b by least squares: 

• A
T
Ax = A

T
b    x = (A

T
A)

-1
A

T
b 

• Replace with A
+

:  x = A
+

b 

• Compute pseudoinverse using SVD 

– Lets you see if data is singular (< n nonzero singular 

values) 

– Even if not singular, condition number tells you 

how stable the solution will be 

– Set 1/w
i
 to 0 if w

i
 is small (even if not exactly 0) 



SVD and Matrix Similarity 

• One common definition for the norm of a matrix is the 

Frobenius norm: 

 

• Frobenius norm can be computed from SVD 

 

• Euclidean (spectral) norm can also be computed: 

 

• So changes to a matrix can be evaluated by looking at 

changes to singular values 
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SVD and Matrix Similarity 

• Suppose you want to find best rank-k 

approximation to A 

• Answer: set all but the largest k singular values 

to zero 

• Can form compact representation by eliminating 

columns of U and V corresponding to zeroed w
i
 



SVD and Eigenvectors 

• Let A=UWV
T
, and let x

i
 be i

th
 column of V 

• Consider A
T
A x

i
: 

 

 

 

• So elements of W are sqrt(eigenvalues) and 

columns of V are eigenvectors of A
T
A 
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Total Least Squares 

• One final least squares application 

• Fitting a line: vertical vs. perpendicular error 



Total Least Squares 

• Distance from point to line: 

 

 

where n is normal vector to line, a is a constant 

• Minimize: 
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Total Least Squares 

• First, let’s pretend we know n, solve for a 

 

 

 

• Then 
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Total Least Squares 

• So, let’s define 

 

 

and minimize 
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Total Least Squares 

• Write as linear system 

 

 

 

• Have An=0 

– Problem: lots of n are solutions, including n=0 

– Standard least squares will, in fact, return n=0 
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Constrained Optimization 

• Solution: constrain n to be unit length 

• So, try to minimize |An|
2
 subject to |n|

2
=1 

 

• Expand in eigenvectors e
i
 of A

T
A: 

 

 

 

where the 
i
 are eigenvalues of A

T
A 
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Constrained Optimization 

• To minimize                  subject to 

set 
min

 = 1, all other 
i
 = 0 

• That is, n is eigenvector of A
T
A with 

the smallest corresponding eigenvalue 
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Comparison of Least Squares Methods 

• Normal equations (A
T
Ax 

= A
T
b) 

– O(mn
2
) (using Cholesky) 

– cond(A
T
A)=[cond(A)]

2 

– Cholesky fails if 

cond(A)~1/sqrt(machine 

epsilon) 

• Householder 

– Usually best 

orthogonalization method 

– O(mn
2 
- n

3
/3) operations 

– Relative error is best 

possible for least squares 

– Breaks if cond(A) ~ 

1/(machine eps) 

• SVD 

– Expensive: mn
2
 + n

3 
with 

bad constant factor 

– Can handle rank-deficiency, 

near-singularity 

– Handy for many different 

things 



Matlab functions 

• qr: explicit QR factorization 

• svd 

• A\b: (‘\’ operator) 

– Performs least-squares if A is m-by-n 

– Uses QR decomposition 

• pinv: pseudoinverse 

• rank: Uses SVD to compute rank of a matrix 

 


