Data Modeling and Least Squares Fitting

COS 323

- Given: data points, functional form, find constants in function
- Example: given (x_i, y_i), find line through them;
 i.e., find a and b in y = ax+b

- You might do this because you actually care about those numbers...
 - Example: measure position of falling object, fit parabola

$$p = -\frac{1}{2} gt^2$$

 \Rightarrow Estimate g from fit

- ... or because some aspect of behavior is unknown and you want to ignore it
 - Measuring relative resonant frequency of two ions, want to ignore magnetic field drift

• ... or to compare model types to figure out what *kind* of dependence exists

 Is happiness linear w.r.t. income?

Which model is best?

Best-fit lines under different metrics

- Nearly universal formulation of fitting: minimize squares of differences between data and function
 - Example: for fitting a line, minimize

$$\chi^{2} = \sum_{i} (y_{i} - (ax_{i} + b))^{2}$$

with respect to a and b

– Finds one unique best-fit model for a dataset

Linear Least Squares

- Important special case
 - (Also called "Ordinary least squares")
- General pattern:

$$y_i = a f(\vec{x}_i) + b g(\vec{x}_i) + c h(\vec{x}_i) + \cdots$$

Given (\vec{x}_i, y_i) , solve for a, b, c, \dots

• Dependence on unknowns (a, b, c...) is linear, but f, g, etc. might not be!

Linear Least Squares Examples

- General form: $y_i = a f(\vec{x}_i) + b g(\vec{x}_i) + c h(\vec{x}_i) + \cdots$ Given (\vec{x}_i, y_i) , solve for a, b, c, \ldots
- Linear regression: $f(x_i) = x_i$, $g(x_i) = 1$ $y_i = a * x_i + b$
- Multiple linear regression: $y_i = a * x_{1i} + b * x_{2i} + c$
- Polynomial regression: $y_i = a * x_i^2 + b * x_i + c$

How do we compute the model parameters?

Solving Linear Least Squares Problem (one simple approach)

• Take partial derivatives:

$$\chi^{2} = \sum_{i} (y_{i} - a f(x_{i}) - b g(x_{i}) - \cdots)^{2}$$

$$\frac{\partial}{\partial a} = \sum_{i} -2f(x_i) \left(y_i - a f(x_i) - b g(x_i) - \cdots \right) = 0$$
$$a \sum_{i} f(x_i) f(x_i) + b \sum_{i} f(x_i) g(x_i) + \cdots = \sum_{i} f(x_i) y_i$$

$$\frac{\partial}{\partial b} = \sum_{i} -2g(x_i) \left(y_i - a f(x_i) - b g(x_i) - \cdots \right) = 0$$
$$a \sum_{i} g(x_i) f(x_i) + b \sum_{i} g(x_i) g(x_i) + \cdots = \sum_{i} g(x_i) y_i$$

Solving Linear Least Squares Problem

• For convenience, rewrite as matrix:

$$\begin{bmatrix} \sum_{i} f(x_{i}) f(x_{i}) & \sum_{i} f(x_{i}) g(x_{i}) & \cdots \\ \sum_{i} g(x_{i}) f(x_{i}) & \sum_{i} g(x_{i}) g(x_{i}) & \cdots \\ \vdots & \vdots & \end{bmatrix} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \begin{bmatrix} \sum_{i} f(x_{i}) y_{i} \\ \sum_{i} g(x_{i}) y_{i} \\ \vdots \end{bmatrix}$$

• Factor:

$$\sum_{i} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \sum_{i} y_i \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}$$

Alternative Perspective: Overconstrained (Approximate) Linear System

• There's a different derivation of this: overconstrained linear system

Notation:

- Rows of *A* are basis

• A has n rows and m<n columns: more equations than unknowns

Geometric Interpretation for Over-determined System

• Find the x that comes "closest" to satisfying Ax = b– i.e., minimize b–Ax r = b - Axb y = Ax $\operatorname{span}(\boldsymbol{A})$

Geometric Interpretation

- Interpretation: find x that comes "closest" to satisfying Ax=b
 - i.e., minimize b–Ax
 - i.e., minimize \parallel b–Ax \parallel

Equivalently, find x such that r is orthogonal to span(A)

$$0 = \mathbf{A}^{\mathrm{T}}\mathbf{r} = \mathbf{A}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x})$$
$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Forming the equation

- What are A and b?
 - Row i of A is basis functions computed on x_i
 - Row i of b is y_i

$$\mathbf{A} = \begin{bmatrix} f(x_1) & g(x_1) & \cdots \\ f(x_2) & g(x_2) & \cdots \\ \vdots & & \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix}$$
$$\mathbf{A}^{\mathrm{T}} \mathbf{A} = \begin{bmatrix} \sum_{i} f(x_i) f(x_i) & \sum_{i} f(x_i) g(x_i) & \cdots \\ \sum_{i} g(x_i) f(x_i) & \sum_{i} g(x_i) g(x_i) & \cdots \\ \vdots & & & \end{bmatrix}, \quad \mathbf{A}^{\mathrm{T}} b = \begin{bmatrix} \sum_{i} y_i f(x_i) \\ \sum_{i} y_i g(x_i) \\ \vdots \\ \vdots \end{bmatrix}$$

Minimizing Sum of Squares = Finding Closest Ax in span(A)

• Compare two expressions we've derived: equal!

$$\sum_{i} f(x_{i})f(x_{i}) = \begin{bmatrix} \sum_{i} f(x_{i})g(x_{i}) & \cdots \\ \sum_{i} g(x_{i})f(x_{i}) & \sum_{i} g(x_{i})g(x_{i}) & \cdots \\ \vdots & \vdots & \cdots \end{bmatrix} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \begin{bmatrix} \sum_{i} y_{i}f(x_{i}) \\ \sum_{i} y_{i}g(x_{i}) \\ \vdots \end{bmatrix}$$

Starting from goal of finding Ax in span(A) closest to b outside span(A)

Starting from goal of
$$\sum_{i}$$
 i

$$\sum_{i} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \sum_{i} y_i \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}$$

Great, but how do we solve it?

Ways of Solving Linear Least Squares

$$\sum_{i} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \sum_{i} y_i \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}$$

• Option 1:

for each x_i,y_i compute f(x_i), g(x_i), etc. store in row i of A store y_i in b **compute (A^TA)⁻¹ A^Tb**

• (A^TA)⁻¹ A^T is known as "pseudoinverse" of A

Ways of Solving Linear Least Squares

• Option 2:

for each x_i, y_i compute $f(x_i)$, $g(x_i)$, etc. store in row i of A store y_i in b compute A^TA , A^Tb **solve A^TAx = A^Tb**

Known as "normal equations" for least squares

 Inefficient, since A typically larger than A^TA and A^Tb

Ways of Solving Linear Least Squares

• Option 3:

for each x_i, y_i compute $f(x_i)$, $g(x_i)$, etc. accumulate outer product in U accumulate product with y_i in v solve Ux=v

The Problem with Normal Equations

- Involves solving $A^TAx = A^Tb$
- This can be inaccurate
 - Independent of solution method

- Remember:
$$\frac{\|\Delta x\|}{\|x\|} \le cond(A) \frac{\|\Delta A\|}{\|A\|}$$
$$- \operatorname{cond}(A^{\mathsf{T}}A) = [\operatorname{cond}(A)]^2$$

- Next week: computing pseudoinverse stably
 - More expensive, but more accurate
 - Also allows diagnosing insufficient data

Special Cases

Special Case: Constant

• Let's try to model a function of the form

Special Case: Constant

Let's try to model a function of the form

$$y = a$$

• Comparing to general form $y_i = af(\vec{x}_i) + bg(\vec{x}_i) + ch(\vec{x}_i) + \cdots$ we have $f(\mathbf{x}_i) = 1$ and we are solving $\sum_i [1]a] = \sum_i [y_i]$ $\therefore a = \frac{\sum_i y_i}{\sum_i (y_i)}$

Special Case: Line

• Fit to y=a+bx

•
$$f(x_i)=1$$
, $g(x_i)=x$. So, solve:

$$\sum_{i} \begin{bmatrix} 1 \\ x_{i} \end{bmatrix} \begin{bmatrix} 1 & x_{i} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \sum_{i} y_{i} \begin{bmatrix} 1 \\ x_{i} \end{bmatrix}$$
$$(\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} = \begin{bmatrix} n & \Sigma x_{i} \\ \Sigma x_{i} & \Sigma x_{i}^{2} \end{bmatrix}^{-1} = \frac{\begin{bmatrix} \Sigma x_{i}^{2} & -\Sigma x_{i} \\ -\Sigma x_{i} & n \end{bmatrix}}{n\Sigma x_{i}^{2} - (\Sigma x_{i})^{2}}, \quad \mathbf{A}^{\mathrm{T}} b = \begin{bmatrix} \Sigma y_{i} \\ \Sigma x_{i} & y_{i} \end{bmatrix}$$

$$a = \frac{\Sigma x_i^2 \Sigma y_i - \Sigma x_i \Sigma x_i y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2}, \quad b = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2}$$

Variant: Weighted Least Squares

Weighted Least Squares

- Common case: the (x_i,y_i) have different uncertainties associated with them
- Want to give more weight to measurements of which you are more certain
- Weighted least squares minimization

$$\min \chi^2 = \sum_i w_i \left(y_i - f(x_i) \right)^2$$

• If "uncertainty" (stdev) is σ , best to take $w_i = \frac{1}{\sigma_i^2}$

Weighted Least Squares

• Define weight matrix W as

• Then solve weighted least squares via

 $\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A}\,x = \mathbf{A}^{\mathrm{T}}\mathbf{W}\,b$

Understanding Error and Uncertainty

Error Estimates from Linear Least Squares

- For many applications, finding model is useless without estimate of its accuracy
- Residual is b Ax
- Can compute $\chi^2 = (b Ax) \cdot (b Ax)$
- How do we tell whether answer is good?
 - Lots of measurements
 - $-\chi^2$ is small
 - χ^2 increases quickly with perturbations to x (\rightarrow standard variance of estimate is small)

Error Estimates from Linear Least Squares

• Let's look at increase in χ^2 :

$$x \to x + \delta x$$
$$(b - \mathbf{A}(x + \delta x))^{\mathrm{T}} (b - \mathbf{A}(x + \delta x))$$
$$= ((b - \mathbf{A}x) - \mathbf{A}\delta x))^{\mathrm{T}} ((b - \mathbf{A}x) - \mathbf{A}\delta x))$$
$$= (b - \mathbf{A}x)^{\mathrm{T}} (b - \mathbf{A}x) - 2\delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} (b - \mathbf{A}x) + \delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A}\delta x$$
$$= \chi^{2} - 2\delta x^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}} b - \mathbf{A}^{\mathrm{T}} \mathbf{A}x) + \delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A}\delta x$$
So, $\chi^{2} \to \chi^{2} + \delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A}\delta x$

 So, the bigger A^TA is, the faster error increases as we move away from current x

Error Estimates from Linear Least Squares

- $C = (A^T A)^{-1}$ is called *covariance* of the data
- The "standard variance" in our estimate of x is $\sigma^2 = \frac{\chi^2}{n-m} \mathbf{C}$
- This is a matrix:
 - Diagonal entries give variance of estimates of components of x: e.g., var(a₀)
 - Off-diagonal entries explain mutual dependence: e.g., $cov(a_0, a_1)$
- n-m is (# of samples) minus (# of degrees of freedom in the fit): consult a statistician...

Special Case: Error in Constant Model

Coefficient of Determination

$$R^2 \equiv 1 - \frac{\chi^2}{\sum y_i - \overline{y}}$$

R² : Proportion of observed variability that is explained by the model

e.g., $R^2 = 0.7$ means 70% variability explained For linear regression, R^2 is Pearson's correlation.

- In general, uncertainty in estimated parameters goes down slowly: like 1/sqrt(# samples)
- Formulas for special cases (like fitting a line) are messy: simpler to think of A^TAx=A^Tb form
- Normal equations method often not numerically stable: orthogonal decomposition methods used instead
- Linear least squares is not always the most appropriate modeling technique...

Next time

- Non-linear models
 - Including logistic regression
- Dealing with outliers and bad data
- Practical considerations
 - Is least squares an appropriate method for my data?