
Data Modeling and 

Least Squares Fitting 

COS 323 



Data Modeling 

• Given: data points, functional form, 

find constants in function 

• Example: given (x
i
, y

i
), find line through them; 

i.e., find a and b in y = ax+b 
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Data Modeling 

• You might do this because you actually care 

about those numbers… 

– Example: measure position of falling object, 

fit parabola 
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  Estimate g from fit 



Data Modeling 

• … or because some aspect of behavior is unknown and 

you want to ignore it 

 

– Measuring relative 

resonant frequency of 

two ions, want to 

ignore magnetic 

field drift 



Data Modeling 

• … or to compare model types to figure out 

what kind of dependence exists 

 

– Is happiness linear 

w.r.t. income? 



Which model is best? 



Best-fit lines under different metrics 

Sum of residuals Sum of absolute values of residuals 

Maximum error of 

any point 



Least Squares 

• Nearly universal formulation of fitting: 

minimize squares of differences between 

data and function 

– Example: for fitting a line, minimize 

 

 

with respect to a and b 

 

– Finds one unique best-fit model for a dataset 
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Linear Least Squares 

• Important special case 

– (Also called “Ordinary least squares”) 

• General pattern: 

 

 

 

• Dependence on unknowns (a, b, c…) is linear, 

but f, g, etc. might not be! 
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Linear Least Squares Examples 

• General form: 

 

• Linear regression: f(x
i
) = x

i
, g(x

i
) = 1 

y
i
 = a * x

i
 + b 

• Multiple linear regression: 

y
i
 = a * x

1i
 + b * x

2i
 + c 

• Polynomial regression: 

y
i
 = a * x

i

2
 +  b * x

i
 + c 







,,,forsolve),,(Given

)()()(

cbayx

xhcxgbxfay

ii

iiii 



How do we compute the model 

parameters? 



Solving Linear Least Squares Problem  

(one simple approach) 

• Take partial derivatives: 
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Solving Linear Least Squares Problem 

• For convenience, rewrite as matrix: 

 

 

 

• Factor: 
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Alternative Perspective: Overconstrained 

(Approximate) Linear System 

• There’s a different derivation of this: 

overconstrained linear system 

 

 

 

 

 

• A has n rows and m<n columns: 

more equations than unknowns 
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A Notation: 

• Rows of A are basis 

functions computed on 

observations (f(x
i
), g(x

i
), …) 

• x is column of 

model parameters (a, b, c…) 

• b is column of “y
i
” 



Geometric Interpretation  

for Over-determined System 

• Find the x that comes “closest” to satisfying 

Ax=b 

– i.e., minimize b–Ax 



Geometric Interpretation 

• Interpretation: find x that comes “closest” to 

satisfying Ax=b 

– i.e., minimize b–Ax 

– i.e., minimize  b–Ax  

– Equivalently, find x such that r is orthogonal to 

span(A) 



0 =  AT
r AT (b Ax)

A
T
Ax AT

b



Forming the equation 

• What are A and b? 

– Row i of A is basis functions computed on x
i
 

– Row i of b is y
i
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Minimizing Sum of Squares  

= Finding Closest Ax in span(A)  

• Compare two expressions we’ve derived: equal! 
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Starting from goal of 

minimizing sum of squares 

Starting from goal of 

finding Ax in span(A) 

closest to b outside span(A) 



Great, but how do we solve it? 



Ways of Solving Linear Least Squares 

• Option 1: 

 for each x
i
,y

i 

  
compute f(x

i
), g(x

i
), etc.  

  store in row i of A 

  store y
i
 in b 

 compute (A
T
A)

-1 
A

T
b 

• (A
T
A)

-1 
A

T
 is known as “pseudoinverse” of A 
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Ways of Solving Linear Least Squares 

• Option 2: 

 for each x
i
,y

i 

  
compute f(x

i
), g(x

i
), etc. 

  store in row i of A 

  store y
i
 in b 

 compute A
T
A, A

T
b 

 solve A
T
Ax=A

T
b 

• Known as “normal equations” for least squares 

– Inefficient, since A typically larger than A
T
A and A

T
b 



Ways of Solving Linear Least Squares 

• Option 3: 

 for each x
i
,y

i 

  
compute f(x

i
), g(x

i
), etc. 

  accumulate outer product in U 

  accumulate product with y
i
 in v 

 solve Ux=v 
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The Problem with Normal Equations 

• Involves solving A
T
Ax=A

T
b 

• This can be inaccurate 

– Independent of solution method 

– Remember: 

 

– cond(A
T
A) = [cond(A)]2 

• Next week: computing pseudoinverse stably 

– More expensive, but more accurate 

– Also allows diagnosing insufficient data 



|| x ||

|| x ||
 cond(A)

|| A ||

|| A ||



Special Cases 

  



Special Case: Constant 

• Let’s try to model a function of the form 

         y = a 



Special Case: Constant 

• Let’s try to model a function of the form 

         y = a 

• Comparing to general form 

 

we have f(x
i
)=1 and we are solving 

     
i

i

i

ya1

n

y
a i i





 )()()( iiii xhcxgbxfay



Special Case: Line 

• Fit to y=a+bx 

• f(x
i
)=1, g(x

i
)=x. So, solve: 
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Variant: Weighted Least Squares 



Weighted Least Squares 

• Common case: the (x
i
,y

i
) have different 

uncertainties associated with them 

• Want to give more weight to measurements 

of which you are more certain 

• Weighted least squares minimization 

 

• If “uncertainty” (stdev) is , best to take 
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Weighted Least Squares 

• Define weight matrix W as 

 

 

 

 

• Then solve weighted least squares via 
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Understanding Error and Uncertainty 



Error Estimates from Linear Least Squares 

• For many applications, finding model is useless 

without estimate of its accuracy 

• Residual is b – Ax 

• Can compute 2
 = (b – Ax)(b – Ax) 

• How do we tell whether answer is good? 

– Lots of measurements 

– 2

 
is small 

– 2
 increases quickly with perturbations to x 

( standard variance of estimate is small) 



Error Estimates from Linear Least Squares 

• Let’s look at increase in 2
: 

 

 

 

 

 

• So, the bigger A
T
A is, the faster error increases 

as we move away from current x 
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Error Estimates from Linear Least Squares 

• C=(A
T
A)

–1 
is called covariance of the data 

• The “standard variance” in our estimate of x is 

 

• This is a matrix: 

– Diagonal entries give variance of estimates of 

components of x: e.g., var(a
0
) 

– Off-diagonal entries explain mutual dependence: 

e.g., cov(a
0
, a

1
) 

• n–m is (# of samples) minus (# of degrees of 

freedom in the fit): consult a statistician… 
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Special Case: Error in Constant Model 
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“standard deviation 

of mean” 
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Coefficient of Determination 

R
2
 : Proportion of observed variability that is explained by 

the model  

 e.g., R
2
 = 0.7 means 70% variability explained 

For linear regression, R
2
 is Pearson’s correlation. 
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Keep in mind… 

• In general, uncertainty in estimated parameters 

goes down slowly: like 1/sqrt(# samples) 

• Formulas for special cases (like fitting a line) are 

messy: simpler to think of A
T
Ax=A

T
b form 

• Normal equations method often not numerically 

stable: orthogonal decomposition methods used 

instead 

• Linear least squares is not always the most 

appropriate modeling technique… 



Next time 

• Non-linear models 

– Including logistic regression 

• Dealing with outliers and bad data 

• Practical considerations 

– Is least squares an appropriate method for my data? 


