Data Modeling and
Least Squares Fitting

COS 323



Data Modeling

* Given: data points, functional form,
find constants in function

* Example: given (x;, y;), find line through them;
l.e., findaand b iny = ax+b
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Data Modeling

* You might do this because you actually care
about those numbers...

— Example: measure position of falling object,

fit parabola
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Data Modeling

* ... or because some aspect of behavior is unknown and
you want to ignore it
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Data Modeling

* ... or to compare model types to figure out
what kind of dependence exists

— Is happiness linear

w.r.t. iIncome?

Average happiness
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Which model 1s best?




Best-fit lines under different metrics

O /

Sum of residuals Sum of absolute values of residuals

Maximum error of
any point




Least Squares

* Nearly universal formulation of fitting:
minimize squares of differences between
data and function

— Example: for fitting a line, minimize

2*=2.(vi—(ax +b))’

with respect to a and b

— Finds one unique best-fit model for a dataset



Linear [east Squares

* Important special case

— (Also called “Ordinary least squares”)

* Ceneral pattern:
y.=af(X)+bg(X)+ch(X)+---
Given (X, y.), solvefor a,b,c,...

* Dependence on unknowns (a, b, c...) is linear,
but f, g, etc. might not be!



Linear Least Squares Examples

* General form: Y. =af(X)+bg(X)+ch(X)+:-

Given (X;, y:), solve for a,b,c,...
* Linear regression: f(x,) = x;, g(x) =
yi=a*x +b
* Multiple linear regression:
yvi=a*x,; +b*x,+c
* Polynomial regression:
yvi=a*x?+ b*x +c



How do we compute the model

parameters?




Solving Linear [Least Squares Problem

(one simple approach)

* Take partial derivatives:
2P => (vi—aft(x)-bg(x)—)

2 =¥ -2 (0)(y—a (x)-bg(x) ) =0

azf(xi)f(xi)+bz f(Xi)g(Xi)+'“:Z f(x)Y,

£ =3 -20(x) (s, -a f (x)-bg(x) =) =0

azg(xi)f(Xi)"‘bzg(xi)g(xi)"‘"':Zg(xi)Yi



Solving Linear LLeast Squares Problem

* For convenience, rewrite as matrix:
YT X0 el [ 2 oY
2,906 F06) 2.904)9(x) b|=] 2 9(x) Y,

* Factor:
RICY T RECOTmE: (X))
Z g(Xi) g(xi) b :Zyi g(xi)




Alternative Perspective: Overconstrained

(Approximate) Linear System

* There’s a different derivation of this:
overconstrained linear system

Ax=Db Notation:
/ \ £\ * Rows of A are basis
functions computed on
() observations (f(x;), g(x), -...)

* x is column of

A X|=|b model parameters (a, b, c...)
w * b is column of “y,
\ J \ /

* A has n rows and m<n columns:
more equations than unknowns




Geometric Interpretation

for Over-determined System

* Find the x that comes “closest” to satisfying

Ax=Db

— i.e., minimize b—-Ax /}
|T'
|
:

span(A)

b— Ax




Geometric Interpretation

* Interpretation: find x that comes “closest” to
satisfying Ax=Db %T—bAm

— i.e., minimize b-Ax

— i.e., minimize || b—Ax ||

span(A

— Equivalently, find x such that r is orthogonal to

span(A)

0 = ATr=A"(b-Ax)
ATAx =Ab



Forming the equation

* What are A and b?

— Row i of A is basis functions computed on x;

— Rowiof bisy,

A'A =

f(x)  g(x)
A=) g(x)

D Fo)F) D F0)g(x)

Mo () Y al)als)

Y1
Y2

., A'b=

_Z y, f (Xi)_

ZYig(Xi)



Minimizing Sum ot Squares

= Finding Closest Ax in span(A)

* Compare two expressions we’ve derived: equal!
Y R0F) X)) ] Ta] | 2N
/» > 900 f(x) D2 a()g) | |b|=| 2 V9

Starting from goal of
finding Ax in span(A)
closest to b outside span(A)
0T Fe0T [a

Ny lgo ey | b=y

Starting from goal of i

(%)
(%)

(%)
g(x)

minimizing sum of squares




Great, but how do we solve it?




Ways of Solving Linear Least Squares

T I

)| f(x)] |a (%)
Z g(xi) g(xi) b :ZYi g(xi)

* Option 1:

for each x,y,
compute f(x), g(x,), etc.
store in row i of A

store y; in b
compute (ATA)TATb

* (ATA)TAlis known as “pseudoinverse” of A



Ways of Solving Linear Least Squares

* Option 2:
for each x,y,
compute f(x), g(x,), etc.
store in row i of A
store y; in b
compute A'A, A'b
solve ATAx=A'b

* Known as “normal equations” for least squares
— Inefficient, since A typically larger than ATA and A'b



Ways of Solving Linear Least Squares

* Option 3:
for each x,y,
compute f(x), g(x,), etc.
accumulate outer product in U
accumulate product with y; in v
solve Ux=v

Y A)F) D Fe0a) ] a1 |2 nfe)
Zg(xi)f(xi) Zg(xi)g(xi) b|= ZYig(Xi)

U X \Y;



The Problem with Normal Equations

* Involves solving ATAx=ATb

* This can be inaccurate
— Independent of solution method

— Remember: | Ax ”

| A4 |
nd(A)———
x| | A |
— cond(ATA) = [cond(A)]?

* Next week: computing pseudoinverse stably
— More expensive, but more accurate

— Also allows diagnosing insufficient data



Spectal Cases




Special Case: Constant

* Let’s try to model a function of the form

= d
\ y

OOQ O

O

p




Special Case: Constant

* Let’s try to model a function of the form
y =24
* Comparing to general form
y; =af(X)+bg(x)+ch(X)+--

we have f(x)=1 and we are solving

> [l X[y
Zi Yi

N

Jooa=




Special Case: Line

* Fit to y=a+bx

* f(x)=1, g(x;)=x. So, solve:
NN

|:2Xi2 _ZXI:|
— 22X n ATh :{ Y. }

nZXiZ - (zxi )2 | XY,

arayio[ "o
ClEx XA

q - SX Y, — X, 2X. Y. . 2X Y, — XX 2V,
aniZ o (in )2 | ﬂZXi2 - (in )2




Variant: Weighted Least Squares




Weighted Least Squares

Common case: the (x;,y,) have different
uncertainties associated with them

Want to give more weight to measurements
of which you are more certain

Weighted least squares minimization
min z* = ZWi (y,— f(x))

If “uncertainty” (stdev) is o, best to take W, = }/G_z



Weighted Least Squares

* Define weight matrix W as

* Then solve weighted least squares via

ATWAx=A"Wb



Understanding Error and Uncertainty




FError Estimates from Linear Least Squares

* For many applications, finding model is useless
without estimate of its accuracy

* Residual is b — Ax
* Can compute y? = (b — Ax)-(b — Ax)

* How do we tell whether answer is good?
— Lots of measurements
— y%is small

— y? increases quickly with perturbations to x
(— standard variance of estimate is small)



FError Estimates from Linear Least Squares

* Let’s look at increase in »*:

X = X+ X
(b—A(x+X))" (b—A(x+ X))
=((b—Ax)—AX))" ((b—Ax) - AX))
=(b-Ax)"(b—Ax)—25' A’ (b—Ax) + &' AT A
=x° =25 (ATb—ATAX) + X ATAX
So, y° = y° + X ATAX

* So, the bigger A'A is, the faster error increases
as we move away from current X



FError Estimates from Linear Least Squares

e C=(ATA)1is called covariance of the data

* The “standard variance” in our estimate of x is
2

o?=-4_C
n—m

* This is a matrix:
— Diagonal entries give variance of estimates of
components of x: e.g., var(a,)
— Off-diagonal entries explain mutual dependence:
e.g., cov(a,, a,)

* n—m is (# of samples) minus (# of degrees of
freedom in the fit): consult a statistician...



Special Case: Error in Constant Model

7 =2.(y,-ay

D

O

|l
I §
> |
I

Z (yi - a)2
standard deviation of data: o =1/- .
n —
)3 (yi o a)2
standard error of a: o, =J | : Jn
. - J
Y

“standard deviation
of mean”



Coeftficient of Determination

l
R2 : Proportion of observed variability that is explained by
the model
e.g., R? = 0.7 means 70% variability explained

For linear regression, R? is Pearson’s correlation. |
P
Q

OOO_Q o O g

< OQ o > O O
@ ] 4




Keep 1n mind...

In general, uncertainty in estimated parameters
goes down slowly: like 1/sqrt(# samples)

Formulas for special cases (like fitting a line) are
messy: simpler to think of ATAx=A'b form

Normal equations method often not numerically
stable: orthogonal decomposition methods used
instead

Linear least squares is not always the most
appropriate modeling technique...



Next time

e Non-linear models

— Including logistic regression
* Dealing with outliers and bad data

* Practical considerations

— Is least squares an appropriate method for my data?



