
Solving Linear Systems: 
Iterative Methods and Sparse Systems 

COS 323 



Last time 

• Linear system: Ax = b 

• Singular and ill-conditioned systems 

• Gaussian Elimination: A general purpose method 
– Naïve Gauss (no pivoting) 
– Gauss with partial and full pivoting 
– Asymptotic analysis: O(n3) 

• Triangular systems and LU decomposition 

• Special matrices and algorithms: 
– Symmetric positive definite: Cholesky decomposition 
– Tridiagonal matrices 

• Singularity detection and condition numbers 

 
 

 



Today:  
Methods for large and sparse systems 

• Rank-one updating with Sherman-Morrison 

• Iterative refinement 

• Fixed-point and stationary methods 
– Introduction 

– Iterative refinement as a stationary method 

– Gauss-Seidel and Jacobi methods 

– Successive over-relaxation (SOR) 

• Solving a system as an optimization problem 

• Representing sparse systems 

 



Problems with large systems 

• Gaussian elimination, LU decomposition 
(factoring step) take O(n3) 

• Expensive for big systems! 

• Can get by more easily with special matrices 
– Cholesky decomposition: for symmetric positive 

definite A; still O(n3) but halves storage and 
operations 

– Band-diagonal: O(n) storage and operations 

• What if A is big? (And not diagonal?) 



Special Example: Cyclic Tridiagonal  

• Interesting extension: cyclic tridiagonal 

 

 

 

 

 

• Could derive yet another special case algorithm, 
but there’s a better way 
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Updating Inverse 

• Suppose we have some fast way of finding A-1 
for some matrix A 

• Now A changes in a special way: 
                         A* = A + uvT 

for some n×1 vectors u and v 

• Goal: find a fast way of computing (A*)-1 
– Eventually, a fast way of solving (A*) x = b 



Analogue for Scalars 
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Sherman-Morrison Formula 

 

A* = A + uvT = A(I + A −1uvT )

A*( )−1
= (I + A −1uvT )−1 A −1

To check,  verify that ( A*)-1A* = I,  A*(A*)-1 = I



Sherman-Morrison Formula 

 

x = A*( )−1
b = A −1b −

A −1u vT A −1b
1+ vT A −1u

So, to solve A*( )x = b,

solve Ay = b, Az = u, x = y −
z vT y

1+ vT z



Applying Sherman-Morrison 

• Let’s consider 
cyclic tridiagonal again: 

 

 

 

• Take 
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Applying Sherman-Morrison 

• Solve  Ay=b,  Az=u  using special fast algorithm 

• Applying Sherman-Morrison takes 
a couple of dot products 

• Generalization for several corrections: Woodbury 
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Summary: Sherman-Morrison 

• Not just for band-diagonals: S.-M. good for 
rank-one changes to a matrix whose inverse we 
know (or can be computed easily) 

• O(n2) (for matrix-vector computations) rather 
than O(n3) 

• Caution: Error can propogate in repeating S.-M. 

• Woodbury formula works for higher-rank 
changes 

 



Iterative Methods 

  



Direct vs. Iterative Methods 

• So far, have looked at direct methods for 
solving linear systems 
– Predictable number of steps 

– No answer until the very end 

• Alternative: iterative methods 
– Start with approximate answer 

– Each iteration improves accuracy 

– Stop once estimated error below tolerance 



Benefits of Iterative Algorithms 

• Some iterative algorithms designed for accuracy: 
– Direct methods subject to roundoff error 

– Iterate to reduce error to O(ε ) 

• Some algorithms produce answer faster 
– Most important class: sparse matrix solvers 

– Speed depends on # of nonzero elements, 
not total # of elements 



First Iterative Method: 
Iterative Refinement 

• Suppose you’ve solved (or think you’ve solved) 
some system Ax=b 

• Can check answer by computing residual: 
     r = b – Axcomputed 

• If r is small (compared to b), x is accurate 

• What if it’s not? 



Iterative Refinement 

• Large residual caused by error in x: 
      e = xcorrect – xcomputed 

• If we knew the error, could try to improve x: 
      xcorrect = xcomputed + e 

• Solve for error: 
    r = b – Axcomputed  
 Axcomputed = A(xcorrect – e) = b – r 
   Axcorrect – Ae = b – r 
        Ae = r 



Iterative Refinement 

• So, compute residual, solve for e, 
and apply correction to estimate of x 

• If original system solved using LU, 
this is relatively fast (relative to O(n3), that is): 
– O(n2) matrix/vector multiplication + 

O(n) vector subtraction to solve for r 

– O(n2) forward/backsubstitution to solve for e 

– O(n) vector addition to correct estimate of x 

• Requires 2x storage, often requires extra precision for 
representing residual 



Questions? 

 



Fixed-Point and Stationary Methods 



Fixed points 

• x* is a fixed point of f(x) if x* = f(x*) 



Formulating root-finding as  
fixed-point-finding 

• Choose a g(x) such that g(x) has a fixed point at 
x* when f(x*) = 0 
– e.g. f(x) = x2 – 2x + 3 = 0 

      g(x) = (x2 + 3) / 2 
if x* = (x*2 + 3) / 2 then f(x*) = 0 

– Or, f(x) = sin(x) 
     g(x) = sin(x) + x 
if x* = sin(x*) + x* then f(x*) = 0 

 



Fixed-point iteration 

Step 1. Choose some initial x0 

Step 2. Iterate: 

 For i > 0: 
 x(i+1) = g(xi) 

 Stop when x(i+1) – xi < threshold. 



Example 

• Compute pi using  
 f(x) = sin(x) 
 g(x) = sin(x) + x 



Notes on fixed-point root-finding 

• Sensitive to starting x0 

• |g’(x)| < 1 is sufficient for convergence 

• Converges linearly (when it converges) 



Extending fixed-point iteration to systems of 
multiple equations 

General form: 

Step 0. Formulate set of fixed-point equations 

 x1 = g1 (x1), x2 = g2 (x2), … xn = gn (xn) 

Step 1. Choose x1
0, x2

0, … xn
0 

Step 2. Iterate: 

  x1
(i+1) = g1(x1

i), x2
(i+1) = g2(x2

i) 



Example:  
Fixed point method for 2 equations 

f1(x) = (x1)2 + x1x2 - 10 

f2(x) = x2 + 3x1(x2)2 - 57 

 

Formulate new equations: 
g1(x1) = sqrt(10 – x1x2) 

 g2(x2) = sqrt((57 – x2)/3x1) 

 

Iteration steps: 

x1
(i+1) = sqrt(10 – x1

ix2
i) 

x2
(i+1) = sqrt((57 – x2

i)/3x1
i) 



Stationary Iterative Methods for Linear 
Systems 

• Can we formulate g(x) such that x*=g(x*) when 
Ax* - b = 0? 

• Yes: let A = M – N  (for any satisfying M, N) 
 and let g(x) = Gx + c = M-1Nx + M-1b 

• Check: if x* = g(x*) = M-1Nx* + M-1b then  
Ax* = (M – N)(M-1Nx* + M-1b)  
   = Nx* + b + N(M-1Nx* + M-1b)  
       = Nx* + b – Nx*  
       = b 

 



So what? 

• We have an update equation: 
x(k+1) = M-1Nxk + M-1b  

• Only requires inverse of M, not A 

• (FYI: It’s “stationary” because G and c do not 
change) 
 



Iterative refinement is a stationary method! 

• x(k+1) = xk + e 
  = xk + A-1r for estimated A-1 

• This is equivalent to choosing 
 g(x) = Gx + c = M-1Nx + M-1b 

  where G = (I – B-1 A) and c = B-1 b 

 (if B-1 is our most recent estimate of A-1) 

 



So what? 

• We have an update equation: 
x(k+1) = M-1Nxk + M-1b  

• Only requires inverse of M, not A 

• We can choose M to be nicely invertible (e.g., 
diagonal) 
 



Jacobi Method 

• Choose M to be the diagonal of A 

• Choose N to be M – A = -(L + U)  
– Note that A != LU here 

• So, use update equation: 
 x(k+1) = D-1 ( b – (L + U)xk) 



Jacobi method 

• Alternate formulation: Recall we’ve got 

 

 

 

 

• Store all xi
k 

• In each iteration, set 
 

 

xi
(k +1) =

bi − aij x j
(k )

j ≠ i
∑

aii



Gauss-Seidel 

• Why make a complete pass through 
components of x using only xi

k, ignoring the 
xi

(k+1) we’ve already computed? 

 

xi
(k +1) =

bi − aij x j
(k )

j ≠ i
∑

aii

 

xi
(k +1) =

bi − aij x j
(k )

j > i
∑ − aij x j

(k +1)

j< i
∑

aii

Jacobi: 

G.S.: 



Notes on Gauss-Seidel 

• Gauss-Seidel is also a stationary method 
A = M – N where M = D + L, N = -U 

• Both G.S. and Jacobi may or may not converge 
– Jacobi: Diagonal dominance is sufficient condition 

– G.S.: Diagonal dominance or symmetric positive 
definite 

• Both can be very slow to converge 



Successive Over-relaxation (SOR) 

• Let x(k+1) = (1-w)x(k) + w xGS
(k+1) 

• If w = 1 then update rule is Gauss-Seidel 

• If w < 1: Under-relaxation 
– Proceed more cautiously: e.g., to make a non-

convergent system converge 

• If 1 < w < 2: Over-relaxation 
– Proceed more boldly, e.g. to accelerate convergence 

of an already-convergent system 

• If w > 2: Divergence.  



Questions? 

 



One more method:  
Conjugate Gradients 

• Transform problem to a function minimization! 
 
   Solve Ax=b 
    ⇒  Minimize f(x) = xTAx – 2bTx 

 

• To motivate this, consider 1D: 
   f(x) = ax2 – 2bx 
        df/dx = 2ax – 2b = 0 
         ax = b 



Conjugate Gradient for Linear Systems 

• Preferred method: conjugate gradients 

• Recall: plain gradient descent has a problem… 



Conjugate Gradient for Linear Systems 

• … that’s solved by conjugate gradients 

 

• Walk along direction 
 
 

• Polak and Ribiere formula: 

kkkk dgd β+−= ++ 11

kk

kk
k gg

ggg
k

T
1

T )(
1

−
= ++β



Conjugate Gradient is easily computable for 
linear systems 

• If A is symmetric positive definite: 
– At any point, gradient is negative residual 

 

 
– Easy to compute: just A multiplied by a vector 

• For any search direction sk, can directly 
compute minimum in that direction: 

 

 

f (x) = xTA x − 2bT x
∇f (x) = 2 Ax − b( ) = −2r

 

xk +1 = xk + αk xk

αk = rk
T rk /sk

T Askwhere 

so 



Conjugate Gradient for Linear Systems 

• Just a few matrix-vector multiplies 
(plus some dot products, etc.) per iteration 

• For m nonzero entries, each iteration O(max(m,n)) 

• Conjugate gradients may need n iterations for 
“perfect” convergence, but often get decent answer well 
before then 

• For non-symmetric matrices: biconjugate gradient 



Representing Sparse Systems 



Sparse Systems 

• Many applications require solution of 
large linear systems (n = thousands to millions 
or more) 
– Local constraints or interactions: most entries are 0 

– Wasteful to store all n2 entries 

– Difficult or impossible to use O(n3) algorithms 

• Goal: solve system with: 
– Storage proportional to # of nonzero elements 

– Running time << n3 



Sparse Matrices in General 

• Represent sparse matrices by noting which 
elements are nonzero 

• Critical for Av and ATv to be efficient: 
proportional to # of nonzero elements 
– Useful for both conjugate gradient and Sherman-

Morrison 



Compressed Sparse Row Format 

• Three arrays 
– Values: actual numbers in the matrix 

– Cols: column of corresponding entry in values 

– Rows: index of first entry in each row 

– Example: (zero-based!  C/C++/Java, not Matlab!) 
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Compressed Sparse Row Format 

 

 

• Multiplying Ax: 
 
for (i = 0; i < n; i++) { 
 out[i] = 0; 
 for (j = rows[i]; j < rows[i+1]; j++) 
  out[i] += values[j] * x[ cols[j] ]; 
} 





















3210

0000

5002

3230 values 3 2 3 2 5 1 2 3 
cols 1 2 3 0 3 1 2 3 
rows 0 3 5 5 8 



Summary of Methods for Linear Systems 

Method Benefits Drawbacks 

Forward/backwar
d substitution 

Fast (n2) Applies only to upper- or 
lower-triangular matrices 

Gaussian 
elimination 

Works for any [non-singular] matrix O(n3) 

LU 
decomposition 

Works for any matrix (singular 
matrices can still be factored); can re-
use L, U for different b values; once 
factored uses only forward/backward 
substitution 

O(n3) initial factorization 
(same process as Gauss) 

Cholesky O(n3) but with ½ storage and 
computation of Gauss 

Still O(n3); only for 
symmetric positive definite 

Band-diagonal 
elimination 

O(w2n) where w = band width Only for band diagonal 



Method Benefits Drawbacks 

Sherman-Morrison Update step is O(n2) Only for rank-1 changes; 
degrades with repeated iterations 
(then use Woodbury instead) 

Iterative refinement Can be applied following any 
solution method 

Requires 2x storage, extra 
precision for residual 

Jacobi More appropriate than 
elimination for large/sparse 
systems; can be parallelized 

Can diverge when not diagonally 
dominant; slow 

Gauss-Seidel More appropriate than 
elimination for large/sparse; a bit 
more powerful than Jacobi 

Can diverge when not 
diagonnally dominant or 
symmetric/positive-definite; 
slow; can’t parallelize 

SOR Potentially faster than Jacobi, 
Gauss-Seidel for large/sparse 
systems 

Requires parameter tuning 

Conjugate gradient Fast(er) for large/sparse systems; 
often doesn’t require all n 
iterations 

Requires symmetric positive 
definite (otherwise use bi-
conjugate) 
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