
Solving Linear Systems:
Iterative Methods and Sparse Systems

COS 323

Last time

• Linear system: Ax = b

• Singular and ill-conditioned systems

• Gaussian Elimination: A general purpose method
– Naïve Gauss (no pivoting)
– Gauss with partial and full pivoting
– Asymptotic analysis: O(n3)

• Triangular systems and LU decomposition

• Special matrices and algorithms:
– Symmetric positive definite: Cholesky decomposition
– Tridiagonal matrices

• Singularity detection and condition numbers

Today:
Methods for large and sparse systems

• Rank-one updating with Sherman-Morrison

• Iterative refinement

• Fixed-point and stationary methods
– Introduction

– Iterative refinement as a stationary method

– Gauss-Seidel and Jacobi methods

– Successive over-relaxation (SOR)

• Solving a system as an optimization problem

• Representing sparse systems

Problems with large systems

• Gaussian elimination, LU decomposition
(factoring step) take O(n3)

• Expensive for big systems!

• Can get by more easily with special matrices
– Cholesky decomposition: for symmetric positive

definite A; still O(n3) but halves storage and
operations

– Band-diagonal: O(n) storage and operations

• What if A is big? (And not diagonal?)

Special Example: Cyclic Tridiagonal

• Interesting extension: cyclic tridiagonal

• Could derive yet another special case algorithm,
but there’s a better way

bx

aaa

aaa

aaa

aaa

aaa

aaa

=





























666561

565554

454443

343332

232221

161211

Updating Inverse

• Suppose we have some fast way of finding A-1
for some matrix A

• Now A changes in a special way:
 A* = A + uvT

for some n×1 vectors u and v

• Goal: find a fast way of computing (A*)-1
– Eventually, a fast way of solving (A*) x = b

Analogue for Scalars









+

−=
+

+

α
β

α
β

αβα

βαα

1
111:

?1computetohow,1Knowing:

A

Q

Sherman-Morrison Formula

A* = A + uvT = A(I + A −1uvT)

A*()−1
= (I + A −1uvT)−1 A −1

To check, verify that (A*)-1A* = I, A*(A*)-1 = I

Sherman-Morrison Formula

x = A*()−1
b = A −1b −

A −1u vT A −1b
1+ vT A −1u

So, to solve A*()x = b,

solve Ay = b, Az = u, x = y −
z vT y

1+ vT z

Applying Sherman-Morrison

• Let’s consider
cyclic tridiagonal again:

• Take

bx

aaa

aaa

aaa

aaa

aaa

aaa

=





























666561

565554

454443

343332

232221

161211

A =

a11 −1 a12

a21 a22 a23

a32 a33 a34

a43 a44 a45

a54 a55 a56

a65 a66 − a61a16

























, u =

1

a61

























, v =

1

a16

























Applying Sherman-Morrison

• Solve Ay=b, Az=u using special fast algorithm

• Applying Sherman-Morrison takes
a couple of dot products

• Generalization for several corrections: Woodbury

() () 1T11T111*

T*

−−−−−−
+−=

+=

AVUAVIUAAA

UVAA

Summary: Sherman-Morrison

• Not just for band-diagonals: S.-M. good for
rank-one changes to a matrix whose inverse we
know (or can be computed easily)

• O(n2) (for matrix-vector computations) rather
than O(n3)

• Caution: Error can propogate in repeating S.-M.

• Woodbury formula works for higher-rank
changes

Iterative Methods

Direct vs. Iterative Methods

• So far, have looked at direct methods for
solving linear systems
– Predictable number of steps

– No answer until the very end

• Alternative: iterative methods
– Start with approximate answer

– Each iteration improves accuracy

– Stop once estimated error below tolerance

Benefits of Iterative Algorithms

• Some iterative algorithms designed for accuracy:
– Direct methods subject to roundoff error

– Iterate to reduce error to O(ε)

• Some algorithms produce answer faster
– Most important class: sparse matrix solvers

– Speed depends on # of nonzero elements,
not total # of elements

First Iterative Method:
Iterative Refinement

• Suppose you’ve solved (or think you’ve solved)
some system Ax=b

• Can check answer by computing residual:
 r = b – Axcomputed

• If r is small (compared to b), x is accurate

• What if it’s not?

Iterative Refinement

• Large residual caused by error in x:
 e = xcorrect – xcomputed

• If we knew the error, could try to improve x:
 xcorrect = xcomputed + e

• Solve for error:
 r = b – Axcomputed
 Axcomputed = A(xcorrect – e) = b – r
 Axcorrect – Ae = b – r
 Ae = r

Iterative Refinement

• So, compute residual, solve for e,
and apply correction to estimate of x

• If original system solved using LU,
this is relatively fast (relative to O(n3), that is):
– O(n2) matrix/vector multiplication +

O(n) vector subtraction to solve for r

– O(n2) forward/backsubstitution to solve for e

– O(n) vector addition to correct estimate of x

• Requires 2x storage, often requires extra precision for
representing residual

Questions?

Fixed-Point and Stationary Methods

Fixed points

• x* is a fixed point of f(x) if x* = f(x*)

Formulating root-finding as
fixed-point-finding

• Choose a g(x) such that g(x) has a fixed point at
x* when f(x*) = 0
– e.g. f(x) = x2 – 2x + 3 = 0

 g(x) = (x2 + 3) / 2
if x* = (x*2 + 3) / 2 then f(x*) = 0

– Or, f(x) = sin(x)
 g(x) = sin(x) + x
if x* = sin(x*) + x* then f(x*) = 0

Fixed-point iteration

Step 1. Choose some initial x0

Step 2. Iterate:

 For i > 0:
 x(i+1) = g(xi)

 Stop when x(i+1) – xi < threshold.

Example

• Compute pi using
 f(x) = sin(x)
 g(x) = sin(x) + x

Notes on fixed-point root-finding

• Sensitive to starting x0

• |g’(x)| < 1 is sufficient for convergence

• Converges linearly (when it converges)

Extending fixed-point iteration to systems of
multiple equations

General form:

Step 0. Formulate set of fixed-point equations

 x1 = g1 (x1), x2 = g2 (x2), … xn = gn (xn)

Step 1. Choose x1
0, x2

0, … xn
0

Step 2. Iterate:

 x1
(i+1) = g1(x1

i), x2
(i+1) = g2(x2

i)

Example:
Fixed point method for 2 equations

f1(x) = (x1)2 + x1x2 - 10

f2(x) = x2 + 3x1(x2)2 - 57

Formulate new equations:
g1(x1) = sqrt(10 – x1x2)

 g2(x2) = sqrt((57 – x2)/3x1)

Iteration steps:

x1
(i+1) = sqrt(10 – x1

ix2
i)

x2
(i+1) = sqrt((57 – x2

i)/3x1
i)

Stationary Iterative Methods for Linear
Systems

• Can we formulate g(x) such that x*=g(x*) when
Ax* - b = 0?

• Yes: let A = M – N (for any satisfying M, N)
 and let g(x) = Gx + c = M-1Nx + M-1b

• Check: if x* = g(x*) = M-1Nx* + M-1b then
Ax* = (M – N)(M-1Nx* + M-1b)
 = Nx* + b + N(M-1Nx* + M-1b)
 = Nx* + b – Nx*
 = b

So what?

• We have an update equation:
x(k+1) = M-1Nxk + M-1b

• Only requires inverse of M, not A

• (FYI: It’s “stationary” because G and c do not
change)

Iterative refinement is a stationary method!

• x(k+1) = xk + e
 = xk + A-1r for estimated A-1

• This is equivalent to choosing
 g(x) = Gx + c = M-1Nx + M-1b

 where G = (I – B-1 A) and c = B-1 b

 (if B-1 is our most recent estimate of A-1)

So what?

• We have an update equation:
x(k+1) = M-1Nxk + M-1b

• Only requires inverse of M, not A

• We can choose M to be nicely invertible (e.g.,
diagonal)

Jacobi Method

• Choose M to be the diagonal of A

• Choose N to be M – A = -(L + U)
– Note that A != LU here

• So, use update equation:
 x(k+1) = D-1 (b – (L + U)xk)

Jacobi method

• Alternate formulation: Recall we’ve got

• Store all xi
k

• In each iteration, set

xi
(k +1) =

bi − aij x j
(k)

j ≠ i
∑

aii

Gauss-Seidel

• Why make a complete pass through
components of x using only xi

k, ignoring the
xi

(k+1) we’ve already computed?

xi
(k +1) =

bi − aij x j
(k)

j ≠ i
∑

aii

xi
(k +1) =

bi − aij x j
(k)

j > i
∑ − aij x j

(k +1)

j< i
∑

aii

Jacobi:

G.S.:

Notes on Gauss-Seidel

• Gauss-Seidel is also a stationary method
A = M – N where M = D + L, N = -U

• Both G.S. and Jacobi may or may not converge
– Jacobi: Diagonal dominance is sufficient condition

– G.S.: Diagonal dominance or symmetric positive
definite

• Both can be very slow to converge

Successive Over-relaxation (SOR)

• Let x(k+1) = (1-w)x(k) + w xGS
(k+1)

• If w = 1 then update rule is Gauss-Seidel

• If w < 1: Under-relaxation
– Proceed more cautiously: e.g., to make a non-

convergent system converge

• If 1 < w < 2: Over-relaxation
– Proceed more boldly, e.g. to accelerate convergence

of an already-convergent system

• If w > 2: Divergence. 

Questions?

One more method:
Conjugate Gradients

• Transform problem to a function minimization!

 Solve Ax=b
 ⇒ Minimize f(x) = xTAx – 2bTx

• To motivate this, consider 1D:
 f(x) = ax2 – 2bx
 df/dx = 2ax – 2b = 0
 ax = b

Conjugate Gradient for Linear Systems

• Preferred method: conjugate gradients

• Recall: plain gradient descent has a problem…

Conjugate Gradient for Linear Systems

• … that’s solved by conjugate gradients

• Walk along direction

• Polak and Ribiere formula:

kkkk dgd β+−= ++ 11

kk

kk
k gg

ggg
k

T
1

T)(
1

−
= ++β

Conjugate Gradient is easily computable for
linear systems

• If A is symmetric positive definite:
– At any point, gradient is negative residual

– Easy to compute: just A multiplied by a vector

• For any search direction sk, can directly
compute minimum in that direction:

f (x) = xTA x − 2bT x
∇f (x) = 2 Ax − b() = −2r

xk +1 = xk + αk xk

αk = rk
T rk /sk

T Askwhere

so

Conjugate Gradient for Linear Systems

• Just a few matrix-vector multiplies
(plus some dot products, etc.) per iteration

• For m nonzero entries, each iteration O(max(m,n))

• Conjugate gradients may need n iterations for
“perfect” convergence, but often get decent answer well
before then

• For non-symmetric matrices: biconjugate gradient

Representing Sparse Systems

Sparse Systems

• Many applications require solution of
large linear systems (n = thousands to millions
or more)
– Local constraints or interactions: most entries are 0

– Wasteful to store all n2 entries

– Difficult or impossible to use O(n3) algorithms

• Goal: solve system with:
– Storage proportional to # of nonzero elements

– Running time << n3

Sparse Matrices in General

• Represent sparse matrices by noting which
elements are nonzero

• Critical for Av and ATv to be efficient:
proportional to # of nonzero elements
– Useful for both conjugate gradient and Sherman-

Morrison

Compressed Sparse Row Format

• Three arrays
– Values: actual numbers in the matrix

– Cols: column of corresponding entry in values

– Rows: index of first entry in each row

– Example: (zero-based! C/C++/Java, not Matlab!)





















3210

0000

5002

3230
values 3 2 3 2 5 1 2 3
cols 1 2 3 0 3 1 2 3
rows 0 3 5 5 8

Compressed Sparse Row Format

• Multiplying Ax:

for (i = 0; i < n; i++) {
 out[i] = 0;
 for (j = rows[i]; j < rows[i+1]; j++)
 out[i] += values[j] * x[cols[j]];
}





















3210

0000

5002

3230 values 3 2 3 2 5 1 2 3
cols 1 2 3 0 3 1 2 3
rows 0 3 5 5 8

Summary of Methods for Linear Systems

Method Benefits Drawbacks

Forward/backwar
d substitution

Fast (n2) Applies only to upper- or
lower-triangular matrices

Gaussian
elimination

Works for any [non-singular] matrix O(n3)

LU
decomposition

Works for any matrix (singular
matrices can still be factored); can re-
use L, U for different b values; once
factored uses only forward/backward
substitution

O(n3) initial factorization
(same process as Gauss)

Cholesky O(n3) but with ½ storage and
computation of Gauss

Still O(n3); only for
symmetric positive definite

Band-diagonal
elimination

O(w2n) where w = band width Only for band diagonal

Method Benefits Drawbacks

Sherman-Morrison Update step is O(n2) Only for rank-1 changes;
degrades with repeated iterations
(then use Woodbury instead)

Iterative refinement Can be applied following any
solution method

Requires 2x storage, extra
precision for residual

Jacobi More appropriate than
elimination for large/sparse
systems; can be parallelized

Can diverge when not diagonally
dominant; slow

Gauss-Seidel More appropriate than
elimination for large/sparse; a bit
more powerful than Jacobi

Can diverge when not
diagonnally dominant or
symmetric/positive-definite;
slow; can’t parallelize

SOR Potentially faster than Jacobi,
Gauss-Seidel for large/sparse
systems

Requires parameter tuning

Conjugate gradient Fast(er) for large/sparse systems;
often doesn’t require all n
iterations

Requires symmetric positive
definite (otherwise use bi-
conjugate)

	Solving Linear Systems:�Iterative Methods and Sparse Systems
	Last time
	Today: �Methods for large and sparse systems
	Problems with large systems
	Special Example: Cyclic Tridiagonal
	Updating Inverse
	Analogue for Scalars
	Sherman-Morrison Formula
	Sherman-Morrison Formula
	Applying Sherman-Morrison
	Applying Sherman-Morrison
	Summary: Sherman-Morrison
	Iterative Methods
	Direct vs. Iterative Methods
	Benefits of Iterative Algorithms
	First Iterative Method:�Iterative Refinement
	Iterative Refinement
	Iterative Refinement
	Questions?
	Fixed-Point and Stationary Methods
	Fixed points
	Formulating root-finding as �fixed-point-finding
	Fixed-point iteration
	Example
	Notes on fixed-point root-finding
	Extending fixed-point iteration to systems of multiple equations
	Example: �Fixed point method for 2 equations
	Stationary Iterative Methods for Linear Systems
	So what?
	Iterative refinement is a stationary method!
	So what?
	Jacobi Method
	Jacobi method
	Gauss-Seidel
	Notes on Gauss-Seidel
	Successive Over-relaxation (SOR)
	Questions?
	One more method: �Conjugate Gradients
	Conjugate Gradient for Linear Systems
	Conjugate Gradient for Linear Systems
	Conjugate Gradient is easily computable for linear systems
	Conjugate Gradient for Linear Systems
	Representing Sparse Systems
	Sparse Systems
	Sparse Matrices in General
	Compressed Sparse Row Format
	Compressed Sparse Row Format
	Summary of Methods for Linear Systems
	Slide Number 49

