Solving Linear Systems: Iterative Methods and Sparse Systems

COS 323

### Last time

- Linear system: Ax = b
- Singular and ill-conditioned systems
- Gaussian Elimination: A general purpose method
  - Naïve Gauss (no pivoting)
  - Gauss with partial and full pivoting
  - Asymptotic analysis: O(n<sup>3</sup>)
- Triangular systems and LU decomposition
- Special matrices and algorithms:
  - Symmetric positive definite: Cholesky decomposition
  - Tridiagonal matrices
- Singularity detection and condition numbers

# Today:

# Methods for large and sparse systems

- Rank-one updating with Sherman-Morrison
- Iterative refinement
- Fixed-point and stationary methods
  - Introduction
  - Iterative refinement as a stationary method
  - Gauss-Seidel and Jacobi methods
  - Successive over-relaxation (SOR)
- Solving a system as an optimization problem
- Representing sparse systems

# Problems with large systems

- Gaussian elimination, LU decomposition (factoring step) take O(n<sup>3</sup>)
- Expensive for big systems!
- Can get by more easily with special matrices
  - Cholesky decomposition: for symmetric positive definite A; still O(n<sup>3</sup>) but halves storage and operations
  - Band-diagonal: O(n) storage and operations
- What if A is big? (And not diagonal?)

### Special Example: Cyclic Tridiagonal

Interesting extension: cyclic tridiagonal

$$\begin{bmatrix} a_{11} & a_{12} & & & & a_{16} \\ a_{21} & a_{22} & a_{23} & & & & \\ & a_{32} & a_{33} & a_{34} & & & \\ & & a_{43} & a_{44} & a_{45} & & \\ & & & & a_{54} & a_{55} & a_{56} \\ & & & & & a_{65} & a_{66} \end{bmatrix} x = b$$

 Could derive yet another special case algorithm, but there's a better way

# Updating Inverse

- Suppose we have some fast way of finding A<sup>-1</sup> for some matrix A
- Now A changes in a special way: A<sup>\*</sup> = A + uv<sup>T</sup>

   for some n×1 vectors u and v
- Goal: find a fast way of computing (A\*)<sup>-1</sup>
   Eventually, a fast way of solving (A\*) x = b

# Analogue for Scalars

*Q*: Knowing 
$$\frac{1}{\alpha}$$
, how to compute  $\frac{1}{\alpha + \beta}$ ?

$$A: \quad \frac{1}{\alpha+\beta} = \frac{1}{\alpha} \left( 1 - \frac{\beta_{\alpha}}{1+\beta_{\alpha}} \right)$$

#### Sherman-Morrison Formula

$$\mathbf{A}^* = \mathbf{A} + uv^{\mathrm{T}} = \mathbf{A}(\mathbf{I} + \mathbf{A}^{-1}uv^{\mathrm{T}})$$
$$\left(\mathbf{A}^*\right)^{-1} = (\mathbf{I} + \mathbf{A}^{-1}uv^{\mathrm{T}})^{-1}\mathbf{A}^{-1}$$

To check, verify that  $(\mathbf{A}^*)^{-1}\mathbf{A}^* = \mathbf{I}, \mathbf{A}^*(\mathbf{A}^*)^{-1} = \mathbf{I}$ 

#### Sherman-Morrison Formula

$$x = (\mathbf{A}^*)^{-1}b = \mathbf{A}^{-1}b - \frac{\mathbf{A}^{-1}u \, \mathbf{v}^{\mathrm{T}} \, \mathbf{A}^{-1}b}{1 + \mathbf{v}^{\mathrm{T}} \, \mathbf{A}^{-1}u}$$
  
So, to solve  $(\mathbf{A}^*)x = b$ ,  
solve  $\mathbf{A}y = b$ ,  $\mathbf{A}z = u$ ,  $x = y - \frac{z \, \mathbf{v}^{\mathrm{T}} y}{1 + \mathbf{v}^{\mathrm{T}} z}$ 

### Applying Sherman-Morrison

• Let's consider cyclic tridiagonal again:

$$\begin{bmatrix} a_{11} & a_{12} & & & a_{16} \\ a_{21} & a_{22} & a_{23} & & & \\ & a_{32} & a_{33} & a_{34} & & \\ & & a_{43} & a_{44} & a_{45} & \\ & & & a_{54} & a_{55} & a_{56} \\ & & & & a_{65} & a_{66} \end{bmatrix} x = b$$

• Take 
$$\mathbf{A} = \begin{bmatrix} a_{11} - 1 & a_{12} & & & \\ a_{21} & a_{22} & a_{23} & & \\ & a_{32} & a_{33} & a_{34} & & \\ & & a_{43} & a_{44} & a_{45} & & \\ & & & a_{54} & a_{55} & a_{56} & \\ & & & & & a_{65} & a_{66} - a_{61}a_{16} \end{bmatrix}, \quad u = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

# Applying Sherman-Morrison

- Solve Ay=b, Az=u using special fast algorithm
- Applying Sherman-Morrison takes a couple of dot products
- Generalization for several corrections: Woodbury

$$\mathbf{A}^* = \mathbf{A} + \mathbf{U}\mathbf{V}^{\mathrm{T}}$$
$$\left(\mathbf{A}^*\right)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}\left(\mathbf{I} + \mathbf{V}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{U}\right)^{-1} \mathbf{V}^{\mathrm{T}}\mathbf{A}^{-1}$$

## Summary: Sherman-Morrison

- Not just for band-diagonals: S.-M. good for rank-one changes to a matrix whose inverse we know (or can be computed easily)
- O(n<sup>2</sup>) (for matrix-vector computations) rather than O(n<sup>3</sup>)
- Caution: Error can propogate in repeating S.-M.
- Woodbury formula works for higher-rank changes

### Iterative Methods

### Direct vs. Iterative Methods

- So far, have looked at *direct methods* for solving linear systems
  - Predictable number of steps
  - No answer until the very end
- Alternative: *iterative methods* 
  - Start with approximate answer
  - Each iteration improves accuracy
  - Stop once estimated error below tolerance

### Benefits of Iterative Algorithms

- Some iterative algorithms designed for accuracy:
  - Direct methods subject to roundoff error
  - Iterate to reduce error to  $O(\varepsilon)$
- Some algorithms produce answer faster
  - Most important class: *sparse matrix* solvers
  - Speed depends on # of nonzero elements, not total # of elements

First Iterative Method: Iterative Refinement

- Suppose you've solved (or think you've solved) some system Ax=b
- Can check answer by computing residual:  $r = b - Ax_{computed}$
- If r is small (compared to b), x is accurate
- What if it's not?

### Iterative Refinement

• Large residual caused by error in x:

$$e = x_{correct} - x_{computed}$$

• If we knew the error, could try to improve x:

$$x_{correct} = x_{computed} + e$$

• Solve for error:

$$\begin{aligned} r &= b - Ax_{computed} \\ Ax_{computed} &= A(x_{correct} - e) = b - r \\ Ax_{correct} - Ae &= b - r \\ Ae &= r \end{aligned}$$

### Iterative Refinement

- So, compute residual, solve for e, and apply correction to estimate of x
- If original system solved using LU, this is relatively fast (relative to O(n<sup>3</sup>), that is):
  - O(n<sup>2</sup>) matrix/vector multiplication +
     O(n) vector subtraction to solve for r
  - $O(n^2)$  forward/backsubstitution to solve for e
  - O(n) vector addition to correct estimate of x
- Requires 2x storage, often requires extra precision for representing residual

# Questions?

Fixed-Point and Stationary Methods

# Fixed points

•  $x^*$  is a fixed point of f(x) if  $x^* = f(x^*)$ 



Formulating root-finding as fixed-point-finding

• Choose a g(x) such that g(x) has a fixed point at  $x^*$  when  $f(x^*) = 0$  $- e.g. f(x) = x^2 - 2x + 3 = 0$  $g(x) = (x^2 + 3) / 2$ if  $x^* = (x^{*2} + 3) / 2$  then  $f(x^*) = 0$  $- \operatorname{Or}, f(x) = \sin(x)$  $g(x) = \sin(x) + x$ if  $x^* = sin(x^*) + x^*$  then  $f(x^*) = 0$ 

### Fixed-point iteration

Step 1. Choose some initial  $x^0$ Step 2. Iterate: For i > 0:  $x^{(i+1)} = g(x^i)$ Stop when  $x^{(i+1)} - x^i$  < threshold.

# Example

• Compute pi using f(x) = sin(x)g(x) = sin(x) + x

# Notes on fixed-point root-finding

- Sensitive to starting x<sup>0</sup>
- |g'(x)| < 1 is sufficient for convergence
- Converges linearly (when it converges)

Extending fixed-point iteration to systems of multiple equations

General form:

Step 0. Formulate set of fixed-point equations

$$x_1 = g_1(x_1), x_2 = g_2(x_2), \dots x_n = g_n(x_n)$$
  
Step 1. Choose  $x_1^0, x_2^0, \dots x_n^0$ 

Step 2. Iterate:

$$x_1^{(i+1)} = g_1(x_1^{i}), x_2^{(i+1)} = g_2(x_2^{i})$$

# Example: Fixed point method for 2 equations

$$f_1(x) = (x_1)^2 + x_1 x_2 - 10$$
  
$$f_2(x) = x_2 + 3x_1(x_2)^2 - 57$$

Formulate new equations:  $g_1(x_1) = sqrt(10 - x_1x_2)$  $g_2(x_2) = sqrt((57 - x_2)/3x_1)$ 

#### Iteration steps: $x_1^{(i+1)} = sqrt(10 - x_1^{i}x_2^{i})$ $x_2^{(i+1)} = sqrt((57 - x_2^{i})/3x_1^{i})$

# Stationary Iterative Methods for Linear Systems

- Can we formulate g(x) such that x\*=g(x\*) when
   Ax\* b = 0?
- Yes: let  $\mathbf{A} = \mathbf{M} \mathbf{N}$  (for any satisfying  $\mathbf{M}$ ,  $\mathbf{N}$ ) and let  $g(x) = \mathbf{G}x + c = \mathbf{M}^{-1}\mathbf{N}x + \mathbf{M}^{-1}\mathbf{b}$
- Check: if  $x^* = g(x^*) = M^{-1}Nx^* + M^{-1}b$  then  $Ax^* = (M - N)(M^{-1}Nx^* + M^{-1}b)$   $= Nx^* + b + N(M^{-1}Nx^* + M^{-1}b)$   $= Nx^* + b - Nx^*$ = b

### So what?

- We have an update equation:  $x^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}x^k + \mathbf{M}^{-1}b$
- Only requires inverse of M, not A
- (FYI: It's "stationary" because **G** and c do not change)

#### Iterative refinement is a stationary method!

• 
$$\mathbf{x}^{(k+1)} = \mathbf{x}^k + \mathbf{e}$$

- $= x^{k} + A^{-1}r$  for estimated A<sup>-1</sup>
- This is equivalent to choosing  $g(x) = \mathbf{G}x + c = \mathbf{M}^{-1}\mathbf{N}x + \mathbf{M}^{-1}b$ where  $\mathbf{G} = (\mathbf{I} - \mathbf{B}^{-1}\mathbf{A})$  and  $c = \mathbf{B}^{-1}b$

(if **B**<sup>-1</sup> is our most recent estimate of **A**<sup>-1</sup>)

### So what?

- We have an update equation:  $x^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}x^k + \mathbf{M}^{-1}b$
- Only requires inverse of M, not A
- We can choose M to be nicely invertible (e.g., diagonal)

# Jacobi Method

- Choose M to be the diagonal of A
- Choose N to be M A = -(L + U)
  - Note that A != LU here
- So, use update equation:  $x^{(k+1)} = D^{-1} (b - (L + U)x^k)$

### Jacobi method

• Alternate formulation: Recall we've got

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
  

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
  

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$
  

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- Store all x<sub>i</sub><sup>k</sup>
- In each iteration, set

$$x_{i}^{(k+1)} = \frac{b_{i} - \sum_{j \neq i} a_{ij} x_{j}^{(k)}}{a_{ii}}$$

### Gauss-Seidel

 Why make a complete pass through components of x using only x<sup>k</sup><sub>i</sub>, ignoring the x<sup>(k+1)</sup> we've already computed?

Jacobi: 
$$x_{i}^{(k+1)} = \frac{b_{i} - \sum_{j \neq i} a_{ij} x_{j}^{(k)}}{a_{ii}}$$

G.S.: 
$$x_i^{(k+1)} = \frac{b_i - \sum_{j>i} a_{ij} x_j^{(k)} - \sum_{j$$

### Notes on Gauss-Seidel

- Gauss-Seidel is also a stationary method A = M N where M = D + L, N = -U
- Both G.S. and Jacobi may or may not converge
  - Jacobi: Diagonal dominance is sufficient condition
  - G.S.: Diagonal dominance or symmetric positive definite
- Both can be **very slow to converge**

### Successive Over-relaxation (SOR)

- Let  $x^{(k+1)} = (1-w)x^{(k)} + w x_{GS}^{(k+1)}$
- If w = 1 then update rule is Gauss-Seidel
- If w < 1: Under-relaxation
  - Proceed more cautiously: e.g., to make a nonconvergent system converge
- If 1 < w < 2: Over-relaxation
  - Proceed more boldly, e.g. to accelerate convergence of an already-convergent system
- If w > 2: Divergence.  $\otimes$

# Questions?

One more method: Conjugate Gradients

• Transform problem to a function minimization!

Solve Ax = b $\Rightarrow$  Minimize  $f(x) = x^TAx - 2b^Tx$ 

• To motivate this, consider 1D:

$$f(x) = ax^2 - 2bx$$
$$\frac{df}{dx} = 2ax - 2b = 0$$
$$ax = b$$

# Conjugate Gradient for Linear Systems

- Preferred method: conjugate gradients
- Recall: plain gradient descent has a problem...



### Conjugate Gradient for Linear Systems

• ... that's solved by conjugate gradients

• Walk along direction

 $d_{k+1} = -g_{k+1} + \beta_k d_k$ 

• Polak and Ribiere formula:

$$\boldsymbol{\beta}_{k} = \frac{\boldsymbol{g}_{k+1}^{\mathrm{T}}(\boldsymbol{g}_{k+1} - \boldsymbol{g}_{k})}{\boldsymbol{g}_{k}^{\mathrm{T}}\boldsymbol{g}_{k}}$$



Conjugate Gradient is easily computable for linear systems

- If A is symmetric positive definite:
  - At any point, gradient is negative residual

$$f(x) = x^{\mathrm{T}} \mathbf{A} x - 2b^{\mathrm{T}} x$$
  
so  $\nabla f(x) = 2(\mathbf{A}x - b) = -2r$ 

- Easy to compute: just A multiplied by a vector

For any search direction s<sub>k</sub>, can directly compute minimum in that direction:

$$x_{k+1} = x_k + \alpha_k x_k$$
  
where  $\alpha_k = r_k^T r_k / s_k^T A s_k$ 

### Conjugate Gradient for Linear Systems

- Just a few matrix-vector multiplies (plus some dot products, etc.) per iteration
- For *m* nonzero entries, each iteration O(max(*m*,*n*))
- Conjugate gradients may need n iterations for "perfect" convergence, but often get decent answer well before then
- For non-symmetric matrices: biconjugate gradient

# Representing Sparse Systems



- Many applications require solution of large linear systems (n = thousands to millions or more)
  - Local constraints or interactions: most entries are 0
  - Wasteful to store all n<sup>2</sup> entries
  - Difficult or impossible to use  $O(n^3)$  algorithms
- Goal: solve system with:
  - Storage proportional to # of *nonzero* elements
  - Running time  $<< n^3$

# Sparse Matrices in General

- Represent sparse matrices by noting which elements are nonzero
- Critical for Av and A<sup>T</sup>v to be efficient: proportional to # of nonzero elements
  - Useful for both conjugate gradient and Sherman-Morrison

# Compressed Sparse Row Format

- Three arrays
  - Values: actual numbers in the matrix
  - Cols: column of corresponding entry in values
  - Rows: index of first entry in each row
  - Example: (zero-based! C/C++/Java, not Matlab!)

$$\begin{bmatrix} 0 & 3 & 2 & 3 \\ 2 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

values3 2 3 2 5 1 2 3cols1 2 3 0 3 1 2 3rows0 3 5 5 8

### Compressed Sparse Row Format

| 0 | 3 | 2 | 3 | values 3.23 | 2 2 5 1 2 3                    |
|---|---|---|---|-------------|--------------------------------|
| 2 | 0 | 0 | 5 |             | $3 \times 3 \times 2 \times 3$ |
| 0 | 0 | 0 | 0 | COIS I Z .  | 303123                         |
| 0 | 1 | 2 | 3 | rows 03     | 558                            |

• Multiplying Ax:

# Summary of Methods for Linear Systems

| Method                            | Benefits                                                                                                                                                                   | Drawbacks                                                           |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Forward/backwar<br>d substitution | Fast (n <sup>2</sup> )                                                                                                                                                     | Applies only to upper- or lower-triangular matrices                 |
| Gaussian<br>elimination           | Works for any [non-singular] matrix                                                                                                                                        | O(n <sup>3</sup> )                                                  |
| LU<br>decomposition               | Works for any matrix (singular<br>matrices can still be factored); can re-<br>use L, U for different b values; once<br>factored uses only forward/backward<br>substitution | O(n <sup>3</sup> ) initial factorization<br>(same process as Gauss) |
| Cholesky                          | O(n <sup>3</sup> ) but with ½ storage and computation of Gauss                                                                                                             | Still O(n <sup>3</sup> ); only for symmetric positive definite      |
| Band-diagonal elimination         | $O(w^2n)$ where $w = band$ width                                                                                                                                           | Only for band diagonal                                              |

| Method               | Benefits                                                                                  | Drawbacks                                                                                                  |
|----------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Sherman-Morrison     | Update step is O(n <sup>2</sup> )                                                         | Only for rank-1 changes;<br>degrades with repeated iterations<br>(then use Woodbury instead)               |
| Iterative refinement | Can be applied following any solution method                                              | Requires 2x storage, extra precision for residual                                                          |
| Jacobi               | More appropriate than<br>elimination for large/sparse<br>systems; can be parallelized     | Can diverge when not diagonally dominant; slow                                                             |
| Gauss-Seidel         | More appropriate than<br>elimination for large/sparse; a bit<br>more powerful than Jacobi | Can diverge when not<br>diagonnally dominant or<br>symmetric/positive-definite;<br>slow; can't parallelize |
| SOR                  | Potentially faster than Jacobi,<br>Gauss-Seidel for large/sparse<br>systems               | Requires parameter tuning                                                                                  |
| Conjugate gradient   | Fast(er) for large/sparse systems;<br>often doesn't require all <i>n</i><br>iterations    | Requires symmetric positive<br>definite (otherwise use bi-<br>conjugate)                                   |