
Linear Systems

COS 323

Linear Systems









3333232131

2323222121

1313212111

bxaxaxa
bxaxaxa
bxaxaxa

=+++
=+++
=+++





















=

















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

Linear Systems

• Solve for x given Ax=b, where A is an n×n
matrix and b is an n×1 column vector

• Can also talk about non-square systems where A
is m×n, b is m×1, and x is n×1
– Overdetermined if m>n:

“more equations than unknowns”

 Can look for best solution using least squares

– Underdetermined if n>m:
“more unknowns than equations”

Graphical interpretation

x1 = 4, 22 = 3

Singular Systems

• A is singular if some row is a linear combination
of other rows

• Singular systems can be underdetermined:

or inconsistent:

1064
532

21

21

=+
=+

xx
xx

1164
532

21

21

=+
=+

xx
xx

Graphical Interpretation

Singular with infinite solutions

Singular with no solution

Near-Singular or Ill-Conditioned

Why not just invert A?

• x=A-1b
– BUT: Inefficient

– Prone to roundoff error

• In fact, compute inverse using linear solver

Solve by hand…

 3x1 + 2x2 = 18

 -x1 + 2x2 = 2

 0x1 + 8x2 = 24 → x2 = 3

-x1 + 2 * 3 = 2 → x1 = 4

Gaussian Elimination

• Fundamental operations:
1. Replace one equation with linear combination

of other equations
2. Interchange two equations
3. Re-label two variables

• Combine to reduce to trivial system (identity)
– Alternative: triangular system + back-substitution

• Simplest variant only uses #1 operations,
but get better stability by adding #2 (partial
pivoting) or #2 & #3 (full pivoting)

“Naïve” Gaussian Elimination

• Solve:

• Only care about numbers – form “tableau” or
“augmented matrix”:

1354
732

21

21

=+
=+

xx
xx













13

7

54

32

“Naïve” Gaussian Elimination

• Given:

• 1) Elimination: reduce this to system of form

• 2) Back-substitution: Solve for x2, then “plug in”
to solve for x1













13

7

54

32

? ?
0 ?

?
?











“Naïve” Gaussian Elimination:
Forward elimination stage

• 1. Define f = a21/a11 (here, f = 2)

• 2. Replace 2nd row r2 with r2 – (f * r1)

 Here, replace r2 with r2 – 2 * r1













13

7

54

32

2 3
0 −1

7
−1











a11 a12

a21 a22

b1

b2











a11 a12

0 a'22

b1

b'2











=

=

Forward elimination pseudocode

For k=1 to n-1 { //Loop over all rows

 For i=(k+1) to n { //Loop over all rows beneath kth

 factorik → aik / akk

 For j = k to n { //Loop over elements in the row

 aij ←aij – factorik * akj //Update element

 }

 }

}

Outcome of forward elimination

a11x1 + a12x2 + a13x3 + K + a1n xn = b1

′ a 22x2 + ′ a 23x3 + K + ′ a 2n xn = ′ b 2
′ ′ a 33x3 + K + ′ ′ a 3n xn = ′ ′ b 3

. .
. .

. .
ann

(n −1)xn = bn
(n −1)

Back-substitution Pseudocode

xn = bn / ann

for i = (n-1) to 1 descending {

 sum ← bi

 for j = (i+1) to n {

 sum ← sum – aij * xj

 }

 xi ← sum / aii

}

Questions?

What could go wrong?

For k=1 to n-1 { //Loop over all rows

 For i=(k+1) to n { //Loop over all rows beneath kth

 factorik ← aik / akk

 For j = k to n { //Loop over elements in the row

 aij ← aij – factor * akj //Update element
 }

 }

}

What could go wrong?

xn = bn / ann

for i = (n-1) to 1 descending {

 sum ← bi

 for j = (i+1) to n {

 sum ← sum – aij * xj

 }

 xi ← sum / aii

}

Small pivot element example

 0.0003x1 + 3.0000x2 = 2.0001

 1.0000x1 + 1.0000x2 = 1.0000

 After pivot, equation 2 becomes

 -9999x2 = -6666

Solve for x2 = 2/3

Solve for x1 = (2.0001 – 3 (2/3)) / .0003

  x1 = -3.33 or 0.0000 or 0.330000

(depending on # digits used to represent 2/3)

Partial Pivoting

Swap rows to pivot on largest element possible
(i.e., put large numbers in the diagonal):
 0.0003x1 + 3.0000x2 = 2.0001

 1.0000x1 + 1.0000x2 = 1.0000

becomes

 1.0000x1 + 1.0000x2 = 1.0000

 0.0003x1 + 3.0000x2 = 2.0001

Partial pivot applied

 1.0000x1 + 1.0000x2 = 1.0000

 0.0003x1 + 3.0000x2 = 2.0001

Factor = .0003/1.0000, so Equation 2 becomes

 2.9997 x2 = -1.9998

Solve for x2 = 2/3

Solve for x1 = (1.0000 – 1 * (2/3)) / 1.0

  x1 = 0.333 or 0.3333 or 0.333333

(depending on # digits used to represent 2/3)

Full Pivoting

• Swap largest element onto diagonal by
swapping rows and columns

• More stable, but only slightly

• Critical: when swapping columns, must
remember to swap results!

Questions on Gaussian Elimination?

Complexity of Gaussian Elimination

• Forward elimination:
2/3 * n3 + O(n2)

(triple for-loops yield n3)

• Back substitution:
 n2 + O(n)

Big-O Notation

• Informally, O(n3) means that the dominant term
for large n is cubic

• More precisely, there exist a c and n0 such that

 running time ≤ c n3

if
 n > n0

• This type of asymptotic analysis is often used
to characterize different algorithms

LU Decomposition

Triangular Systems are nice!

• Lower-triangular:



































4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

Triangular Systems

• Solve by forward substitution



































4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

11

1
1 a

bx =

Triangular Systems

• Solve by forward substitution



































4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

22

1212
2 a

xabx −
=

Triangular Systems

• Solve by forward substitution



































4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

33

2321313
3 a

xaxabx −−
=

Triangular Systems

• If A is upper triangular, solve by backsubstitution

























5

4

3

2

1

55

4544

353433

25242322

1514131211

0000

000

00

0

b

b

b

b

b

a

aa

aaa

aaaa

aaaaa

55

5
5 a

bx =

Triangular Systems

• If A is upper triangular, solve by backsubstitution

























5

4

3

2

1

55

4544

353433

25242322

1514131211

0000

000

00

0

b

b

b

b

b

a

aa

aaa

aaaa

aaaaa

44

5454
4 a

xabx −
=

Triangular Systems

• Both of these special cases can be solved in
O(n2) time

• This motivates a factorization approach to
solving arbitrary systems:
– Find a way of writing A as LU, where L and U are

both triangular

– Ax=b ⇒ LUx=b ⇒ Ld=b ⇒ Ux=d

– Time for factoring matrix dominates computation

Solving Ax = b
with LU Decomposition of A

A x = b
L U

L d= b

d
Ux = d

x

A = LU

• More unknowns than equations!

• Let all lii=1 (Doolittle’s method)
or let all uii=1 (Crout’s method)

































⇒
















33

2322

131211

333231

2221

11

333231

232221

131211

00

00

00

u

uu

uuu

lll

ll

l

aaa

aaa

aaa

Doolittle Factorization for LU
Decomposition

• U is result of forward elimination step of Gauss

• L elements are the factors computed in forward
elimination!
– e.g. l21 = f21 = a21 / a11 and l32 = f32 = a’32 / a’22
































⇒

















33

2322

131211

3231

21

333231

232221

131211

00
0

1
01
001

u
uu
uuu

ll
l

aaa
aaa
aaa

Doolittle Factorization

• For i = 1..n

– For j = 1..i

– For j = i+1..n
































⇒

















33

2322

131211

3231

21

333231

232221

131211

00
0

1
01
001

u
uu
uuu

ll
l

aaa
aaa
aaa

∑
−

=

−=
1

1

j

k
kijkjiji ulau

ii

i

k
kijkji

ji u

ula
l

∑
−

=

−
=

1

1

Doolittle Factorization

• Interesting note: # of outputs = # of inputs,
algorithm only refers to elements of A, not b

• Can do this in-place!
– Algorithm replaces A with matrix

of l and u values, 1s are implied

– Resulting matrix must be interpreted in a special way:
not a regular matrix

– Can rewrite forward/backsubstitution routines to use
this “packed” l-u matrix

















333231

232221

131211

ull

uul

uuu

LU Decomposition

• Running time is 2/3n3
– Independent of RHS, each of which requires O(n2)

back/forward substitution

– This is the preferred general method for
solving linear equations

• Pivoting very important
– Partial pivoting is sufficient, and widely implemented

– LU with pivoting can succeed even if matrix is singular (!)
(but back/forward substitution fails…)

Matrix Inversion using LU

• LU depend only on A, not on b

• Re-use L & U for multiple values of b
– i.e., repeat back-substitution

• How to compute A-1?
AA-1 = I (n×n identity matrix), e.g.

→ Use LU decomposition with

















100
010
001
















=
















=
















=

1
0
0

,
0
1
0

,
0
0
1

321 bbb

Questions on LU Decomposition?

Working with Special Matrices

Tridiagonal Systems

• Common special case:

• Only main diagonal + 1 above and 1 below



































4

3

2

1

4443

343332

232221

1211

00

0

0

00

b

b

b

b

aa

aaa

aaa

aa

Solving Tridiagonal Systems

• When solving using Gaussian elimination:
– Constant # of multiplies/adds in each row

– Each row only affects 2 others



































4

3

2

1

4443

343332

232221

1211

00

0

0

00

b

b

b

b

aa

aaa

aaa

aa

Running Time

• 2n loops, 4 multiply/adds per loop
(assuming correct bookkeeping)

• This running time has a fundamentally different
dependence on n: linear instead of cubic
– Can say that tridiagonal algorithm is O(n) while

Gauss is O(n3)

• In general, a banded system of bandwith w
requires O(wn) storage and O(w2n)
computations.

Symmetric matrices:
Cholesky Decomposition

• For symmetric matrices, choose U=LT

 (A = LLT)

• Perform decomposition

• Ax=b ⇒ LLTx=b ⇒ Ld=b ⇒ LTx=d

































⇒
















33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

22

312123
322332223121

2
21222222

2
22

2
21

11

13
31133111

11

12
21122111

111111
2

11

l
llalallll

lalall

l
alall

l
alall

alal

−
=⇒=+

−=⇒=+

=⇒=

=⇒=

=⇒=

































⇒
















33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

ii

i

k
jkikij

ji

i

k
ikiiii

l

lla
l

lal

∑

∑
−

=

−

=

−
=

−=

1

1

1

1

2

































⇒
















33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

• This fails if it requires taking square root of a
negative number

• Need another condition on A: positive definite

 i.e., For any v, vT A v > 0

 (Equivalently, all positive eigenvalues)

Cholesky Decomposition

• Running time turns out to be 1/6n3

multiplications + 1/6n3 additions
– Still cubic, but lower constant

– Half as much computation & storage as LU

• Result: this is preferred method for solving
symmetric positive definite systems

Running time revisited

Running Time – Is O(n3) the Limit?

• How fast is matrix multiplication?

• 8 multiples, 4 adds, right?
(In general n3 multiplies and n2(n-1) adds…)

2222122122

2122112121

2212121112

2112111111

2221

1211

2221

1211

2221

1211

babac
babac
babac
babac

bb
bb

aa
aa

cc
cc

+=
+=
+=
+=

















=









Running Time – Is O(n3) the Limit?

• Strassen’s method [1969]

632122

4221

5312

754111

222122127

121111216

2212115

1121224

2211113

1122212

221122111

))((
))((

)(
)(
)(

)(
))((

MMMMc
MMc
MMc

MMMMc
bbaaM
bbaaM

baaM
bbaM
bbaM

baaM
bbaaM

++−=
+=
+=

+−+=
+−=
+−=

+=
−=
−=

+=
++=

















=









2221

1211

2221

1211

2221

1211

bb
bb

aa
aa

cc
cc

Volker Strassen

Running Time – Is O(n3) the Limit?

• Strassen’s method [1969]

• Uses only 7 multiplies
(and a whole bunch of adds)

• Can be applied recursively!

632122

4221

5312

754111

222122127

121111216

2212115

1121224

2211113

1122212

221122111

))((
))((

)(
)(
)(

)(
))((

MMMMc
MMc
MMc

MMMMc
bbaaM
bbaaM

baaM
bbaM
bbaM

baaM
bbaaM

++−=
+=
+=

+−+=
+−=
+−=

+=
−=
−=

+=
++=

















=









2221

1211

2221

1211

2221

1211

bb
bb

aa
aa

cc
cc

Running Time – Is O(n3) the Limit?

• Recursive application for 4 half-size submatrices
needs 7 half-size matrix multiplies

• Asymptotic running time is
– Only worth it for large n, because of big

constant factors (all those additions…)

– Still, practically useful for n > hundreds or thousands

• Current state of the art: Coppersmith-Winograd
algorithm achieves
– Not used in practice

)()(8.27log2 nOnO ≈

)(...376.2nO

Running Time – Is O(n3) the Limit?

• Similar sub-cubic algorithms for inverse,
determinant, LU, etc.
– Most “cubic” linear-algebra problems aren’t!

• Major open question: what is the limit?
– Hypothesis: O(n2) or O(n2 log n)

Singularity and Condition Number

A near-singular system

Detecting singularity and near-singularity

• Graph it! (in 2 or 3 dimensions)

• Does A A-1 = I (identity) ?

• Does (A-1) -1 = A?

• Does Ax = b?

• Does (A-1) c1 = (A-1) c2 for compilers c1, c2?

• Are any of LU diagonals (with pivoting)
near-zero?

A near-singular system

Condition number

• Cond(A) is function of A

• Cond(A) ≥ 1, bigger is bad

• Measures how change in input is propogated to
change in output

• E.g., if cond(A) = 451 then can lose log(451)=
2.65 digits of accuracy in x, compared to
precision of A

|| ∆x ||
|| x ||

≤ cond(A)
|| ∆A ||
|| A ||

Computing condition number

• cond(A) = ||A|| ||A-1||

• where ||M|| is a matrix norm

• ||M||inf is often easiest to compute

• Different norms give different values, but similar
order of magnitude

M 1 =
1≤ j ≤n

max aij
i=1

n

∑ , M ∞ =
1≤i≤n

max aij
j =1

n

∑

M 2 = λmax()1/ 2 (using largest eigenvalue of ATA)

Useful Matlab functions

• \ : matrix division
– e.g. x = A\b

• cond: matrix condition
number

• norm: matrix or vector
norm

• chol : Cholesky
factorization

• lu : LU decomposition

• inv: inverse (don’t use

unless you really need the
inverse!)

• rank: # of linearly
independent rows or
columns

• det: determinant

• trace: sum of diagonal
elements

• null: null space

Other resources

• Heath interactive demos:
– http://www.cse.illinois.edu/iem/linear_equations/gaus

sian_elimination/

– http://www.cse.illinois.edu/iem/linear_equations/con
ditioning/

• http://www.math.ucsd.edu/~math20f/Spring/La
b2/Lab2.shtml
– Good reading on how linear systems can be used in

web recommendation (Page Rank) and economics
(Leontief Models)

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/
http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/
http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/
http://www.cse.illinois.edu/iem/linear_equations/conditioning/
http://www.cse.illinois.edu/iem/linear_equations/conditioning/
http://www.math.ucsd.edu/~math20f/Spring/Lab2/Lab2.shtml
http://www.math.ucsd.edu/~math20f/Spring/Lab2/Lab2.shtml

	Linear Systems
	Linear Systems
	Linear Systems
	Graphical interpretation
	Singular Systems
	Graphical Interpretation
	Near-Singular or Ill-Conditioned
	Why not just invert A?
	Solve by hand…
	Gaussian Elimination
	“Naïve” Gaussian Elimination
	“Naïve” Gaussian Elimination
	“Naïve” Gaussian Elimination: �Forward elimination stage
	Forward elimination pseudocode
	Outcome of forward elimination
	Back-substitution Pseudocode
	Questions?
	What could go wrong?
	What could go wrong?
	Small pivot element example
	Partial Pivoting
	Partial pivot applied
	Full Pivoting
	Questions on Gaussian Elimination?
	Complexity of Gaussian Elimination
	Big-O Notation
	LU Decomposition
	Triangular Systems are nice!
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Solving Ax = b �with LU Decomposition of A
	A = LU
	Doolittle Factorization for LU Decomposition
	Doolittle Factorization
	Doolittle Factorization
	LU Decomposition
	Matrix Inversion using LU
	Questions on LU Decomposition?
	Working with Special Matrices
	Tridiagonal Systems
	Solving Tridiagonal Systems
	Running Time
	Symmetric matrices: �Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Running time revisited
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Singularity and Condition Number
	A near-singular system
	Detecting singularity and near-singularity
	A near-singular system
	Condition number
	Computing condition number
	Useful Matlab functions
	Other resources

