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Linear Systems 
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Linear Systems 

• Solve for x given Ax=b, where A is an n×n 
matrix and b is an n×1 column vector 

• Can also talk about non-square systems where A 
is m×n, b is m×1, and x is n×1 
– Overdetermined if m>n: 

“more equations than unknowns” 

 Can look for best solution using least squares 

– Underdetermined if n>m: 
“more unknowns than equations” 
 



Graphical interpretation 

x1 = 4, 22 = 3 



Singular Systems 

• A is singular if some row is a linear combination 
of other rows 

• Singular systems can be underdetermined: 
 
 
or inconsistent: 
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Graphical Interpretation 

Singular with infinite solutions 

Singular with no solution 



Near-Singular or Ill-Conditioned 



Why not just invert A? 

• x=A-1b 
– BUT: Inefficient 

– Prone to roundoff error 

• In fact, compute inverse using linear solver 



Solve by hand… 

 3x1 + 2x2 = 18 

  -x1  + 2x2 = 2 

 0x1 + 8x2 = 24   →   x2 = 3 

 

-x1 + 2 * 3 = 2    →   x1 = 4 

 



Gaussian Elimination 

• Fundamental operations: 
1. Replace one equation with linear combination 

of other equations  
2. Interchange two equations 
3. Re-label two variables 

• Combine to reduce to trivial system (identity) 
– Alternative: triangular system + back-substitution 

• Simplest variant only uses #1 operations, 
but get better stability by adding #2 (partial 
pivoting) or #2 & #3 (full pivoting) 



“Naïve” Gaussian Elimination 

• Solve: 

 

 

• Only care about numbers – form “tableau” or 
“augmented matrix”: 
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“Naïve” Gaussian Elimination 

• Given: 

 

 

• 1) Elimination: reduce this to system of form 
 
 

 

• 2) Back-substitution: Solve for x2, then “plug in” 
to solve for x1 
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“Naïve” Gaussian Elimination:  
Forward elimination stage 

 

 

• 1. Define f = a21/a11  (here, f = 2) 

• 2. Replace 2nd row r2 with r2 – (f * r1) 

 Here, replace r2 with r2 – 2 * r1 
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Forward elimination pseudocode 

For k=1 to n-1 {  //Loop over all rows 

 For i=(k+1) to n { //Loop over all rows beneath kth 

  factorik → aik / akk  

  For j = k to n { //Loop over elements in the row 

   aij ←aij – factorik * akj       //Update element  

  } 

 } 

} 

 
 



Outcome of forward elimination 

 

a11x1 + a12x2 + a13x3 + K + a1n xn = b1

′ a 22x2 + ′ a 23x3 + K + ′ a 2n xn = ′ b 2
′ ′ a 33x3 + K + ′ ′ a 3n xn = ′ ′ b 3

. .
. .

. .
ann

(n −1)xn = bn
(n −1)



Back-substitution Pseudocode 

xn = bn / ann 

for i = (n-1) to 1 descending { 

 sum ← bi 

 for  j = (i+1) to n { 

  sum ← sum – aij * xj   

 } 

 xi ← sum / aii 

} 



Questions? 



What could go wrong? 

For k=1 to n-1 {  //Loop over all rows 

 For i=(k+1) to n { //Loop over all rows beneath kth 

  factorik ← aik / akk  

  For j = k to n { //Loop over elements in the row 

   aij ← aij – factor * akj       //Update element  
 } 

 } 

} 

 
 



What could go wrong? 

xn = bn / ann 

for i = (n-1) to 1 descending { 

 sum ← bi 

 for  j = (i+1) to n { 

  sum ← sum – aij * xj   

 } 

 xi ← sum / aii 

} 



Small pivot element example 

   0.0003x1 + 3.0000x2 = 2.0001 

   1.0000x1 + 1.0000x2 = 1.0000 

 After pivot, equation 2 becomes 

   -9999x2 = -6666  

Solve for x2 = 2/3 

Solve for x1 = (2.0001 – 3 (2/3)) / .0003 

   x1 = -3.33 or 0.0000 or 0.330000 

(depending on # digits used to represent 2/3) 



Partial Pivoting 

Swap rows to pivot on largest element possible 
(i.e., put large numbers in the diagonal): 
  0.0003x1 + 3.0000x2 = 2.0001 

   1.0000x1 + 1.0000x2 = 1.0000 

becomes 

   1.0000x1 + 1.0000x2 = 1.0000 

   0.0003x1 + 3.0000x2 = 2.0001 

  

 



Partial pivot applied 

   1.0000x1 + 1.0000x2 = 1.0000 

   0.0003x1 + 3.0000x2 = 2.0001 

Factor = .0003/1.0000, so Equation 2 becomes 

    2.9997 x2 = -1.9998 

Solve for x2 = 2/3 

Solve for x1 = (1.0000 – 1 * (2/3)) / 1.0 

   x1 = 0.333 or 0.3333 or 0.333333 

(depending on # digits used to represent 2/3) 



Full Pivoting 

• Swap largest element onto diagonal by 
swapping rows and columns 

• More stable, but only slightly 

 

 

• Critical: when swapping columns, must 
remember to swap results! 



Questions on Gaussian Elimination? 



Complexity of Gaussian Elimination 

• Forward elimination: 
2/3 * n3 + O(n2) 

(triple for-loops yield n3) 

• Back substitution: 
 n2 + O(n) 



Big-O Notation 

• Informally, O(n3) means that the dominant term 
for large n is cubic 

• More precisely, there exist a c and n0 such that 
    
   running time ≤ c n3 

if  
         n > n0 

• This type of asymptotic analysis is often used 
to characterize different algorithms 



LU Decomposition 



Triangular Systems are nice! 

• Lower-triangular: 
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Triangular Systems 

• Solve by forward substitution 
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Triangular Systems 

• Solve by forward substitution 
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Triangular Systems 

• Solve by forward substitution 
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Triangular Systems 

• If A is upper triangular, solve by backsubstitution 
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Triangular Systems 

• If A is upper triangular, solve by backsubstitution 
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Triangular Systems 

• Both of these special cases can be solved in 
O(n2) time 

• This motivates a factorization approach to 
solving arbitrary systems: 
– Find a way of writing A as LU, where L and U are 

both triangular 

– Ax=b    ⇒    LUx=b    ⇒    Ld=b    ⇒    Ux=d 

– Time for factoring matrix dominates computation 



Solving Ax = b  
with LU Decomposition of A 

A x = b 
L U 

L d= b 

d 
Ux = d 

x 



A = LU 

 

 

 

 

• More unknowns than equations! 

• Let all lii=1 (Doolittle’s method) 
or let all uii=1  (Crout’s method) 
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Doolittle Factorization for LU 
Decomposition 

• U is result of forward elimination step of Gauss 

• L elements are the factors computed in forward 
elimination! 
– e.g.  l21 = f21 = a21 / a11 and l32 = f32 = a’32 / a’22 
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Doolittle Factorization 

 

 
• For i = 1..n 

– For j = 1..i 

 
– For j = i+1..n 
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Doolittle Factorization 

• Interesting note: # of outputs = # of inputs, 
algorithm only refers to elements of A, not b 

• Can do this in-place! 
– Algorithm replaces A with matrix 

of l and u values, 1s are implied 

– Resulting matrix must be interpreted in a special way: 
not a regular matrix 

– Can rewrite forward/backsubstitution routines to use 
this “packed” l-u matrix 
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LU Decomposition 

• Running time is 2/3n3 
– Independent of RHS, each of which requires O(n2) 

back/forward substitution 

– This is the preferred general method for 
solving linear equations 

• Pivoting very important 
– Partial pivoting is sufficient, and widely implemented 

– LU with pivoting can succeed even if matrix is singular (!) 
(but back/forward substitution fails…) 



Matrix Inversion using LU 

• LU depend only on A, not on b 

• Re-use L & U for multiple values of b 
– i.e., repeat back-substitution 

• How to compute A-1? 
AA-1 = I  (n×n identity matrix), e.g. 
 

→ Use LU decomposition with 
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Questions on LU Decomposition? 



Working with Special Matrices 



Tridiagonal Systems 

• Common special case: 

 

 

 

 

 

• Only main diagonal + 1 above and 1 below 
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Solving Tridiagonal Systems 

• When solving using Gaussian elimination: 
– Constant # of multiplies/adds in each row 

– Each row only affects 2 others 
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Running Time 

• 2n loops, 4 multiply/adds per loop 
(assuming correct bookkeeping) 

• This running time has a fundamentally different 
dependence on n: linear instead of cubic 
– Can say that tridiagonal algorithm is O(n) while 

Gauss is O(n3) 

• In general, a banded system of bandwith w 
requires O(wn) storage and O(w2n) 
computations. 



Symmetric matrices:  
Cholesky Decomposition 

• For symmetric matrices, choose U=LT 

 (A = LLT) 

• Perform decomposition 

 

 

 

• Ax=b    ⇒    LLTx=b    ⇒    Ld=b    ⇒    LTx=d 
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Cholesky Decomposition 
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Cholesky Decomposition 
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Cholesky Decomposition 

• This fails if it requires taking square root of a 
negative number 

• Need another condition on A: positive definite 
 
 i.e., For any v,  vT A v > 0 
 
 (Equivalently, all positive eigenvalues) 



Cholesky Decomposition 

• Running time turns out to be 1/6n3 

multiplications + 1/6n3  additions 
– Still cubic, but  lower constant 

– Half as much computation & storage as LU 

• Result: this is preferred method for solving 
symmetric positive definite systems 



Running time revisited 



Running Time – Is O(n3) the Limit? 

• How fast is matrix multiplication? 

 

 

 

 

 

• 8 multiples, 4 adds, right? 
(In general n3 multiplies and n2(n-1) adds…) 
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Running Time – Is O(n3) the Limit? 

• Strassen’s method [1969] 
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Running Time – Is O(n3) the Limit? 

• Strassen’s method [1969] 

 

 

 

• Uses only 7 multiplies 
(and a whole bunch of adds) 

• Can be applied recursively! 
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Running Time – Is O(n3) the Limit? 

• Recursive application for 4 half-size submatrices 
needs 7 half-size matrix multiplies 

• Asymptotic running time is 
– Only worth it for large n, because of big 

constant factors (all those additions…) 

– Still, practically useful for n > hundreds or thousands 

• Current state of the art: Coppersmith-Winograd 
algorithm achieves  
– Not used in practice 

)()( 8.27log2 nOnO ≈

)( ...376.2nO



Running Time – Is O(n3) the Limit? 

• Similar sub-cubic algorithms for inverse, 
determinant, LU, etc. 
– Most “cubic” linear-algebra problems aren’t! 

 

• Major open question: what is the limit? 
– Hypothesis: O(n2) or O(n2 log n) 



Singularity and Condition Number 



A near-singular system 



Detecting singularity and near-singularity 

• Graph it! (in 2 or 3 dimensions) 

• Does A A-1 = I (identity) ? 

• Does (A-1) -1 = A? 

• Does Ax = b? 

• Does (A-1) c1 = (A-1) c2 for compilers c1, c2? 

• Are any of LU diagonals (with pivoting) 
near-zero? 

 



A near-singular system 



Condition number 

• Cond(A) is function of A 

• Cond(A) ≥ 1, bigger is bad 

• Measures how change in input is propogated to 
change in output 

 

 

• E.g., if cond(A) = 451 then can lose log(451)= 
2.65 digits of accuracy in x, compared to 
precision of A 
  

|| ∆x ||
|| x ||

≤ cond(A)
|| ∆A ||
|| A ||



Computing condition number 

• cond(A) = ||A|| ||A-1|| 

• where ||M|| is a matrix norm 

 

 

 

• ||M||inf is often easiest to compute 

• Different norms give different values, but similar 
order of magnitude 

 

M 1 =
1≤ j ≤n

max aij
i=1

n

∑ , M ∞ =
1≤i≤n

max aij
j =1

n

∑

M 2 = λmax( )1/ 2 (using largest eigenvalue of ATA) 



Useful Matlab functions 

• \  : matrix division 
– e.g. x = A\b 

• cond: matrix condition 
number 

• norm: matrix or vector 
norm 

• chol : Cholesky 
factorization 

• lu : LU decomposition 

• inv: inverse (don’t use 

unless you really need the 
inverse!) 

• rank: # of linearly 
independent rows or 
columns 

• det: determinant 

• trace: sum of diagonal 
elements 

• null: null space 
 



Other resources 

• Heath interactive demos: 
– http://www.cse.illinois.edu/iem/linear_equations/gaus

sian_elimination/ 

– http://www.cse.illinois.edu/iem/linear_equations/con
ditioning/ 

• http://www.math.ucsd.edu/~math20f/Spring/La
b2/Lab2.shtml 
– Good reading on how linear systems can be used in 

web recommendation (Page Rank) and economics 
(Leontief Models) 

 

 

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/
http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/
http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/
http://www.cse.illinois.edu/iem/linear_equations/conditioning/
http://www.cse.illinois.edu/iem/linear_equations/conditioning/
http://www.math.ucsd.edu/~math20f/Spring/Lab2/Lab2.shtml
http://www.math.ucsd.edu/~math20f/Spring/Lab2/Lab2.shtml
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