Linear Systems

COS 323

Linear Systems

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots = b_3$$

$$\vdots$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots \\ a_{21} & a_{22} & a_{23} & \cdots \\ a_{31} & a_{32} & a_{33} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{bmatrix}$$

- Solve for x given Ax=b, where A is an n×n matrix and b is an n×1 column vector
- Can also talk about non-square systems where A is m×n, b is m×1, and x is n×1
 - Overdetermined if m > n:
 - "more equations than unknowns"
 - Can look for best solution using **least squares**
 - Underdetermined if n > m:
 - "more unknowns than equations"

Graphical interpretation

- A is singular if some row is a linear combination of other rows
- Singular systems can be underdetermined:

$$2x_1 + 3x_2 = 5$$
$$4x_1 + 6x_2 = 10$$

or inconsistent:

$$2x_1 + 3x_2 = 5$$
$$4x_1 + 6x_2 = 11$$

Graphical Interpretation

Singular with infinite solutions

Singular with no solution

Near-Singular or Ill-Conditioned

Why not just invert A?

- x=A⁻¹b
 - BUT: Inefficient
 - Prone to roundoff error
- In fact, compute inverse using linear solver

Solve by hand...

$$3x_1 + 2x_2 = 18$$

 $-x_1 + 2x_2 = 2$

$$0\mathbf{x}_1 + 8\mathbf{x}_2 = 24 \quad \rightarrow \quad \mathbf{x}_2 = 3$$

$-x_1 + 2 * 3 = 2 \quad \rightarrow \quad x_1 = 4$

Gaussian Elimination

- Fundamental operations:
 - 1. Replace one equation with linear combination of other equations
 - 2. Interchange two equations
 - 3. Re-label two variables
- Combine to reduce to trivial system (identity)
 Alternative: triangular system + back-substitution
- Simplest variant only uses #1 operations, but get better stability by adding #2 (partial pivoting) or #2 & #3 (full pivoting)

"Naïve" Gaussian Elimination

• Solve:

$$2x_1 + 3x_2 = 7$$
$$4x_1 + 5x_2 = 13$$

 Only care about numbers – form "tableau" or "augmented matrix":

$$\begin{bmatrix} 2 & 3 & | & 7 \\ 4 & 5 & | & 13 \end{bmatrix}$$

"Naïve" Gaussian Elimination

• Given:

$$\begin{bmatrix} 2 & 3 & | & 7 \\ 4 & 5 & | & 13 \end{bmatrix}$$

• 1) Elimination: reduce this to system of form

 2) Back-substitution: Solve for x₂, then "plug in" to solve for x₁

"Naïve" Gaussian Elimination: Forward elimination stage

$$\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 7 \\ 4 & 5 & 13 \end{bmatrix}$$

- 1. Define $f = a_{21}/a_{11}$ (here, f = 2)
- 2. Replace 2^{nd} row r_2 with $r_2 (f * r_1)$

Here, replace r_2 with $r_2 - 2 * r_1$

$$\begin{bmatrix} a_{11} & a_{12} & b_1 \\ 0 & a'_{22} & b'_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 7 \\ 0 & -1 & -1 \end{bmatrix}$$

Forward elimination pseudocode

For k=1 to n-1 { //Loop over all rows

For i=(k+1) to n { //Loop over all rows beneath kth factor_{ik} \rightarrow a_{ik} / a_{kk} For j = k to n { //Loop over elements in the row $a_{ij} \leftarrow a_{ij} - factor_{ik} * a_{kj}$ //Update element }

Outcome of forward elimination

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \mathsf{K} + a_{1n}x_{n} = b_{1}$$

$$a_{22}x_{2} + a_{23}x_{3} + \mathsf{K} + a_{2n}x_{n} = b_{2}'$$

$$a_{33}'x_{3} + \mathsf{K} + a_{3n}''x_{n} = b_{3}''$$

$$a_{nn}^{(n-1)}x_n = b_n^{(n-1)}$$

Back-substitution Pseudocode

Questions?

What could go wrong?

For k=1 to $n-1 \{ //Loop over all rows \}$

For i=(k+1) to n { //Loop over all rows beneath kth factor_{ik} $\leftarrow a_{ik} / a_{kk}$ For j = k to n { //Loop over elements in the row $a_{ij} \leftarrow a_{ij} - \text{factor } * a_{kj}$ //Update element }

What could go wrong?

 $0.0003x_1 + 3.0000x_2 = 2.0001$ $1.0000x_1 + 1.0000x_2 = 1.0000$ After pivot, equation 2 becomes $-9999x_{2} = -6666$ Solve for $x_2 = 2/3$ Solve for $x_1 = (2.0001 - 3 (2/3)) / .0003$ \rightarrow x₁ = -3.33 or 0.0000 or 0.330000 (depending on # digits used to represent 2/3) Partial Pivoting

Swap rows to pivot on largest element possible (i.e., put large numbers in the diagonal): $0.0003x_1 + 3.0000x_2 = 2.0001$ $1.0000x_1 + 1.0000x_2 = 1.0000$ becomes

 $1.0000x_1 + 1.0000x_2 = 1.0000$ $0.0003x_1 + 3.0000x_2 = 2.0001$ Partial pivot applied

 $1.0000x_1 + 1.0000x_2 = 1.0000$ $0.0003x_1 + 3.0000x_2 = 2.0001$ Factor = .0003/1.0000, so Equation 2 becomes $2.9997 x_2 = -1.9998$ Solve for $x_2 = 2/3$ Solve for $x_1 = (1.0000 - 1 * (2/3)) / 1.0$ \rightarrow x₁ = 0.333 or 0.3333 or 0.333333 (depending on # digits used to represent 2/3)

Full Pivoting

- Swap largest element onto diagonal by swapping rows and columns
- More stable, but only slightly

• Critical: when swapping columns, must remember to swap results!

Questions on Gaussian Elimination?

Complexity of Gaussian Elimination

- Forward elimination:
 2/3 * n³ + O(n²)
 (triple for-loops yield n³)
- Back substitution:

 $n^{2} + O(n)$

- Informally, O(n³) means that the dominant term for large n is cubic
- More precisely, there exist a c and n₀ such that

```
running time \leq c n^3
```

if

$n > n_0$

• This type of *asymptotic analysis* is often used to characterize different algorithms

LU Decomposition

Triangular Systems are nice!

• Lower-triangular:

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 & \cdots & b_1 \\ a_{21} & a_{22} & 0 & 0 & \cdots & b_2 \\ a_{31} & a_{32} & a_{33} & 0 & \cdots & b_3 \\ a_{41} & a_{42} & a_{43} & a_{44} & \cdots & b_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \end{bmatrix}$$

Solve by forward substitution

a_{11}	0	0	0	•, •, •,	b_1
<i>a</i> ₂₁	<i>a</i> ₂₂	0	0	• • •	b_2
<i>a</i> ₃₁	<i>a</i> ₃₂	a ₃₃	0	• • •	b_3
<i>a</i> ₄₁	<i>a</i> ₄₂	a ₄₃	<i>a</i> ₄₄	• • •	b ₄
	•	•	•	•••	•

$$x_1 = \frac{b_1}{a_{11}}$$

Solve by forward substitution

a_{11}	0	0	0	•, •, •,	b_1
<i>a</i> ₂₁	<i>a</i> ₂₂	0	0	• • •	b_2
<i>a</i> ₃₁	<i>a</i> ₃₂	a ₃₃	0	• • •	b_3
<i>a</i> ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	• • •	b_4
	•	•	•	•••	•

$$x_2 = \frac{b_2 - a_{21}x_1}{a_{22}}$$

Solve by forward substitution

a_{11}	0	0	0	• • •	b_1
<i>a</i> ₂₁	<i>a</i> ₂₂	0	0	• • •	b_2
<i>a</i> ₃₁	<i>a</i> ₃₂	a ₃₃	0	• • •	b_3
<i>a</i> ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	•••	b ₄
	•	•	•	٠.	•

$$x_3 = \frac{b_3 - a_{31}x_1 - a_{32}x_2}{a_{33}}$$

• If A is upper triangular, solve by backsubstitution

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_1 \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} & b_2 \\ 0 & 0 & a_{33} & a_{34} & a_{35} & b_3 \\ 0 & 0 & 0 & a_{44} & a_{45} & b_4 \\ 0 & 0 & 0 & 0 & a_{55} & b_5 \end{bmatrix}$$

$$x_5 = \frac{b_5}{a_{55}}$$

• If A is upper triangular, solve by backsubstitution

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_1 \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} & b_2 \\ 0 & 0 & a_{33} & a_{34} & a_{35} & b_3 \\ 0 & 0 & 0 & a_{44} & a_{45} & b_4 \\ 0 & 0 & 0 & 0 & a_{55} & b_5 \end{bmatrix}$$

$$x_4 = \frac{b_4 - a_{45}x_5}{a_{44}}$$

- Both of these special cases can be solved in O(n²) time
- This motivates a factorization approach to solving arbitrary systems:
 - Find a way of writing A as LU, where L and U are both triangular
 - $-Ax=b \implies LUx=b \implies Ld=b \implies Ux=d$
 - Time for **factoring matrix** dominates computation

Solving Ax = b with LU Decomposition of A

$\mathbf{A} = \mathbf{L}\mathbf{U}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

- More unknowns than equations!
- Let all $I_{ii} = 1$ (Doolittle's method) or let all $u_{ii} = 1$ (Crout's method)

Doolittle Factorization for LU Decomposition

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

- U is result of forward elimination step of Gauss
- L elements are the factors computed in forward elimination!

- e.g.
$$l_{21} = f_{21} = a_{21} / a_{11}$$
 and $l_{32} = f_{32} = a'_{32} / a'_{22}$

Doolittle Factorization

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

- For j = 1..i
$$u_{ji} = a_{ji} - \sum_{k=1}^{j-1} l_{jk} u_{ki}$$

- For j = i+1..n
$$l_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki}}{u_{ii}}$$

Doolittle Factorization

- Interesting note: # of outputs = # of inputs, algorithm only refers to elements of A, not b
- Can do this in-place!
 - Algorithm replaces A with matrix
 of I and u values, 1s are implied

 $\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21} & u_{22} & u_{23} \\ l_{31} & l_{32} & u_{33} \end{bmatrix}$

- Resulting matrix must be interpreted in a special way: not a regular matrix
- Can rewrite forward/backsubstitution routines to use this "packed" l-u matrix

LU Decomposition

- Running time is $2/_3 n^3$
 - Independent of RHS, each of which requires O(n²) back/forward substitution
 - This is the preferred general method for solving linear equations
- Pivoting very important
 - Partial pivoting is sufficient, and widely implemented
 - LU with pivoting can succeed even if matrix is singular (!)
 (but back/forward substitution fails...)

Matrix Inversion using LU

- LU depend only on A, not on b
- Re-use L & U for multiple values of b – i.e., repeat back-substitution
- How to compute A⁻¹? $AA^{-1} = I (n \times n \text{ identity matrix}), e.g.$ $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ • How to compute A⁻¹?

 \rightarrow Use LU decomposition with

$$b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad b_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad b_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Questions on LU Decomposition?

Working with Special Matrices

Tridiagonal Systems

• Common special case:

$$\begin{bmatrix} a_{11} & a_{12} & 0 & 0 & \cdots & b_1 \\ a_{21} & a_{22} & a_{23} & 0 & \cdots & b_2 \\ 0 & a_{32} & a_{33} & a_{34} & \cdots & b_3 \\ 0 & 0 & a_{43} & a_{44} & \cdots & b_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \end{bmatrix}$$

• Only main diagonal + 1 above and 1 below

Solving Tridiagonal Systems

- When solving using Gaussian elimination:
 - Constant # of multiplies/adds in each row
 - Each row only affects 2 others

$$\begin{bmatrix} a_{11} & a_{12} & 0 & 0 & \cdots & b_1 \\ a_{21} & a_{22} & a_{23} & 0 & \cdots & b_2 \\ 0 & a_{32} & a_{33} & a_{34} & \cdots & b_3 \\ 0 & 0 & a_{43} & a_{44} & \cdots & b_4 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

Running Time

- 2n loops, 4 multiply/adds per loop (assuming correct bookkeeping)
- This running time has a fundamentally different dependence on n: linear instead of cubic
 - Can say that tridiagonal algorithm is O(n) while Gauss is O(n³)
- In general, a banded system of bandwith w requires O(wn) storage and O(w²n) computations.

Symmetric matrices: Cholesky Decomposition

- For symmetric matrices, choose U=L^T (A = LL^T)
- Perform decomposition

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

• Ax=b \Rightarrow LL^Tx=b \Rightarrow Ld=b \Rightarrow L^Tx=d

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$
$$l_{11}^{2} = a_{11} \Rightarrow l_{11} = \sqrt{a_{11}}$$
$$l_{11}l_{21} = a_{12} \Rightarrow l_{21} = \frac{a_{12}}{l_{11}}$$
$$l_{11}l_{31} = a_{13} \Rightarrow l_{31} = \frac{a_{13}}{l_{11}}$$
$$l_{21}^{2} + l_{22}^{2} = a_{22} \Rightarrow l_{22} = \sqrt{a_{22} - l_{21}^{2}}$$
$$l_{21}l_{31} + l_{22}l_{32} = a_{23} \Rightarrow l_{32} = \frac{a_{23} - l_{21}l_{31}}{l_{22}}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}$$
$$l_{ji} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik} l_{jk}}{l_{ii}}$$

- This fails if it requires taking square root of a negative number
- Need another condition on A: positive definite

i.e., For any v, $v^T A v > 0$

(Equivalently, all positive eigenvalues)

- Running time turns out to be $\frac{1}{6}n^3$ multiplications + $\frac{1}{6}n^3$ additions
 - Still cubic, but lower constant
 - Half as much computation & storage as LU
- Result: this is preferred method for solving symmetric positive definite systems

Running time revisited

How fast is matrix multiplication?

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$c_{11} = a_{11}b_{11} + a_{12}b_{21}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22}$$

8 multiples, 4 adds, right?
 (In general n³ multiplies and n²(n-1) adds...)

Strassen's method [1969]

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

Volker Strassen

 $M_1 = (a_{11} + a_{22})(b_{11} + b_{22})$ $M_2 = (a_{21} + a_{22})b_{11}$ $M_3 = a_{11}(b_{11} - b_{22})$ $M_{4} = a_{22}(b_{21} - b_{11})$ $M_5 = (a_{11} + a_{12})b_{22}$ $M_6 = (a_{21} - a_{11})(b_{11} + b_{12})$ $M_7 = (a_{12} - a_{22})(b_{21} + b_{22})$ $c_{11} = M_1 + M_4 - M_5 + M_7$ $c_{12} = M_3 + M_5$ $c_{21} = M_2 + M_4$ $c_{22} = M_1 - M_2 + M_3 + M_6$

• Strassen's method [1969]

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

- Uses only 7 multiplies (and a whole bunch of adds)
- Can be applied recursively!

 $M_1 = (a_{11} + a_{22})(b_{11} + b_{22})$ $M_2 = (a_{21} + a_{22})b_{11}$ $M_3 = a_{11}(b_{11} - b_{22})$ $M_{4} = a_{22}(b_{21} - b_{11})$ $M_5 = (a_{11} + a_{12})b_{22}$ $M_6 = (a_{21} - a_{11})(b_{11} + b_{12})$ $M_7 = (a_{12} - a_{22})(b_{21} + b_{22})$ $c_{11} = M_1 + M_4 - M_5 + M_7$ $c_{12} = M_3 + M_5$ $c_{21} = M_2 + M_4$ $c_{22} = M_1 - M_2 + M_3 + M_6$

- Recursive application for 4 half-size submatrices needs 7 half-size matrix multiplies
- Asymptotic running time is $O(n^{\log_2 7}) \approx O(n^{2.8})$
 - Only worth it for large *n*, because of big constant factors (all those additions...)
 - Still, practically useful for n > hundreds or thousands
- Current state of the art: Coppersmith-Winograd algorithm achieves $O(n^{2.376...})$
 - Not used in practice

• Similar sub-cubic algorithms for inverse, determinant, LU, etc.

- Most "cubic" linear-algebra problems aren't!

Major open question: what is the limit?
 – Hypothesis: O(n²) or O(n² log n)

Singularity and Condition Number

A near-singular system

Detecting singularity and near-singularity

- Graph it! (in 2 or 3 dimensions)
- Does $A A^{-1} = I$ (identity) ?
- Does $(A^{-1})^{-1} = A$?
- Does Ax = b?
- Does $(A^{-1})_{c1} = (A^{-1})_{c2}$ for compilers c1, c2?
- Are any of LU diagonals (with pivoting) near-zero?

A near-singular system

Condition number

- Cond(A) is function of A
- Cond(A) \geq 1, bigger is **bad**
- Measures how change in input is propogated to change in output

$$\frac{\|\Delta x\|}{\|x\|} \le cond(A)\frac{\|\Delta A\|}{\|A\|}$$

E.g., if cond(A) = 451 then can lose log(451)=
 2.65 digits of accuracy in x, compared to precision of A

Computing condition number

- cond(A) = $||A|| ||A^{-1}||$
- where ||M|| is a matrix norm

$$\|M\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|, \quad \|M\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
$$\|M\|_{2} = (\lambda_{\max})^{1/2} \quad (\text{using largest eigenvalue of } A^{T}A)$$

- $||M||_{inf}$ is often easiest to compute
- Different norms give different values, but similar order of magnitude

Useful Matlab functions

- \ : matrix division - e.g. $x = A \setminus b$
- **cond**: matrix condition number
- norm: matrix or vector norm
- **chol** : Cholesky factorization
- **lu** : LU decomposition
- inv: inverse (don't use

unless you really need the inverse!)

- **rank**: # of linearly independent rows or columns
- **det**: determinant
- **trace**: sum of diagonal elements
- **null**: null space

Other resources

- Heath interactive demos:
 - <u>http://www.cse.illinois.edu/iem/linear_equations/gaus</u>
 <u>sian_elimination/</u>
 - <u>http://www.cse.illinois.edu/iem/linear_equations/con</u>
 <u>ditioning/</u>
- <u>http://www.math.ucsd.edu/~math20f/Spring/La</u>
 <u>b2/Lab2.shtml</u>
 - Good reading on how linear systems can be used in web recommendation (Page Rank) and economics (Leontief Models)