Constrained Optimization

COS 323

Last time

- Introduction to optimization
 - objective function, variables, [constraints]
- 1-dimensional methods
 - Golden section, discussion of error
 - Newton's method
- Multi-dimensional methods
 - Newton's method, steepest descent, conjugate gradient
- General strategies, value-only methods

Today

- Linear constrained optimization
 - Linear programming (LP)
 - Simplex method for LP
- General optimization
 - With equality constraints: Lagrange multipliers
 - With inequality: KKT conditions + Quadratic programming

 $x \exp(-x^2-y^2)+(x^2+y^2)/20$

χ

Linear Programming: Linear Objective + Linear Constraints

Standard form: maximize objective

$$\zeta = c_1 x_1 + c_2 x_2 + \cdots$$

with *primary* constraints

$$x_1 \ge 0, x_2 \ge 0, \cdots$$

and additional constraints

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \cdots &\leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots &\leq b_2 \end{aligned}$$

Why Linear Programming?

- What is the cheapest combination of foods that meets your nutritional needs?
- How do you minimize the risk in your investment portfolio, subject to achieving a given return?
- How should an airline assign crews to flights?
- Traveling salesman problem

from John Mitchell @ RPI

Linear Objective + Linear Constraints

Other possible outcomes

Simplex Method

- [Dantzig]'s Simplex Method
- Basic idea:
 - Phase I: Find a "basic feasible solution": A vertex satisfying all constraints.
 - Phase II: Traverse vertices of the polytope along edges for which objective function is *strictly decreasing*
 - At any vertex, some *n* constraints are satisfied with exact equality

Simplex Form

• Transform each inequality constraint to an equality constraint using *slack variables*

$$x_{1} + 2x_{3} \leq 740 \qquad \qquad x_{1} + 2x_{3} + y_{1} = 740$$

$$2x_{2} - 7x_{4} \leq 0 \qquad \qquad 2x_{2} - 7x_{4} + y_{2} = 0$$

$$x_{2} - x_{3} + 2x_{4} \geq \frac{1}{2} \qquad \qquad x_{2} - x_{3} + 2x_{4} - y_{3} = \frac{1}{2}$$

$$x_{1} + x_{2} + x_{3} + x_{4} = 9 \qquad \qquad x_{1} + x_{2} + x_{3} + x_{4} = 9$$

x

An underdetermined system

- Normalized form:
 m equations with *n* unknowns,
 with m < n
- Solve by setting (n m) variables to 0 and solving for remaining m unknowns

$$C_m^n = \frac{n!}{m!(n-m)!}$$

systems of equations $\ensuremath{\mathfrak{S}}$

Simplex method vertex traversal

- Start with a basic feasible solution
 - Set (n-m) variables to 0: "non-basic variables"
 - Solve for remaining m "basic variables": If they're ≥ 0 , then it's feasible
- Traverse an edge:
 - "Swap" a basic w/ a non-basic variable
 - Increase the value of the basic variable that has the biggest potential impact on the objective, and increase until another constraint is encountered (i.e., leaving basic variable becomes 0)

Results of simplex method

For more information

 Numerical Recipes in C chapter on linear programming: <u>http://www.nrbook.com/a/bookcpdf/c10-8.pdf</u>

 Interactive Java applet: <u>http://campuscgi.princeton.edu/~rvdb/JAVA/piv</u> <u>ot/simple.html</u>

Comments on Simplex Method

- In theory: can take very long exponential in the input length
- In practice: efficient # of iterations typically a few times # of constraints

– Should take care to detect cycles

• There exist provably polynomial-time algorithms

Beyond linear optimization

General Optimization with Equality Constraints

• Minimize f(x) subject to $g_i(x) = 0$

General Optimization with Equality Constraints

- Minimize f(x) subject to $g_i(x) = 0$
- Method of Lagrange multipliers: convert to a higher-dimensional problem

• Find critical points of $f(x) + \sum \lambda_i g_i(x)$

w.r.t. $(x_1 \dots x_n; \lambda_1 \dots \lambda_k)$

Comments on Lagrange Multipliers

- A way of re-defining an optimization problem in terms of a *necessary condition* for optimality
 not an algorithm for finding optimal points!
- Use other method to find critical points
- Sometimes lambdas are interesting in themselves
 - Lagrangian mechanics
 - "Shadow pricing" in economics: The "marginal cost" of a constraint

General Optimization with Inequality Constraints

- Minimize f(x) subject to $h_i(x) \le 0$
- More complicated: some inequality constraints might be irrelevant

KKT Conditions for optimization with inequality constraints

- Karush-Kuhn-Tucker (KKT) conditions
 Generalization of Lagrange multipliers
- Minimize $f(x) + \sum \lambda_i h_i(x)$ w.r.t. $(x_1 \dots x_n; \lambda_1 \dots \lambda_k)$
- Subject to

 $h_i(x) \le 0, \quad \lambda_i(x) \ge 0, \quad \lambda_i(x) h_i(x) = 0$

KKT Conditions

minimize f(x)with $h(x) \le 0$

1. $\partial/\partial_{x}(f(x) + \lambda h(x)) = 0$ 2. $\partial/\partial_{\lambda}(f(x) + \lambda h(x)) = 0$ 3. $h(x) \le 0$ 4. $\lambda \ge 0$ 5. $\lambda h(x) = 0$

Quadratic Programming

- The KKT conditions allow writing a system with quadratic objective and linear constraints as a linear program
 - Solve with simplex, etc.

In practice

- Matlab:
 - linprog
 - Option of using simplex method
 - quadprog
 - Option of getting Lagrange multipler values out
 - See Matlab's official advice on choosing a solver
 - http://www.mathworks.com/help/toolbox/optim/ug/brhkghv-18.html#bsbqd7i
- Excel solver