
Optimization

Last time

• Root finding: definition, motivation

• Algorithms: Bisection, false position, secant,
Newton-Raphson

• Convergence & tradeoffs

• Example applications of Newton’s method

• Root finding in > 1 dimension

Today

• Introduction to optimization

• Definition and motivation

• 1-dimensional methods
– Golden section, discussion of error

– Newton’s method

• Multi-dimensional methods
– Newton’s method, steepest descent, conjugate gradient

• General strategies, value-only methods

Ingredients

• Objective function

• Variables

• Constraints

Find values of the variables
that minimize or maximize the objective function

while satisfying the constraints

Different Kinds of Optimization

Figure from: Optimization Technology Center
http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/

Different Optimization Techniques

• Algorithms have very different flavor depending
on specific problem
– Closed form vs. numerical vs. discrete

– Local vs. global minima

– Running times ranging from O(1) to NP-hard

• Today:
– Focus on continuous numerical methods

Optimization in 1-D

• Look for analogies to bracketing in root-finding

• What does it mean to bracket a minimum?

(xleft, f(xleft))

(xright, f(xright))

(xmid, f(xmid))
xleft < xmid < xright
f(xmid) < f(xleft)
f(xmid) < f(xright)

Optimization in 1-D

• Once we have these properties, there is at least
one local minimum between xleft and xright

• Establishing bracket initially:
– Given xinitial, increment
– Evaluate f(xinitial), f(xinitial+increment)
– If decreasing, step until find an increase
– Else, step in opposite direction until find an increase
– Grow increment (by a constant factor) at each step

• For maximization: substitute –f for f

Optimization in 1-D

• Strategy: evaluate function at some xnew

(xleft, f(xleft))

(xright, f(xright))

(xmid, f(xmid))
(xnew, f(xnew))

Optimization in 1-D

• Strategy: evaluate function at some xnew

– Here, new “bracket” points are xnew, xmid, xright

(xleft, f(xleft))

(xright, f(xright))

(xmid, f(xmid))
(xnew, f(xnew))

Optimization in 1-D

• Strategy: evaluate function at some xnew

– Here, new “bracket” points are xleft, xnew, xmid

(xleft, f(xleft))

(xright, f(xright))

(xmid, f(xmid)) (xnew, f(xnew))

Optimization in 1-D

• Unlike with root-finding, can’t always guarantee
that interval will be reduced by a factor of 2

• Let’s find the optimal place for xmid, relative to
left and right, that will guarantee same factor of
reduction regardless of outcome

Optimization in 1-D

if f(xnew) < f(xmid)
 new interval = α
else
 new interval = 1–α2

α

α2 1-α2 =α

Golden Section Search

• To assure same interval, want α = 1–α2

• So,

• This is the reciprocal of the “golden ratio” =
0.618…

• So, interval decreases by 30% per iteration
– Linear convergence

α =
5 −1
2

= Φ

Sources of Error

• When we “find” a minimum value, x, why is it
different from true minimum?
1. Obvious: width of bracket

2. Less obvious: floating point representation

• Q: When is (b – a) small enough that discrepancy
between x and xmin limited by rounding error in f(xmin)?

F(xmin) − f (xmin)
f (xmin)

≤ εmach

x − xmin

xmin

≤ b − a

Stopping criterion for Golden Section

• When is (b – a) small enough that discrepancy between
x and xmin attributed to rounding error in f(xmin)?

where

Why? Use Taylor series, knowing f’(xm) is around 0 :

where

Implications

• Rule of thumb: pointless to ask for more
accuracy than sqrt(ε)

• Q:, what happens to # of accurate digits in
results when you switch from single precision
(~7 digits) to double (~16 digits) for x, f(x)?
– A: Gain only ~4 more accurate digits.

Faster 1-D Optimization

• Trade off super-linear convergence for
worse robustness
– Combine with Golden Section search for safety

• Usual bag of tricks:
– Fit parabola through 3 points, find minimum

– Compute derivatives as well as positions, fit cubic

– Use second derivatives: Newton

Newton’s Method

Newton’s Method

Newton’s Method

Newton’s Method

Newton’s Method

• At each step:

• Requires 1st and 2nd derivatives

• Quadratic convergence

)(
)(

1
k

k
kk xf

xfxx
′′
′

−=+

Questions?

Multidimensional Optimization

Multi-Dimensional Optimization

• Important in many areas
– Fitting a model to measured data

– Finding best design in some parameter space

• Hard in general
– Weird shapes: multiple extrema, saddles,

curved or elongated valleys, etc.

– Can’t bracket (but there are “trust region” methods)

• In general, easier than rootfinding
– Can always walk “downhill”

Problem with Saddle

Newton’s Method in
Multiple Dimensions

• Replace 1st derivative with gradient,
2nd derivative with Hessian














=














=∇

∂

∂
∂∂

∂

∂∂
∂

∂

∂

∂
∂

∂
∂

2

22

2

2

2

),(

y
f

yx
f

yx
f

x
f

y
f
x
f

H

f

yxf

Newton’s Method in
Multiple Dimensions

• in 1 dimension:

• Replace 1st derivative with gradient,
2nd derivative with Hessian

• So,

• Tends to be fragile unless function very smooth
and starting close to minimum

)()(1
1 kkkk xfxHxx 

∇−= −
+

)(
)(

1
k

k
kk xf

xfxx
′′
′

−=+

Other Methods

• What if you can’t / don’t want to
use 2nd derivative?

• “Quasi-Newton” methods estimate Hessian

• Alternative: walk along (negative of) gradient…
– Perform 1-D minimization along line passing

through current point in the direction of the gradient

– Once done, re-compute gradient, iterate

Steepest Descent

Problem With Steepest Descent

Conjugate Gradient Methods

• Idea: avoid “undoing” minimization that’s
already been done

• Walk along direction

• Polak and Ribiere formula:

kkkk dgd β+−= ++ 11

kk

kk
k gg

ggg
k

T
1

T)(
1

−
= ++β

Conjugate Gradient Methods

• Conjugate gradient implicitly obtains
information about Hessian

• For quadratic function in n dimensions, gets
exact solution in n steps (ignoring roundoff error)

• Works well in practice…

Value-Only Methods in Multi-Dimensions

• If can’t evaluate gradients, life is hard

• Can use approximate (numerically evaluated)
gradients:





















≈





















=∇
−⋅+

−⋅+

−⋅+

∂
∂

∂
∂

∂
∂



δ
δ

δ
δ

δ
δ

)()(

)()(

)()(

3

2

1

3

2

1

)(
xfexf

xfexf

xfexf

e
f
e
f
e
f

xf

Generic Optimization Strategies

• Uniform sampling:
– Cost rises exponentially with # of dimensions

• Compass search:
– Try a step along each coordinate in turn

– If can’t find a lower value, halve step size

Generic Optimization Strategies

• Simulated annealing:
– Maintain a “temperature” T

– Pick random direction d, and try a step of size
dependent on T

– If value lower than current, accept

– If value higher than current, accept with
probability ~ exp((f(x) – f(x’))/T)

– “Annealing schedule” – how fast does T decrease?

• Slow but robust: can avoid non-global minima

Downhill Simplex Method (Nelder-Mead)

• Keep track of n+1 points in n dimensions
– Vertices of a simplex (triangle in 2D

 tetrahedron in 3D, etc.)

• At each iteration: simplex can move,
expand, or contract
– Sometimes known as amoeba method:

simplex “oozes” along the function

Downhill Simplex Method (Nelder-Mead)

• Basic operation: reflection

worst point
(highest function value)

location probed by
reflection step

Downhill Simplex Method (Nelder-Mead)

• If reflection resulted in best (lowest) value so far,
try an expansion

• Else, if reflection helped at all, keep it

location probed by
expansion step

Downhill Simplex Method (Nelder-Mead)

• If reflection didn’t help (reflected point still worst)
try a contraction

location probed by
contration step

Downhill Simplex Method (Nelder-Mead)

• If all else fails shrink the simplex around
the best point

Downhill Simplex Method (Nelder-Mead)

• Method fairly efficient at each iteration
(typically 1-2 function evaluations)

• Can take lots of iterations

• Somewhat flakey – sometimes needs restart
after simplex collapses on itself, etc.

• Benefits: simple to implement, doesn’t need
derivative, doesn’t care about function
smoothness, etc.

Rosenbrock’s Function

• Designed specifically for testing optimization techniques

• Curved, narrow valley

222)1()(100),(xxyyxf −+−=

Demo

Constrained Optimization

• Equality constraints: optimize f(x)
subject to gi(x)=0

• Method of Lagrange multipliers: convert to a
higher-dimensional problem

• Minimize w.r.t. ∑+)()(xgxf iiλ);(11 knxx λλ 

Constrained Optimization

• Inequality constraints are harder…

• If objective function and constraints all linear,
this is “linear programming”

• Observation: minimum must lie at corner of
region formed by constraints

• Simplex method: move from vertex to vertex,
minimizing objective function

Constrained Optimization

• General “nonlinear programming” hard

• Algorithms for special cases (e.g. quadratic)

Global Optimization

• In general, can’t guarantee that you’ve found
global (rather than local) minimum

• Some heuristics:
– Multi-start: try local optimization from

several starting positions

– Very slow simulated annealing

– Use analytical methods (or graphing) to determine
behavior, guide methods to correct neighborhoods

Software notes

Software

• Matlab:
– fminbnd

• For function of 1 variable with bound constraints

• Based on golden section & parabolic interpolation

• f(x) doesn’t need to be defined at endpoints

– fminsearch
• Simplex method (i.e., no derivative needed)

– Optimization Toolbox (available free @ Princeton)

– meshgrid

– surf

• Excel: Solver

	Optimization
	Last time
	Today
	Ingredients
	Different Kinds of Optimization
	Different Optimization Techniques
	Optimization in 1-D
	Optimization in 1-D
	Optimization in 1-D
	Optimization in 1-D
	Optimization in 1-D
	Optimization in 1-D
	Optimization in 1-D
	Golden Section Search
	Sources of Error
	Stopping criterion for Golden Section
	Implications
	Faster 1-D Optimization
	Newton’s Method
	Newton’s Method
	Newton’s Method
	Newton’s Method
	Newton’s Method
	Questions?
	Multidimensional Optimization
	Slide Number 26
	Multi-Dimensional Optimization
	Problem with Saddle
	Newton’s Method in�Multiple Dimensions
	Newton’s Method in�Multiple Dimensions
	Other Methods
	Steepest Descent
	Problem With Steepest Descent
	Conjugate Gradient Methods
	Conjugate Gradient Methods
	Value-Only Methods in Multi-Dimensions
	Generic Optimization Strategies
	Generic Optimization Strategies
	Downhill Simplex Method (Nelder-Mead)
	Downhill Simplex Method (Nelder-Mead)
	Downhill Simplex Method (Nelder-Mead)
	Downhill Simplex Method (Nelder-Mead)
	Downhill Simplex Method (Nelder-Mead)
	Downhill Simplex Method (Nelder-Mead)
	Rosenbrock’s Function
	Demo
	Constrained Optimization
	Constrained Optimization
	Constrained Optimization
	Global Optimization
	Software notes
	Software

