
Optimization 



Last time 

• Root finding: definition, motivation 

• Algorithms: Bisection, false position, secant, 
Newton-Raphson 

• Convergence & tradeoffs  

• Example applications of Newton’s method 

• Root finding in > 1 dimension 



Today 

• Introduction to optimization 

• Definition and motivation 

• 1-dimensional methods 
– Golden section, discussion of error 

– Newton’s method 

• Multi-dimensional methods 
– Newton’s method, steepest descent, conjugate gradient 

• General strategies, value-only methods 



Ingredients 

• Objective function 

• Variables 

• Constraints 

Find values of the variables 
that minimize or maximize the objective function 

while satisfying the constraints 



Different Kinds of Optimization 

Figure from: Optimization Technology Center 
http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/ 



Different Optimization Techniques 

• Algorithms have very different flavor depending 
on specific problem 
– Closed form vs. numerical vs. discrete 

– Local vs. global minima 

– Running times ranging from O(1) to NP-hard 

• Today: 
– Focus on continuous numerical methods 



Optimization in 1-D 

• Look for analogies to bracketing in root-finding 

• What does it mean to bracket a minimum? 

(xleft, f(xleft)) 

(xright, f(xright)) 

(xmid, f(xmid)) 
xleft < xmid < xright 
f(xmid) < f(xleft) 
f(xmid) < f(xright) 



Optimization in 1-D 

• Once we have these properties, there is at least 
one local minimum between xleft and xright 

• Establishing bracket initially: 
– Given xinitial, increment 
– Evaluate f(xinitial), f(xinitial+increment) 
– If decreasing, step until find an increase 
– Else, step in opposite direction until find an increase 
– Grow increment (by a constant factor) at each step 

• For maximization: substitute –f for f 



Optimization in 1-D 

• Strategy: evaluate function at some xnew 

(xleft, f(xleft)) 

(xright, f(xright)) 

(xmid, f(xmid)) 
(xnew, f(xnew)) 



Optimization in 1-D 

• Strategy: evaluate function at some xnew 

– Here, new “bracket” points are xnew, xmid, xright 

(xleft, f(xleft)) 

(xright, f(xright)) 

(xmid, f(xmid)) 
(xnew, f(xnew)) 



Optimization in 1-D 

• Strategy: evaluate function at some xnew 

– Here, new “bracket” points are xleft, xnew, xmid 

(xleft, f(xleft)) 

(xright, f(xright)) 

(xmid, f(xmid)) (xnew, f(xnew)) 



Optimization in 1-D 

• Unlike with root-finding, can’t always guarantee 
that interval will be reduced by a factor of 2 

• Let’s find the optimal place for xmid, relative to 
left and right, that will guarantee same factor of 
reduction regardless of outcome 



Optimization in 1-D 

if f(xnew) < f(xmid) 
 new interval = α 
else 
 new interval = 1–α2 

α 

α2 1-α2 =α 



Golden Section Search 

• To assure same interval, want α = 1–α2 

• So, 

 

• This is the reciprocal of the “golden ratio” = 
0.618… 

• So, interval decreases by 30% per iteration 
– Linear convergence 

 

α =
5 −1
2

= Φ



Sources of Error 

• When we “find” a minimum value, x, why is it 
different from true minimum? 
1. Obvious: width of bracket 

 

 

2. Less obvious: floating point representation 

 
  

• Q: When is (b – a) small enough that discrepancy 
between x and xmin limited by rounding error in f(xmin)?  
 

 

F(xmin ) − f (xmin )
f (xmin )

≤ εmach 

x − xmin

xmin

≤ b − a



Stopping criterion for Golden Section 

• When is (b – a) small enough that discrepancy between 
x and xmin attributed to rounding error in f(xmin)?  

 
where 

Why? Use Taylor series, knowing f’(xm) is around 0 : 

where 



Implications 

• Rule of thumb: pointless to ask for more 
accuracy than sqrt(ε ) 
 

• Q:, what happens to # of accurate digits in 
results when you switch from single precision 
(~7 digits) to double (~16 digits) for x, f(x)?  
– A: Gain only ~4 more accurate digits. 



Faster 1-D Optimization 

• Trade off super-linear convergence for 
worse robustness 
– Combine with Golden Section search for safety 

• Usual bag of tricks: 
– Fit parabola through 3 points, find minimum 

– Compute derivatives as well as positions, fit cubic 

– Use second derivatives: Newton 



Newton’s Method 



Newton’s Method 



Newton’s Method 



Newton’s Method 



Newton’s Method 

• At each step: 

 

 

 

• Requires 1st and 2nd derivatives 

• Quadratic convergence 
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Questions? 

 



Multidimensional Optimization 





Multi-Dimensional Optimization 

• Important in many areas 
– Fitting a model to measured data 

– Finding best design in some parameter space 

• Hard in general 
– Weird shapes: multiple extrema, saddles, 

curved or elongated valleys, etc. 

– Can’t bracket (but there are “trust region” methods) 

• In general, easier than rootfinding 
– Can always walk “downhill” 



Problem with Saddle 



Newton’s Method in 
Multiple Dimensions 

• Replace 1st derivative with gradient, 
2nd derivative with Hessian 
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Newton’s Method in 
Multiple Dimensions 

• in 1 dimension:  

• Replace 1st derivative with gradient, 
2nd derivative with Hessian 

• So, 

 

 

• Tends to be fragile unless function very smooth 
and starting close to minimum 
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Other Methods 

• What if you can’t / don’t want to 
use 2nd derivative? 

• “Quasi-Newton” methods estimate Hessian 

• Alternative: walk along (negative of) gradient… 
– Perform 1-D minimization along line passing 

through current point in the direction of the gradient 

– Once done, re-compute gradient, iterate 



Steepest Descent 



Problem With Steepest Descent 



Conjugate Gradient Methods 

• Idea: avoid “undoing” minimization that’s 
already been done 

• Walk along direction 
 
 

• Polak and Ribiere formula: 
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Conjugate Gradient Methods 

• Conjugate gradient implicitly obtains 
information about Hessian 

• For quadratic function in n dimensions, gets 
exact solution in n steps (ignoring roundoff error) 

• Works well in practice… 



Value-Only Methods in Multi-Dimensions 

• If can’t evaluate gradients, life is hard 

• Can use approximate (numerically evaluated) 
gradients: 
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Generic Optimization Strategies 

• Uniform sampling: 
– Cost rises exponentially with # of dimensions 

• Compass search: 
– Try a step along each coordinate in turn 

– If can’t find a lower value, halve step size 



Generic Optimization Strategies 

• Simulated annealing: 
– Maintain a “temperature” T 

– Pick random direction d, and try a step of size 
dependent on T 

– If value lower than current, accept 

– If value higher than current, accept with  
probability ~ exp((f(x) – f(x’))/T) 

– “Annealing schedule” – how fast does T decrease? 

• Slow but robust: can avoid non-global minima 



Downhill Simplex Method (Nelder-Mead) 

• Keep track of n+1 points in n dimensions 
– Vertices of a simplex (triangle in 2D 

 tetrahedron in 3D, etc.) 

• At each iteration: simplex can move, 
expand, or contract 
– Sometimes known as amoeba method: 

simplex “oozes” along the function 



Downhill Simplex Method (Nelder-Mead) 

• Basic operation: reflection 

worst point 
(highest function value) 

location probed by 
reflection step 



Downhill Simplex Method (Nelder-Mead) 

• If reflection resulted in best (lowest) value so far, 
try an expansion 

 

 

 

 

• Else, if reflection helped at all, keep it 

location probed by 
expansion step 



Downhill Simplex Method (Nelder-Mead) 

• If reflection didn’t help (reflected point still worst) 
try a contraction 

location probed by 
contration step 



Downhill Simplex Method (Nelder-Mead) 

• If all else fails shrink the simplex around 
the best point 



Downhill Simplex Method (Nelder-Mead) 

• Method fairly efficient at each iteration 
(typically 1-2 function evaluations) 

• Can take lots of iterations 

• Somewhat flakey – sometimes needs restart 
after simplex collapses on itself, etc. 

• Benefits: simple to implement, doesn’t need 
derivative, doesn’t care about function 
smoothness, etc. 



Rosenbrock’s Function 

• Designed specifically for testing optimization techniques 

• Curved, narrow valley 

222 )1()(100),( xxyyxf −+−=



Demo 

  



Constrained Optimization 

• Equality constraints: optimize f(x) 
subject to gi(x)=0 

• Method of Lagrange multipliers: convert to a 
higher-dimensional problem 

• Minimize                         w.r.t. ∑+ )()( xgxf iiλ );( 11 knxx λλ 



Constrained Optimization 

• Inequality constraints are harder… 

• If objective function and constraints all linear, 
this is “linear programming” 

• Observation: minimum must lie at corner of 
region formed by constraints 

• Simplex method: move from vertex to vertex, 
minimizing objective function 



Constrained Optimization 

• General “nonlinear programming” hard 

• Algorithms for special cases (e.g. quadratic) 



Global Optimization 

• In general, can’t guarantee that you’ve found 
global (rather than local) minimum 

• Some heuristics: 
– Multi-start: try local optimization from 

several starting positions 

– Very slow simulated annealing 

– Use analytical methods (or graphing) to determine 
behavior, guide methods to correct neighborhoods 



Software notes 

  



Software 

• Matlab: 
– fminbnd 

• For function of 1 variable with bound constraints 

• Based on golden section & parabolic interpolation 

• f(x) doesn’t need to be defined at endpoints 

– fminsearch 
• Simplex method (i.e., no derivative needed) 

– Optimization Toolbox (available free @ Princeton) 

– meshgrid 

– surf 

• Excel: Solver 
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