Optimization
Last time

- Root finding: definition, motivation
- Algorithms: Bisection, false position, secant, Newton-Raphson
- Convergence & tradeoffs
- Example applications of Newton’s method
- Root finding in > 1 dimension
Today

- Introduction to optimization
- Definition and motivation
- 1-dimensional methods
 - Golden section, discussion of error
 - Newton’s method
- Multi-dimensional methods
 - Newton’s method, steepest descent, conjugate gradient
- General strategies, value-only methods
Ingredients

• Objective function
• Variables
• Constraints

Find values of the variables that minimize or maximize the objective function while satisfying the constraints
Different Kinds of Optimization

Figure from: Optimization Technology Center
Different Optimization Techniques

• Algorithms have very different flavor depending on specific problem
 – Closed form vs. numerical vs. discrete
 – Local vs. global minima
 – Running times ranging from $O(1)$ to NP-hard

• Today:
 – Focus on continuous numerical methods
Optimization in 1-D

- Look for analogies to bracketing in root-finding
- What does it mean to *bracket* a minimum?

\[
(x_{\text{left}}, f(x_{\text{left}})) \quad (x_{\text{mid}}, f(x_{\text{mid}})) \quad (x_{\text{right}}, f(x_{\text{right}}))
\]

\[
\begin{align*}
x_{\text{left}} &< x_{\text{mid}} < x_{\text{right}} \\
f(x_{\text{mid}}) &< f(x_{\text{left}}) \\
f(x_{\text{mid}}) &< f(x_{\text{right}})
\end{align*}
\]
Optimization in 1-D

• Once we have these properties, there is at least one local minimum between x_{left} and x_{right}

• Establishing bracket initially:
 – Given $x_{initial}$, increment
 – Evaluate $f(x_{initial})$, $f(x_{initial} + increment)$
 – If decreasing, step until find an increase
 – Else, step in opposite direction until find an increase
 – Grow increment (by a constant factor) at each step

• For maximization: substitute $-f$ for f
Optimization in 1-D

- **Strategy:** evaluate function at some x_{new}

![Diagram showing points $(x_{left}, f(x_{left}))$, $(x_{new}, f(x_{new}))$, $(x_{mid}, f(x_{mid}))$, $(x_{right}, f(x_{right}))$]
Optimization in 1-D

• Strategy: evaluate function at some x_{new}
 – Here, new "bracket" points are x_{new}, x_{mid}, x_{right}
Optimization in 1-D

- Strategy: evaluate function at some x_{new}
 - Here, new “bracket” points are x_{left}, x_{new}, x_{mid}
Optimization in 1-D

• Unlike with root-finding, can’t always guarantee that interval will be reduced by a factor of 2

• Let’s find the optimal place for x_{mid}, relative to left and right, that will guarantee same factor of reduction regardless of outcome
Optimization in 1-D

\[
\text{if } f(x_{\text{new}}) < f(x_{\text{mid}}) \\
\quad \text{new interval} = \alpha
\]

\[
\text{else} \\
\quad \text{new interval} = 1 - \alpha^2
\]
Golden Section Search

• To assure same interval, want $\alpha = 1 - \alpha^2$

• So,

$$\alpha = \frac{\sqrt{5} - 1}{2} = \Phi$$

• This is the reciprocal of the "golden ratio" = 0.618…

• So, interval decreases by 30% per iteration
 – Linear convergence
Sources of Error

When we “find” a minimum value, x, why is it different from true minimum?

1. Obvious: width of bracket

\[\frac{|x - x_{\text{min}}|}{x_{\text{min}}} \leq b - a \]

2. Less obvious: floating point representation

\[\left| \frac{F(x_{\text{min}}) - f(x_{\text{min}})}{f(x_{\text{min}})} \right| \leq \varepsilon_{\text{mach}} \]

Q: When is (b – a) small enough that discrepancy between x and x_{\text{min}} limited by rounding error in f(x_{\text{min}})?
Stopping criterion for Golden Section

- When is \((b - a) \) **small enough** that discrepancy between \(x \) and \(x_{\text{min}} \) attributed to rounding error in \(f(x_{\text{min}}) \)?

\[
|b - a| \leq \sqrt{\frac{e}{L}}
\]

where

\[
L = \left| \frac{f''(x_m)}{2f(x_m)} \right|
\]

Why? Use Taylor series, knowing \(f'(x_m) \) is around 0:

\[
f(x) \approx f(x_m) + \frac{f''(x_m)}{2}(x - x_m)^2 = f(x_m)(1 + \psi)
\]

where

\[
\psi = \frac{f''(x_m)}{2f(x_m)}(x - x_m)^2
\]
Implications

• Rule of thumb: pointless to ask for more accuracy than $\sqrt{\varepsilon}$

• Q:, what happens to # of accurate digits in results when you switch from single precision (~7 digits) to double (~16 digits) for $x, f(x)$?
 – A: Gain only ~4 more accurate digits.
Faster 1-D Optimization

• Trade off super-linear convergence for worse robustness
 – Combine with Golden Section search for safety

• Usual bag of tricks:
 – Fit parabola through 3 points, find minimum
 – Compute derivatives as well as positions, fit cubic
 – Use second derivatives: Newton
Newton’s Method
Newton’s Method
Newton’s Method
Newton’s Method
Newton’s Method

- At each step:

\[x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} \]

- Requires 1\(^{st}\) and 2\(^{nd}\) derivatives
- Quadratic convergence
Questions?
Multidimensional Optimization
Multi-Dimensional Optimization

• Important in many areas
 – Fitting a model to measured data
 – Finding best design in some parameter space

• Hard in general
 – Weird shapes: multiple extrema, saddles, curved or elongated valleys, etc.
 – Can’t bracket (but there are “trust region” methods)

• In general, easier than rootfinding
 – Can always walk “downhill”
Problem with Saddle
Newton’s Method in Multiple Dimensions

- Replace 1st derivative with gradient, 2nd derivative with Hessian

\[
f(x, y) = \begin{pmatrix}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{pmatrix}
\]

\[
\nabla f = \begin{pmatrix}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\
\frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2}
\end{pmatrix}
\]
Newton’s Method in Multiple Dimensions

- in 1 dimension: \(x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} \)
- Replace 1\(^{st}\) derivative with gradient, 2\(^{nd}\) derivative with Hessian
- So,

\[
\tilde{x}_{k+1} = \tilde{x}_k - H^{-1}(\tilde{x}_k) \nabla f(\tilde{x}_k)
\]

- Tends to be fragile unless function very smooth and starting close to minimum
Other Methods

• What if you can’t / don’t want to use 2nd derivative?
• “Quasi-Newton” methods estimate Hessian
• Alternative: walk along (negative of) gradient…
 – Perform 1-D minimization along line passing through current point in the direction of the gradient
 – Once done, re-compute gradient, iterate
Steepest Descent
Problem With Steepest Descent
Conjugate Gradient Methods

- Idea: avoid "undoing" minimization that's already been done
- Walk along direction

\[d_{k+1} = -g_{k+1} + \beta_k d_k \]

- Polak and Ribiere formula:

\[\beta_k = \frac{g_{k+1}^T (g_{k+1} - g_k)}{g_k^T g_k} \]
Conjugate Gradient Methods

- Conjugate gradient implicitly obtains information about Hessian
- For quadratic function in n dimensions, gets exact solution in n steps (ignoring roundoff error)
- Works well in practice…
Value-Only Methods in Multi-Dimensions

- If can’t evaluate gradients, life is hard
- Can use approximate (numerically evaluated) gradients:

\[
\nabla f(x) = \begin{pmatrix}
\frac{\partial f}{\partial e_1} \\
\frac{\partial f}{\partial e_2} \\
\frac{\partial f}{\partial e_3} \\
\vdots
\end{pmatrix} \approx \begin{pmatrix}
\frac{f(x+\delta e_1)-f(x)}{\delta} \\
\frac{f(x+\delta e_2)-f(x)}{\delta} \\
\frac{f(x+\delta e_3)-f(x)}{\delta} \\
\vdots
\end{pmatrix}
\]
Generic Optimization Strategies

• Uniform sampling:
 – Cost rises exponentially with # of dimensions

• Compass search:
 – Try a step along each coordinate in turn
 – If can’t find a lower value, halve step size
Generic Optimization Strategies

- **Simulated annealing:**
 - Maintain a “temperature” T
 - Pick random direction d, and try a step of size dependent on T
 - If value lower than current, accept
 - If value higher than current, accept with probability $\sim \exp((f(x) - f(x'))/T)$
 - “Annealing schedule” – how fast does T decrease?

- Slow but robust: can avoid non-global minima
Downhill Simplex Method (Nelder-Mead)

• Keep track of \(n+1 \) points in \(n \) dimensions
 – Vertices of a simplex (triangle in 2D, tetrahedron in 3D, etc.)

• At each iteration: simplex can move, expand, or contract
 – Sometimes known as amoeba method: simplex “oozes” along the function
Downhill Simplex Method (Nelder-Mead)

- Basic operation: reflection

worst point (highest function value)

location probed by reflection step
Downhill Simplex Method (Nelder-Mead)

- If reflection resulted in best (lowest) value so far, try an expansion

- Else, if reflection helped at all, keep it
Downhill Simplex Method (Nelder-Mead)

- If reflection didn’t help (reflected point still worst) try a contraction

![Diagram showing location probed by contraction step]
Downhill Simplex Method (Nelder-Mead)

- If all else fails **shrink** the simplex around the **best** point
Downhill Simplex Method (Nelder-Mead)

- Method fairly efficient at each iteration (typically 1-2 function evaluations)
- Can take lots of iterations
- Somewhat flakey – sometimes needs restart after simplex collapses on itself, etc.
- Benefits: simple to implement, doesn’t need derivative, doesn’t care about function smoothness, etc.
Rosenbrock’s Function

\[f(x, y) = 100(y - x^2)^2 + (1 - x)^2 \]

- Designed specifically for testing optimization techniques
- Curved, narrow valley
Demo
Constrained Optimization

• Equality constraints: optimize $f(x)$ subject to $g_i(x) = 0$

• Method of Lagrange multipliers: convert to a higher-dimensional problem

• Minimize $f(x) + \sum \lambda_i g_i(x)$ w.r.t. $(x_1 \ldots x_n; \lambda_1 \ldots \lambda_k)$
Constrained Optimization

• Inequality constraints are harder...
• If objective function and constraints all linear, this is “linear programming”
• Observation: minimum must lie at corner of region formed by constraints
• Simplex method: move from vertex to vertex, minimizing objective function
Constrained Optimization

• General “nonlinear programming” hard
• Algorithms for special cases (e.g. quadratic)
Global Optimization

• In general, can’t guarantee that you’ve found global (rather than local) minimum

• Some heuristics:
 – Multi-start: try local optimization from several starting positions
 – Very slow simulated annealing
 – Use analytical methods (or graphing) to determine behavior, guide methods to correct neighborhoods
Software notes
Software

• Matlab:
 – fminbnd
 • For function of 1 variable with bound constraints
 • Based on golden section & parabolic interpolation
 • $f(x)$ doesn’t need to be defined at endpoints
 – fminsearch
 • Simplex method (i.e., no derivative needed)
 – Optimization Toolbox (available free @ Princeton)
 – meshgrid
 – surf

• Excel: Solver