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What’s This Course About? 

• Numerical Algorithms 

• Analysis of Data 

• Simulation 

 
– Learn through applications 



Scientific Computing 

Computers, from their invention until the 70s/80s, 
were used mostly to solve problems 

– Before “personal” computers (!) 

– Users were scientists: producers of numerical “codes” 
rather than consumers of “applications” 



  

Betty Jean Jennings and Fran Bilas with ENIAC I – 
first general-purpose electronic computer 



  

Stanisław Ulam with MANIAC I – about 104 ops/sec 



  



8 out of the top 10 
algorithms of the 
20th century are 
numerical in nature 
 
(we’ll cover 6 of them) 





 





Some challenging but important & 
common problems… 

  



Root finding 

E.g., estimate molal volume 
of a gas at a given pressure & 
temperature using van der 
Waals: 
      
      (p + a/v2)(v-b) = RT 



Solving systems of linear equations 

e.g., determine the current at 
each point in an electrical 
circuit, using Kirchoff’s rule 
and Ohm’s law. 



Optimization 

E.g., design the cheapest 
wastewater treatment given 
geography, pollution patterns, 
and environmental 
regulations. 



Integration 

E.g., compute the work 
performed in a mechanical 
system given a variable force 



How do we solve these problems? 

  



Numerical Analysis 

• Algorithms for solving numerical problems 
– Calculus, algebra, data analysis, etc. 

– Used even if answer is not simple/elegant: 
“math in the real world” 

• Analyze/design algorithms based on: 
– Running time, memory usage 

(both asymptotic and constant factors) 

– Applicability, stability, and accuracy 



Why Is This Hard/Interesting? 

• “Numbers” in computers ≠ numbers in math 
– Limited precision and range 

• Algorithms sometimes don’t give right answer 
– Iterative, randomized, approximate 

– Unstable 

• Tradeoffs in accuracy, stability, and running time 



Numbers in Computers 

and their consequences 



Numbers in Computers 

• “Integers” 
– Implemented in hardware: fast 

– Mostly sane, except for limited range 

• Floating point 
– Implemented in most hardware 

– Much larger range 
(e.g. −231... 231 for integers, vs. −2127... 2127 for FP) 

– Lower precision (e.g. 7 digits vs. 9) 

– “Relative” precision: actual accuracy depends on size 



Floating Point Numbers 

• Like scientific notation: e.g., c is 
  2.99792458 × 108 m/s 

• This has the form 
  (multiplier) × (base)(power) 

• In the computer, 
– Multiplier is called mantissa 

– Base is almost always 2 

– Power is called exponent 



Modern Floating Point Formats 

• Almost all computers use IEEE 754 standard 

• “Single precision”: 
– 24-bit mantissa, base = 2, 8-bit exponent, 1 bit sign 

– All fits into 32 bits (!) – mantissa has implicit leading 1 

• “Double precision”: 
– 53-bit mantissa, base = 2, 11-bit exponent, 1 bit sign 

– All fits into 64 bits 

• Sometimes also have “extended formats” 



Other Number Representations 

• Fixed point 
– Absolute accuracy doesn’t vary with magnitude 

– Represent fractions to a fixed precision 

– Not supported directly in hardware, but can hack it 

• “Infinite precision” 
– Integers or rationals allocated dynamically 

– Can grow up to available memory 

– No direct support in hardware, but libraries available 



Consequences of Floating Point 

• “Machine epsilon”: smallest positive number you 
can add to 1.0 and get something other than 1.0 

• For single precision: ε  ≈ 10−7 

– No such number as 1.000000001 

– Rule of thumb: “almost 7 digits of precision” 

• For double: ε  ≈ 2 × 10−16 

– Rule of thumb: “not quite 16 digits of precision” 

• These are all relative numbers 



So What? 

• Simple example: add 1/10 to itself 10 times 



Yikes! 

• Result: 1/10 + 1/10 + …  ≠  1 

• Reason: 0.1 can’t be represented exactly in 
binary floating point 
– Like 1/3 in decimal 

 

• Rule of thumb: comparing floating point 
numbers for equality is always wrong 



More Subtle Problem 

• Using quadratic formula 
 
 
to solve x2 – 9999x + 1 = 0 
– Only 4 digits: single precision should be OK, right? 

• Correct answers: 0.0001…  and 9998.999… 

• Actual answers in single precision: 0 and 9999 
– First answer is 100% off! 
– Total cancellation in numerator because b2 >> 4ac 

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑎

2𝑎
 



Accuracy 

error is inevitable 



Catalog of Errors 

• Roundoff error – caused by limitations of 
floating-point “numbers” 

• Truncation error – caused by stopping an 
approximate technique early 
– e.g., too few terms of Taylor series for sin(θ ) 

• Inherent error – limitation on data available 
– “Garbage in, garbage out” 

• Statistical error – too few random samples 



Error Tradeoff 

[Heath] 



Other Considerations of Problem 
Formulation & Algorithm 

Sensitivity & conditioning, stability & accuracy 



Well-Posedness and Sensitivity 

• Problem is well-posed if solution 
– exists 

– is unique 

– depends continuously on problem data 

 Otherwise, problem is ill-posed 
 

• Solution may still be sensitive to input data 
– Ill-conditioned: relative change in solution 

much larger than that in input data 

[Heath] 



Sensitivity & Conditioning 

• Some problems propagate error in bad ways 
– e.g., y = tan(x) sensitive to small changes in x near π/2 

• Small error in input → huge error in solution: 
ill-conditioned 

• Well-conditioned problems may have 
ill-conditioned inverses, and vice versa 
– e.g., y = atan(x) 



Stability & Accuracy 

• A stable algorithm introduces “only a little” 
computational error 
– Solution is an exact to solution to a “nearby” problem 

– Computational error is indistinguishable from small 
data error 

• An accurate algorithm produces a solution that is 
close to the true solution 
– stable algorithm + well-conditioned problem 

  → accurate solution. 



Running time 

  



Running Time 

• Depending on algorithm, we’ll look at: 
– Asymptotic analysis for noniterative algorithms 

(e.g., most methods for inverting an n×n matrix 
require time proportional to n3) 

– Convergence order for iterative approximate algorithms 
(e.g., an answer to precision δ  might require 
 iterations proportional to 1/δ or 1/δ 2 ) 



Course Overview 

  



Basic Techniques 

• root finding 

• optimization 

• linear systems 

• integration 

• ODEs, PDEs 

• Plus… 



Signal Analysis & Signal Processing 

[Matusik & McMillan] 



Data Analysis and Model Fitting 



Visualization 



Simulation 



Simulation 



Simulation 



Simulation 

“ In summary, a zombie outbreak is likely to lead to the 
collapse of civilisation, unless it is dealt with quickly. 
While aggressive quarantine may contain the epidemic, 
or a cure may lead to coexistence of humans and 
zombies, the most effective way to contain the rise of 
the undead is to hit hard and hit often. As seen in the 
movies, it is imperative that zombies are dealt with 
quickly, or else we are all in a great deal of trouble.” 
  – Munz et al. 2009 



Course Information 

  



Mechanics 

• 5 programming assignments: 50% 
– Typically more thought than coding 

– Some in MATLAB, some in Java 

– Analysis, writeup counts a lot! 

• 2 in-class exams: 25% 
– Short-answer, focusing on topics not covered in 

programming assignments 

• Final project (in groups): 25% 



Assignment 0 

Will be available on course web page by tomorrow, 
due Tuesday Sep 25 
 

Before then: 

• Review syllabus and schedule at 
 http://www.cs.princeton.edu/~cos323/ 

• Install Matlab 

• Sign up for Piazza at 
 http://piazza.com/class#fall2011/cos323 

 

 

http://www.cs.princeton.edu/~cos323/
http://piazza.com/class
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