
COS 323: Computing for the
Physical and Social Sciences

COS 323

• Professor:
 Szymon Rusinkiewicz

• TAs:
 Mark Browning Fisher Yu Victoria Yao

• Course webpage
 http://www.cs.princeton.edu/~cos323/

http://www.cs.princeton.edu/~cos323/

What’s This Course About?

• Numerical Algorithms

• Analysis of Data

• Simulation

– Learn through applications

Scientific Computing

Computers, from their invention until the 70s/80s,
were used mostly to solve problems

– Before “personal” computers (!)

– Users were scientists: producers of numerical “codes”
rather than consumers of “applications”

Betty Jean Jennings and Fran Bilas with ENIAC I –
first general-purpose electronic computer

Stanisław Ulam with MANIAC I – about 104 ops/sec

8 out of the top 10
algorithms of the
20th century are
numerical in nature

(we’ll cover 6 of them)

Some challenging but important &
common problems…

Root finding

E.g., estimate molal volume
of a gas at a given pressure &
temperature using van der
Waals:

 (p + a/v2)(v-b) = RT

Solving systems of linear equations

e.g., determine the current at
each point in an electrical
circuit, using Kirchoff’s rule
and Ohm’s law.

Optimization

E.g., design the cheapest
wastewater treatment given
geography, pollution patterns,
and environmental
regulations.

Integration

E.g., compute the work
performed in a mechanical
system given a variable force

How do we solve these problems?

Numerical Analysis

• Algorithms for solving numerical problems
– Calculus, algebra, data analysis, etc.

– Used even if answer is not simple/elegant:
“math in the real world”

• Analyze/design algorithms based on:
– Running time, memory usage

(both asymptotic and constant factors)

– Applicability, stability, and accuracy

Why Is This Hard/Interesting?

• “Numbers” in computers ≠ numbers in math
– Limited precision and range

• Algorithms sometimes don’t give right answer
– Iterative, randomized, approximate

– Unstable

• Tradeoffs in accuracy, stability, and running time

Numbers in Computers

and their consequences

Numbers in Computers

• “Integers”
– Implemented in hardware: fast

– Mostly sane, except for limited range

• Floating point
– Implemented in most hardware

– Much larger range
(e.g. −231... 231 for integers, vs. −2127... 2127 for FP)

– Lower precision (e.g. 7 digits vs. 9)

– “Relative” precision: actual accuracy depends on size

Floating Point Numbers

• Like scientific notation: e.g., c is
 2.99792458 × 108 m/s

• This has the form
 (multiplier) × (base)(power)

• In the computer,
– Multiplier is called mantissa

– Base is almost always 2

– Power is called exponent

Modern Floating Point Formats

• Almost all computers use IEEE 754 standard

• “Single precision”:
– 24-bit mantissa, base = 2, 8-bit exponent, 1 bit sign

– All fits into 32 bits (!) – mantissa has implicit leading 1

• “Double precision”:
– 53-bit mantissa, base = 2, 11-bit exponent, 1 bit sign

– All fits into 64 bits

• Sometimes also have “extended formats”

Other Number Representations

• Fixed point
– Absolute accuracy doesn’t vary with magnitude

– Represent fractions to a fixed precision

– Not supported directly in hardware, but can hack it

• “Infinite precision”
– Integers or rationals allocated dynamically

– Can grow up to available memory

– No direct support in hardware, but libraries available

Consequences of Floating Point

• “Machine epsilon”: smallest positive number you
can add to 1.0 and get something other than 1.0

• For single precision: ε ≈ 10−7

– No such number as 1.000000001

– Rule of thumb: “almost 7 digits of precision”

• For double: ε ≈ 2 × 10−16

– Rule of thumb: “not quite 16 digits of precision”

• These are all relative numbers

So What?

• Simple example: add 1/10 to itself 10 times

Yikes!

• Result: 1/10 + 1/10 + … ≠ 1

• Reason: 0.1 can’t be represented exactly in
binary floating point
– Like 1/3 in decimal

• Rule of thumb: comparing floating point
numbers for equality is always wrong

More Subtle Problem

• Using quadratic formula

to solve x2 – 9999x + 1 = 0
– Only 4 digits: single precision should be OK, right?

• Correct answers: 0.0001… and 9998.999…

• Actual answers in single precision: 0 and 9999
– First answer is 100% off!
– Total cancellation in numerator because b2 >> 4ac

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑎

2𝑎

Accuracy

error is inevitable

Catalog of Errors

• Roundoff error – caused by limitations of
floating-point “numbers”

• Truncation error – caused by stopping an
approximate technique early
– e.g., too few terms of Taylor series for sin(θ)

• Inherent error – limitation on data available
– “Garbage in, garbage out”

• Statistical error – too few random samples

Error Tradeoff

[Heath]

Other Considerations of Problem
Formulation & Algorithm

Sensitivity & conditioning, stability & accuracy

Well-Posedness and Sensitivity

• Problem is well-posed if solution
– exists

– is unique

– depends continuously on problem data

 Otherwise, problem is ill-posed

• Solution may still be sensitive to input data
– Ill-conditioned: relative change in solution

much larger than that in input data

[Heath]

Sensitivity & Conditioning

• Some problems propagate error in bad ways
– e.g., y = tan(x) sensitive to small changes in x near π/2

• Small error in input → huge error in solution:
ill-conditioned

• Well-conditioned problems may have
ill-conditioned inverses, and vice versa
– e.g., y = atan(x)

Stability & Accuracy

• A stable algorithm introduces “only a little”
computational error
– Solution is an exact to solution to a “nearby” problem

– Computational error is indistinguishable from small
data error

• An accurate algorithm produces a solution that is
close to the true solution
– stable algorithm + well-conditioned problem

 → accurate solution.

Running time

Running Time

• Depending on algorithm, we’ll look at:
– Asymptotic analysis for noniterative algorithms

(e.g., most methods for inverting an n×n matrix
require time proportional to n3)

– Convergence order for iterative approximate algorithms
(e.g., an answer to precision δ might require
 iterations proportional to 1/δ or 1/δ 2)

Course Overview

Basic Techniques

• root finding

• optimization

• linear systems

• integration

• ODEs, PDEs

• Plus…

Signal Analysis & Signal Processing

[Matusik & McMillan]

Data Analysis and Model Fitting

Visualization

Simulation

Simulation

Simulation

Simulation

“ In summary, a zombie outbreak is likely to lead to the
collapse of civilisation, unless it is dealt with quickly.
While aggressive quarantine may contain the epidemic,
or a cure may lead to coexistence of humans and
zombies, the most effective way to contain the rise of
the undead is to hit hard and hit often. As seen in the
movies, it is imperative that zombies are dealt with
quickly, or else we are all in a great deal of trouble.”
 – Munz et al. 2009

Course Information

Mechanics

• 5 programming assignments: 50%
– Typically more thought than coding

– Some in MATLAB, some in Java

– Analysis, writeup counts a lot!

• 2 in-class exams: 25%
– Short-answer, focusing on topics not covered in

programming assignments

• Final project (in groups): 25%

Assignment 0

Will be available on course web page by tomorrow,
due Tuesday Sep 25

Before then:

• Review syllabus and schedule at
 http://www.cs.princeton.edu/~cos323/

• Install Matlab

• Sign up for Piazza at
 http://piazza.com/class#fall2011/cos323

http://www.cs.princeton.edu/~cos323/
http://piazza.com/class

	COS 323: Computing for the�Physical and Social Sciences
	COS 323
	What’s This Course About?
	Scientific Computing
	
	
	
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Some challenging but important & common problems…
	Root finding
	Solving systems of linear equations
	Optimization
	Integration
	How do we solve these problems?
	Numerical Analysis
	Why Is This Hard/Interesting?
	Numbers in Computers
	Numbers in Computers
	Floating Point Numbers
	Modern Floating Point Formats
	Other Number Representations
	Consequences of Floating Point
	So What?
	Yikes!
	More Subtle Problem
	Accuracy
	Catalog of Errors
	Error Tradeoff
	Other Considerations of Problem Formulation & Algorithm
	Well-Posedness and Sensitivity
	Sensitivity & Conditioning
	Stability & Accuracy
	Running time
	Running Time
	Course Overview
	Basic Techniques
	Signal Analysis & Signal Processing
	Data Analysis and Model Fitting
	Visualization
	Simulation
	Simulation
	Simulation
	Simulation
	Course Information
	Mechanics
	Assignment 0

