6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications

Min cut problem

Input. An edge-weighted digraph, source vertex s, and target vertex t.

Each edge has a positive capacity.

Def. A s-t cut (cut) is a partition of the vertices into two disjoint sets, with s in one set A and t in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

![Diagram of a digraph with capacities](image)
MinCut Problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets, with s in one set A and t in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.

MinCut Application (1950s)

"Free world" goal. Cut supplies (if cold war turns into real war).

Potential MinCut Application (2010s)

Government-in-power's goal. Cut off communication to set of people.
Maxflow problem

Input. An edge-weighted digraph, source vertex \(s \), and target vertex \(t \).

- Each edge has a positive capacity.

Def. An *st-flow (flow)* is an assignment of values to the edges such that:
 - Capacity constraint: \(0 \leq \text{edge's flow} \leq \text{edge's capacity} \).
 - Local equilibrium: inflow = outflow at every vertex (except \(s \) and \(t \)).

Def. The value of a flow is the inflow at \(t \).

We assume no edges point to \(s \) or from \(t \).

Def. The value of a flow is the inflow at \(t \).

Maximum st-flow (maxflow) problem. Find a flow of maximum value.
Maxflow application (1950s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

"Free world" goal. Maximize flow of information to specified set of people.

Summary

Input. A weighted digraph, source vertex s, and target vertex t.

Mincut problem. Find a cut of minimum capacity.

Maxflow problem. Find a flow of maximum value.

Remarkable fact. These two problems are dual!
Ford-Fulkerson algorithm

Initialization. Start with 0 flow.

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

2nd augmenting path

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

4th augmenting path

Termination. All paths from s to t are blocked by either a
- Full forward edge.
- Empty backward edge.

Ford-Fulkerson algorithm

- Start with 0 flow.
- While there exists an augmenting path:
 - find an augmenting path
 - compute bottleneck capacity
 - increase flow on that path by bottleneck capacity

Questions.
- How to compute a mincut?
- How to find an augmenting path?
- If FF terminates, does it always compute a maxflow?
- Does FF always terminate? If so, after how many augmentations?
Def. The net flow across a cut \((A, B)\) is the sum of the flows on its edges from \(A\) to \(B\) minus the sum of the flows on its edges from \(B\) to \(A\).

Flow-value lemma. Let \(f\) be any flow and let \((A, B)\) be any cut. Then, the net flow across \((A, B)\) equals the value of \(f\).

\[
\text{net flow across cut } = \sum_{u \in A} f^+ (u) - \sum_{v \in B} f^+ (v) = \text{value of } f
\]
Relationship between flows and cuts

Weak duality. Let \(f \) be any flow and let \((A, B) \) be any cut. Then, the value of the flow \(\leq \) the capacity of the cut.

Pf. Value of flow \(f = \) net flow across cut \((A, B) \leq \) capacity of cut \((A, B) \).

\[
\text{value of flow} = 27 \\
\text{capacity of cut} = 30
\]

Maxflow-mincut theorem

Augmenting path theorem. A flow \(f \) is a maxflow iff no augmenting paths.

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow \(f \):

i. There exists a cut whose capacity equals the value of the flow \(f \).

ii. \(f \) is a maxflow.

iii. There is no augmenting path with respect to \(f \).

[\[i \Rightarrow ii \]]

- Suppose that \((A, B) \) is a cut with capacity equal to the value of \(f \).
- Then, the value of any flow \(f' \leq \) capacity of \((A, B) = \) value of \(f \).
- Thus, \(f \) is a maxflow.

[\[ii \Rightarrow iii \]]

- We prove contrapositive: \(\sim iii \Rightarrow \sim ii \).

- Suppose that there is an augmenting path with respect to \(f \).
- Can improve flow \(f \) by sending flow along this path.
- Thus, \(f \) is not a maxflow.

[\[iii \Rightarrow i \]]

- Suppose that there is no augmenting path with respect to \(f \).
- Let \((A, B) \) be a cut where \(A \) is the set of vertices connected to \(s \) by an undirected path with no full forward or empty backward edges.
- By definition, \(s \) is in \(A \); since no augmenting path, \(t \) is in \(B \).
- Capacity of cut = net flow across cut = value of flow \(f \).
Computing a mincut from a maxflow

To compute mincut \((A, B)\) from maxflow \(f\):

- By augmenting path theorem, no augmenting paths with respect to \(f\).
- Compute \(A\) = set of vertices connected to \(s\) by an undirected path
 with no full forward or empty backward edges.

Ford-Fulkerson algorithm

- Start with 0 flow.
- While there exists an augmenting path:
 - find an augmenting path
 - compute bottleneck capacity
 - increase flow on that path by bottleneck capacity

Questions.

- How to compute a mincut? **Easy.**
- How to find an augmenting path? **BFS works well.**
- If FF terminates, does it always compute a maxflow? **Yes.**
- Does FF always terminate? If so, after how many augmentations?

Ford-Fulkerson algorithm with integer capacities

Important special case. Edge capacities are integers between 1 and \(U\).

Invariant. The flow is **integer-valued** throughout Ford-Fulkerson.

Pf. [by induction]
- Bottleneck capacity is an integer.
- Flow on an edge increases/decreases by bottleneck capacity.

Proposition. Number of augmentations \(\leq\) the value of the maxflow.

Pf. Each augmentation increases the value by at least 1.

Integrality theorem. There exists an integer-valued maxflow.

Pf. Ford-Fulkerson terminates and maxflow that it finds is integer-valued.
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

initialize with 0 flow

1st iteration

2nd iteration

3rd iteration
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

![Diagram](image1)

4th iteration

![Diagram](image2)

99th iteration

![Diagram](image3)

200th iteration
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow. Can be exponential in input size

Good news. This case is easily avoided. [use shortest/fattest path]

How to choose augmenting paths?

FF performance depends on choice of augmenting paths.

<table>
<thead>
<tr>
<th>augmenting path</th>
<th>number of paths</th>
<th>implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>(\leq \frac{1}{2} E V)</td>
<td>queue (BFS)</td>
</tr>
<tr>
<td>fattest path</td>
<td>(\leq E \ln(E U))</td>
<td>priority queue</td>
</tr>
<tr>
<td>random path</td>
<td>(\leq E U)</td>
<td>randomized queue</td>
</tr>
<tr>
<td>DFS path</td>
<td>(\leq E U)</td>
<td>stack (DFS)</td>
</tr>
</tbody>
</table>

Digraph with \(V\) vertices, \(E\) edges, and integer capacities between 1 and \(U\)

6.4 Maximum Flow

- Introduction
- Ford-Fulkerson algorithm
- Maxflow-mincut theorem
- Running time analysis
- Java implementation
- Applications

Flow network representation

Flow edge data type. Associate flow \(f_e\) and capacity \(c_e\) with edge \(e = v \rightarrow w\).

Flow network data type. Need to process edge \(e = v \rightarrow w\) in either direction: Include \(e\) in both \(v\) and \(w\)'s adjacency lists.

Residual capacity.
- Forward edge: residual capacity = \(c_e - f_e\).
- Backward edge: residual capacity = \(f_e\).

Augment flow.
- Forward edge: add \(\Delta\).
- Backward edge: subtract \(\Delta\).
Flow network representation

Residual network. A useful view of a flow network.

Key point. Augmenting path in original network is equivalent to directed path in residual network.

Flow edge API

```java
public class FlowEdge {
    // from and to
    private final int v, w;
    // capacity
    private final double capacity;
    // flow
    private double flow;

    public FlowEdge(int v, int w, double capacity) {
        this.v = v;
        this.w = w;
        this.capacity = capacity;
    }

    public int from() { return v; }
    public int to() { return w; }
    public double capacity() { return capacity; }
    public double flow() { return flow; }

    public int other(int vertex) {
        if (vertex == v) return w;
        else if (vertex == w) return v;
        else throw new RuntimeException("Illegal endpoint");
    }

    public double residualCapacityTo(int vertex) {
        if (vertex == v) return flow;
        else if (vertex == w) return capacity - flow;
        else throw new IllegalArgumentException();
    }

    public void addResidualFlowTo(int vertex, double delta) {
        if (vertex == v) flow -= delta;
        else if (vertex == w) flow += delta;
        else throw new IllegalArgumentException();
    }
}
```

Flow edge: Java implementation

```java
public class FlowEdge {
    private final int v, w;  // from and to
    private final double capacity;  // capacity
    private double flow;  // flow

    public FlowEdge(int v, int w, double capacity) {
        this.v = v;
        this.w = w;
        this.capacity = capacity;
    }

    public int from() { return v; }
    public int to() { return w; }
    public double capacity() { return capacity; }
    public double flow() { return flow; }

    public int other(int vertex) {
        if (vertex == v) return w;
        else if (vertex == w) return v;
        else throw new RuntimeException("Illegal endpoint");
    }

    public double residualCapacityTo(int vertex) {
        if (vertex == v) return flow;
        else if (vertex == w) return capacity - flow;
        else throw new IllegalArgumentException();
    }

    public void addResidualFlowTo(int vertex, double delta) {
        if (vertex == v) flow -= delta;
        else if (vertex == w) flow += delta;
        else throw new IllegalArgumentException();
    }
}
```

Flow edge: Java implementation (continued)
Flow network API

```java
public class FlowNetwork {
    FlowNetwork(int V) { /* create an empty flow network with V vertices */ }
    FlowNetwork(In in) { /* construct flow network input stream */ }
    void addEdge(FlowEdge e) { /* add edge e to this flow network */ }
    Iterable<FlowEdge> adj(int v) { /* forward and backward edges incident to v */ }
    Iterable<FlowEdge> edges() { /* all edges in this flow network */ }
    int V() { /* number of vertices */ }
    int E() { /* number of edges */ }
    String toString() { /* string representation */ }
}
```

Conventions. Allow self-loops and parallel edges.

Flow network: adjacency-lists representation

Maintain vertex-indexed array of FlowEdge lists (use Bag abstraction).

```java
tinyFN.txt
```

Ford-Fulkerson: Java implementation

```java
public class FordFulkerson {
    private final int V;
    private FlowEdge[] adj;
    private Bag<Edge> edgeTo;
    private double value; // value of flow

    public FordFulkerson(FlowNetwork G, int s, int t) {
        value = 0.0;
        while (hasAugmentingPath(G, s, t)) {
            double bottle = Double.POSITIVE_INFINITY;
            for (int v = s; v != t; v = edgeTo[v].other(s))
                bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(s));
            for (int v = s; v != t; v = edgeTo[v].other(s))
                edgeTo[v].addResidualFlowTo(s, bottle);
            value += bottle;
        }
    }

    public double hasAugmentingPath(FlowNetwork G, int s, int t) {
        /* See next slide. */
        return value;
    }
}
```
Finding a shortest augmenting path (cf. breadth-first search)

```java
private boolean hasAugmentingPath(FlowNetwork G, int s, int t) {
    edgeTo = new FlowEdge(G.V());
    marked = new boolean[G.V()];
    Queue<Integer> queue = new Queue<Integer>();
    queue.enqueue(s);
    marked[s] = true;
    while (!queue.isEmpty()) {
        int v = queue.dequeue();
        for (FlowEdge e : G.adj(v)) {
            int w = e.other(v);
            if (e.residualCapacityTo(w) > 0 && !marked[w]) {
                edgeTo[w] = e;
                marked[w] = true;
                queue.enqueue(w);
            }
        }
    }
    return marked[t];
}
```

Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Distributed computing.
- Security of statistical data.
- Egalitarian stable matching.
- Multi-camera scene reconstruction.
- Sensor placement for homeland security.
- Many, many, more.

Bipartite matching problem

N students apply for N jobs.

Each gets several offers.

Is there a way to match all students to jobs?

bipartite matching problem

<table>
<thead>
<tr>
<th>Student</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Adobe</td>
</tr>
<tr>
<td>Bob</td>
<td>Amazon</td>
</tr>
<tr>
<td>Carol</td>
<td>Google</td>
</tr>
<tr>
<td>Dave</td>
<td>Facebook</td>
</tr>
<tr>
<td>Eliza</td>
<td>Amazon</td>
</tr>
<tr>
<td>Yahoo</td>
<td></td>
</tr>
<tr>
<td>Alice</td>
<td>Bob</td>
</tr>
<tr>
<td>Alice</td>
<td>Carol</td>
</tr>
<tr>
<td>Eliza</td>
<td>Alice</td>
</tr>
<tr>
<td>Eliza</td>
<td>Carol</td>
</tr>
<tr>
<td>Bob</td>
<td>Alice</td>
</tr>
<tr>
<td>Eliza</td>
<td>Bob</td>
</tr>
<tr>
<td>Dave</td>
<td>Alice</td>
</tr>
<tr>
<td>Eliza</td>
<td>Carol</td>
</tr>
</tbody>
</table>

Liver and hepatic vascularization segmentation
Bipartite matching problem

Given a bipartite graph, find a perfect matching.

Network flow formulation of bipartite matching

1-1 correspondence between perfect matchings in bipartite graph and integer-valued maxflows of value N.

What the mincut tells us

Goal. When no perfect matching, explain why.
What the mincut tells us

MinCut. Consider mincut (A, B).
- Let $S =$ students on s side of cut.
- Let $T =$ companies on s side of cut.
- Fact: $|S| > |T|$; students in S can be matched only to companies in T.

Bottom line. When no perfect matching, mincut explains why.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

<table>
<thead>
<tr>
<th>i</th>
<th>team</th>
<th>wins</th>
<th>losses</th>
<th>to play</th>
<th>ATL</th>
<th>PHI</th>
<th>NYM</th>
<th>MON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Atlanta</td>
<td>83</td>
<td>71</td>
<td>8</td>
<td>-</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Philly</td>
<td>80</td>
<td>79</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>New York</td>
<td>78</td>
<td>78</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Montreal</td>
<td>77</td>
<td>82</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Philadelphia is mathematically eliminated.
- Philadelphia finishes with ≤ 83 wins.
- Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won and left to play, but on whom they’re against.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

<table>
<thead>
<tr>
<th>i</th>
<th>team</th>
<th>wins</th>
<th>losses</th>
<th>to play</th>
<th>NYY</th>
<th>BAL</th>
<th>BOS</th>
<th>TOR</th>
<th>DET</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>New York</td>
<td>75</td>
<td>59</td>
<td>28</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Baltimore</td>
<td>71</td>
<td>63</td>
<td>28</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Boston</td>
<td>69</td>
<td>66</td>
<td>27</td>
<td>8</td>
<td>2</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Toronto</td>
<td>63</td>
<td>72</td>
<td>27</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Detroit</td>
<td>49</td>
<td>86</td>
<td>27</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Detroit is mathematically eliminated.
- Detroit finishes with ≤ 76 wins.
- Wins for $R = \{ NYY, BAL, BOS, TOR \} = 278$.
- Remaining games among $\{ NYY, BAL, BOS, TOR \} = 3 + 8 + 7 + 2 + 7 = 27$.
- Average team in R wins $305/4 = 76.25$ games.
Baseball elimination problem: maxflow formulation

Intuition. Remaining games flow from s to t.

![Diagram showing the maxflow formulation for the baseball elimination problem.]

- **Fact.** Team 4 not eliminated iff all edges pointing from s are full in maxflow.

Maximum flow algorithms: theory

(Yet another) holy grail for theoretical computer scientists.

<table>
<thead>
<tr>
<th>Year</th>
<th>Method</th>
<th>Worst Case</th>
<th>Discovered By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>simplex</td>
<td>$E^3 U$</td>
<td>Dantzig</td>
</tr>
<tr>
<td>1955</td>
<td>augmenting path</td>
<td>$E^2 U$</td>
<td>Ford-Fulkerson</td>
</tr>
<tr>
<td>1970</td>
<td>shortest augmenting path</td>
<td>E^3</td>
<td>Dinitz, Edmonds-Karp</td>
</tr>
<tr>
<td>1970</td>
<td>fastest augmenting path</td>
<td>$E^2 \log E \log(EU)$</td>
<td>Dinitz, Edmonds-Karp</td>
</tr>
<tr>
<td>1977</td>
<td>blocking flow</td>
<td>$E^{5/2}$</td>
<td>Cherkasky</td>
</tr>
<tr>
<td>1978</td>
<td>blocking flow</td>
<td>$E^{7/3}$</td>
<td>Galil</td>
</tr>
<tr>
<td>1983</td>
<td>dynamic trees</td>
<td>$E^{2} \log E$</td>
<td>Sleator-Tarjan</td>
</tr>
<tr>
<td>1985</td>
<td>capacity scaling</td>
<td>$E^{2} \log U$</td>
<td>Gabow</td>
</tr>
<tr>
<td>1997</td>
<td>length function</td>
<td>$E^{3/2} \log E \log U$</td>
<td>Goldberg-Rao</td>
</tr>
<tr>
<td>2012</td>
<td>compact network</td>
<td>$E^{2} / \log E$</td>
<td>Orlin</td>
</tr>
</tbody>
</table>

maxflow algorithms for sparse digraphs with E edges, integer capacities between 1 and U

Summary

- **Mincut problem.** Find an st-cut of minimum capacity.
- **Maxflow problem.** Find an st-flow of maximum value.
- **Duality.** Value of the maxflow = capacity of mincut.

Proven successful approaches.
- Ford-Fulkerson (various augmenting-path strategies).
- Preflow-push (various versions).

Open research challenges.
- Practice: solve real-word maxflow/mincut problems in linear time.
- Theory: prove it for worst-case inputs.
- Still much to be learned!
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications