
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

5.3 SUBSTRING SEARCH

‣ introduction

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp
http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp

5.3 SUBSTRING SEARCH

3

Substring search

Goal. Find pattern of length M in a text of length N.

typically N >> M

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

4

Substring search applications

Goal. Find pattern of length M in a text of length N.

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

typically N >> M

5

Substring search applications

Goal. Find pattern of length M in a text of length N.

Computer forensics. Search memory or disk for signatures,

e.g., all URLs or RSA keys that the user has entered.

http://citp.princeton.edu/memory

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

typically N >> M

6

Substring search applications

Goal. Find pattern of length M in a text of length N.

Identify patterns indicative of spam.

・ PROFITS

・ L0SE WE1GHT

・ herbal Viagra

・ There is no catch.

・ This is a one-time mailing.

・ This message is sent in compliance with spam regulations.

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

typically N >> M

7

Substring search applications

Electronic surveillance.
Need to monitor all

internet traffic.
(security)

No way!
(privacy)

Well, we’re mainly
interested in

“ATTACK AT DAWN”

OK. Build a
machine that just

looks for that.

“ATTACK AT DAWN”
substring search

machine

found
8

Substring search applications

Screen scraping. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of

pattern Last Trade:.

http://finance.yahoo.com/q?s=goog

...
<tr>
<td class= "yfnc_tablehead1"
width= "48%">
Last Trade:
</td>
<td class= "yfnc_tabledata1">
<big>452.92</big>
</td></tr>
<td class= "yfnc_tablehead1"
width= "48%">
Trade Time:
</td>
<td class= "yfnc_tabledata1">
...

9

Screen scraping: Java implementation

Java library. The indexOf() method in Java's string library returns the index

of the first occurrence of a given string, starting at a given offset.

public class StockQuote
{
 public static void main(String[] args)
 {
 String name = "http://finance.yahoo.com/q?s=";
 In in = new In(name + args[0]);
 String text = in.readAll();
 int start = text.indexOf("Last Trade:", 0);
 int from = text.indexOf("", start);
 int to = text.indexOf("", from);
 String price = text.substring(from + 3, to);
 StdOut.println(price);
 }
}

% java StockQuote goog
582.93

% java StockQuote msft
24.84

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp

5.3 SUBSTRING SEARCH

Check for pattern starting at each text position.

11

Brute-force substring search

Brute-force substring search

 i j i+j 0 1 2 3 4 5 6 7 8 9 10

 A B A C A D A B R A C

 0 2 2 A B R A
 1 0 1 A B R A
 2 1 3 A B R A
 3 0 3 A B R A
 4 1 5 A B R A
 5 0 5 A B R A
 6 4 10 A B R A

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match

Check for pattern starting at each text position.

public static int search(String pat, String txt)
{
 int M = pat.length();
 int N = txt.length();
 for (int i = 0; i <= N - M; i++)
 {
 int j;
 for (j = 0; j < M; j++)
 if (txt.charAt(i+j) != pat.charAt(j))
 break;
 if (j == M) return i;
 }
 return N;
}

12

Brute-force substring search: Java implementation

index in text where
pattern starts

not found

i j i + j 0 1 2 3 4 5 6 7 8 9 1 0

 A B A C A D A B R A C

4 3 7 A D A C R

5 0 5 A D A C R

Brute-force algorithm can be slow if text and pattern are repetitive.

Worst case. ~ M N char compares.
13

Brute-force substring search: worst case

Brute-force substring search (worst case)

 i j i+j 0 1 2 3 4 5 6 7 8 9

 A A A A A A A A A B

 0 4 4 A A A A B
 1 4 5 A A A A B
 2 4 6 A A A A B
 3 4 7 A A A A B
 4 4 8 A A A A B
 5 5 10 A A A A B

txt

pat

Brute-force substring search

 i j i+j 0 1 2 3 4 5 6 7 8 9 10

 A B A C A D A B R A C

 0 2 2 A B R A
 1 0 1 A B R A
 2 1 3 A B R A
 3 0 3 A B R A
 4 1 5 A B R A
 5 0 5 A B R A
 6 4 10 A B R A

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match

In many applications, we want to avoid backup in text stream.

・Treat input as stream of data.

・Abstract model: standard input.

Brute-force algorithm needs backup for every mismatch.

Approach 1. Maintain buffer of last M characters.

Approach 2. Stay tuned.

Backup

14

“ATTACK AT DAWN”
substring search

machine

found

A B

 A A A A A B

A B

 A A A A A B

matched chars
mismatch

shift pattern right one position

backup

Same sequence of char compares as previous implementation.

・ i points to end of sequence of already-matched chars in text.

・ j stores # of already-matched chars (end of sequence in pattern).

public static int search(String pat, String txt)
{
 int i, N = txt.length();
 int j, M = pat.length();
 for (i = 0, j = 0; i < N && j < M; i++)
 {
 if (txt.charAt(i) == pat.charAt(j)) j++;
 else { i -= j; j = 0; }
 }
 if (j == M) return i - M;
 else return N;
}

15

Brute-force substring search: alternate implementation

explicit backup

i j 0 1 2 3 4 5 6 7 8 9 1 0

 A B A C A D A B R A C

7 3 A D A C R

5 0 A D A C R

16

Algorithmic challenges in substring search

Brute-force is not always good enough.

Theoretical challenge. Linear-time guarantee.

Practical challenge. Avoid backup in text stream.

fundamental algorithmic problem

Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now is the time for
each good person to come to the aid of their party. Now is the time for all good people to come to the aid
of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for many or all good people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for many good people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
all good people to come to the aid of their attack at dawn party. Now is the time for each person to come
to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
the time for all good Republicans to come to the aid of their party. Now is the time for all good people
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.

often no room or time to save text

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp

5.3 SUBSTRING SEARCH

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BAAAAAAAAA.

・Suppose we match 5 chars in pattern, with mismatch on 6th char.

・We know previous 6 chars in text are BAAAAB.

・Don't need to back up text pointer!

Knuth-Morris-Pratt algorithm. Clever method to always avoid backup. (!)
18

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

assuming { A, B } alphabet

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

DFA is abstract string-searching machine.

・Finite number of states (including start and halt).

・Exactly one transition for each char in alphabet.

・Accept if sequence of transitions leads to halt state.

Deterministic finite state automaton (DFA)

19Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

graphical representation

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

internal representation

If in state j reading char c:

 if j is 6 halt and accept

else move to state dfa[c][j]

DFA simulation demo

20

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

A A B A C A A B A B A C A A

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]

10 32 4 65

DFA simulation demo

21

6BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A A B A C A A B A B A C A A

C

substring found

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

pat.charAt(j)

dfa[][j]

Q. What is interpretation of DFA state after reading in txt[i]?

A. State = number of characters in pattern that have been matched.

Ex. DFA is in state 3 after reading in txt[0..6].

Interpretation of Knuth-Morris-Pratt DFA

22

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

0 1 2 3 4 5 6 7 8
B C B A A B A C Atxt

0 1 2 3 4 5
A B A B A Cpat

suffix of txt[0..6] prefix of pat[]

i

length of longest prefix of pat[]
that is a suffix of txt[0..i]

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.

・Need to precompute dfa[][] from pattern.

・Text pointer i never decrements.

Running time.

・Simulate DFA on text: at most N character accesses.

・Build DFA: how to do efficiently? [warning: tricky algorithm ahead]
23

public int search(String txt)
{
 int i, j, N = txt.length();
 for (i = 0, j = 0; i < N && j < M; i++)
 j = dfa[txt.charAt(i)][j];
 if (j == M) return i - M;
 else return N;
}

no backup

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.

・Need to precompute dfa[][] from pattern.

・Text pointer i never decrements.

・Could use input stream.

24

public int search(In in)
{
 int i, j;
 for (i = 0, j = 0; !in.isEmpty() && j < M; i++)
 j = dfa[in.readChar()][j];
 if (j == M) return i - M;
 else return NOT_FOUND;
}

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

no backup

Include one state for each character in pattern (plus accept state).

Knuth-Morris-Pratt construction demo

25

4 65

A B A B A C
0 1 2 3 4 5

A
B
C

3210

Constructing the DFA for KMP substring search for A B A B A C

pat.charAt(j)

dfa[][j]

Knuth-Morris-Pratt construction demo

26

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

Constructing the DFA for KMP substring search for A B A B A C

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]

Include one state for each character in pattern (plus accept state).

How to build DFA from pattern?

27

10 32 4 65

A B A B A C
0 1 2 3 4 5

pat.charAt(j)

A
B
C

dfa[][j]

Match transition. If in state j and next char c == pat.charAt(j), go to j+1.

How to build DFA from pattern?

28

10 32 4 65BA BA CA

1 3 5
2 4

6

A B A B A C
0 1 2 3 4 5

pat.charAt(j)

A
B
C

dfa[][j]

first j characters of pattern
have already been matched

now first j+1 characters of
pattern have been matched

next char matches

Mismatch transition. If in state j and next char c != pat.charAt(j),

then the last j-1 characters of input are pat[1..j-1], followed by c.

To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c.

Running time. Seems to require j steps.

How to build DFA from pattern?

29

simulate BABA;

still under construction (!)

10 32 4 65BA A CA

B

A

B, C

B, C

B, C

C

A

C

Bpat.charAt(j) BA
2 5

A
0 1 3 4

CA

j

j

3 B

A

B

A

simulation
of BABA

Ex. dfa['A'][5] = 1; dfa['B'][5] = 4

take transition 'A'

= dfa['A'][3]

simulate BABA;

take transition 'B'

= dfa['B'][3]

Mismatch transition. If in state j and next char c != pat.charAt(j),

then the last j-1 characters of input are pat[1..j-1], followed by c.

To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c.

Running time. Takes only constant time if we maintain state X.

How to build DFA from pattern?

30

state X

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

j

B BA
2 5

A
0 1 3 4

CA

X

B

A

from state X,

take transition 'A'

= dfa['A'][X]

from state X,

take transition 'B'

= dfa['B'][X]

from state X,

take transition 'C'

= dfa['C'][X]

Ex. dfa['A'][5] = 1; dfa['B'][5] = 4 X' = 0

Include one state for each character in pattern (plus accept state).

Knuth-Morris-Pratt construction demo (in linear time)

31

4 65

A B A B A C
0 1 2 3 4 5

A
B
C

3210

Constructing the DFA for KMP substring search for A B A B A C

pat.charAt(j)

dfa[][j]

Knuth-Morris-Pratt construction demo (in linear time)

32

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

Constructing the DFA for KMP substring search for A B A B A C

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]

Constructing the DFA for KMP substring search: Java implementation

For each state j:

・Copy dfa[][X] to dfa[][j] for mismatch case.

・Set dfa[pat.charAt(j)][j] to j+1 for match case.

・Update X.

Running time. M character accesses (but space/time proportional to R M).
33

public KMP(String pat)
{
 this.pat = pat;
 M = pat.length();
 dfa = new int[R][M];
 dfa[pat.charAt(0)][0] = 1;
 for (int X = 0, j = 1; j < M; j++)
 {
 for (int c = 0; c < R; c++)
 dfa[c][j] = dfa[c][X];
 dfa[pat.charAt(j)][j] = j+1;
 X = dfa[pat.charAt(j)][X];
 }
}

copy mismatch cases

set match case

update restart state

Proposition. KMP substring search accesses no more than M + N chars

to search for a pattern of length M in a text of length N.

Pf. Each pattern char accessed once when constructing the DFA;

each text char accessed once (in the worst case) when simulating the DFA.

Proposition. KMP constructs dfa[][] in time and space proportional to R M.

Larger alphabets. Improved version of KMP constructs nfa[] in time and

space proportional to M.

34

KMP substring search analysis

NFA corresponding to the string A B A B A C

0 1 2 3 4 5 6A B A A C

 0 1 2 3 4 5
 A B A B A C
 0 0 0 0 0 3

next[j]
pat.charAt(j)

j

graphical representation

internal representation

mismatch transition
(back up at least one state)

B

KMP NFA for ABABAC

35

Knuth-Morris-Pratt: brief history

・Independently discovered by two theoreticians and a hacker.

– Knuth: inspired by esoteric theorem, discovered linear algorithm

– Pratt: made running time independent of alphabet size

– Morris: built a text editor for the CDC 6400 computer

・Theory meets practice.

Don Knuth Vaughan PrattJim Morris

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHf, JAMES H. MORRIS, JR.:l: AND VAUGHAN R. PRATT

Abstract. An algorithm is presented which finds all occurrences of one. given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {can}*, can be
recognized in linear time. Other algorithms which run even faster on the average are also considered.

Key words, pattern, string, text-editing, pattern-matching, trie memory, searching, period of a
string, palindrome, optimum algorithm, Fibonacci string, regular expression

Text-editing programs are often required to search through a string of
characters looking for instances of a given "pattern" string; we wish to find all
positions, or perhaps only the leftmost position, in which the pattern occurs as a
contiguous substring of the text. For example, c a e n a r y contains the pattern
e n, but we do not regard c a n a r y as a substring.

The obvious way to search for a matching pattern is to try searching at every
starting position of the text, abandoning the search as soon as an incorrect
character is found. But this approach can be very inefficient, for example when we
are looking for an occurrence of aaaaaaab in aaaaaaaaaaaaaab.
When the pattern is a"b and the text is a2"b, we will find ourselves making (n + 1)
comparisons of characters. Furthermore, the traditional approach involves
"backing up" the input text as we go through it, and this can add annoying
complications when we consider the buffering operations that are frequently
involved.

In this paper we describe a pattern-matching algorithm which finds all
occurrences of a pattern of length rn within a text of length n in O(rn + n) units of
time, without "backing up" the input text. The algorithm needs only O(m)
locations of internal memory if the text is read from an external file, and only
O(log m) units of time elapse between consecutive single-character inputs. All of
the constants of proportionality implied by these "O" formulas are independent
of the alphabet size.

* Received by the editors August 29, 1974, and in revised form April 7, 1976.
t Computer Science Department, Stanford University, Stanford, California 94305. The work of

this author was supported in part by the National Science Foundation under Grant GJ 36473X and by
the Office of Naval Research under Contract NR 044-402.

Xerox Palo Alto Research Center, Palo Alto, California 94304. The work of this author was
supported in part by the National Science Foundation under Grant GP 7635 at the University of
California, Berkeley.

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts 02139. The work of this author was supported in part by the National Science Foundation
under Grant GP-6945 at University of California, Berkeley, and under Grant GJ-992 at Stanford
University.

323

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp

5.3 SUBSTRING SEARCH

Robert Boyer J. Strother Moore

Intuition.

・Scan characters in pattern from right to left.

・Can skip as many as M text chars when finding one not in the pattern.

Boyer-Moore: mismatched character heuristic

37

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search

 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 F I N D I N A H A Y S T A C K N E E D L E I N A
 0 5 N E E D L E
 5 5 N E E D L E
11 4 N E E D L E
15 0 N E E D L E
 return i = 15

 pattern

 text

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 1. Mismatch character not in pattern.

38

. T L E

 N E E D L E
txt

pat

mismatch character 'T' not in pattern: increment i one character beyond 'T'

i

. T L E

 N E E D L E
txt

pat

i

before

after

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2a. Mismatch character in pattern.

39

. N L E

 N E E D L E
txt

pat

mismatch character 'N' in pattern: align text 'N' with rightmost pattern 'N'

i

. N L E

 N E E D L E
txt

pat

i

before

after

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

40

. E L E

 N E E D L E
txt

pat

before

mismatch character 'E' in pattern: align text 'E' with rightmost pattern 'E' ?

i

. E L E

 N E E D L E
txt

pat

aligned with rightmost E?

i

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

41

. E L E

 N E E D L E
txt

pat

mismatch character 'E' in pattern: increment i by 1

i

. E L E

 N E E D L E
txt

pat

i

before

after

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Precompute index of rightmost occurrence of character c in pattern

 (-1 if character not in pattern).

42

 right = new int[R];
 for (int c = 0; c < R; c++)
 right[c] = -1;
 for (int j = 0; j < M; j++)
 right[pat.charAt(j)] = j;

Boyer-Moore skip table computation

c right[c]

 N E E D L E
 0 1 2 3 4 5
A -1 -1 -1 -1 -1 -1 -1 -1
B -1 -1 -1 -1 -1 -1 -1 -1
C -1 -1 -1 -1 -1 -1 -1 -1
D -1 -1 -1 -1 3 3 3 3
E -1 -1 1 2 2 2 5 5
... -1
L -1 -1 -1 -1 -1 4 4 4
M -1 -1 -1 -1 -1 -1 -1 -1
N -1 0 0 0 0 0 0 0
... -1

Boyer-Moore: Java implementation

43

 public int search(String txt)
 {
 int N = txt.length();
 int M = pat.length();
 int skip;
 for (int i = 0; i <= N-M; i += skip)
 {
 skip = 0;
 for (int j = M-1; j >= 0; j--)
 {
 if (pat.charAt(j) != txt.charAt(i+j))
 {
 skip = Math.max(1, j - right[txt.charAt(i+j)]);
 break;
 }
 }
 if (skip == 0) return i;
 }
 return N;
}

compute
skip value

match

in case other term is nonpositive

Property. Substring search with the Boyer-Moore mismatched character

heuristic takes about ~ N / M character compares to search for a pattern of

length M in a text of length N.

Worst-case. Can be as bad as ~ M N.

Boyer-Moore variant. Can improve worst case to ~ 3 N character compares

by adding a KMP-like rule to guard against repetitive patterns.

Boyer-Moore: analysis

44

sublinear!

Boyer-Moore-Horspool substring search (worst case)

 i skip 0 1 2 3 4 5 6 7 8 9

 B B B B B B B B B B

 0 0 A B B B B
 1 1 A B B B B
 2 1 A B B B B
 3 1 A B B B B
 4 1 A B B B B
 5 1 A B B B B

txt

pat

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp

5.3 SUBSTRING SEARCH

Michael Rabin, Turing Award '76
Dick Karp, Turing Award '85

Rabin-Karp fingerprint search

Basic idea = modular hashing.

・Compute a hash of pattern characters 0 to M - 1.

・For each i, compute a hash of text characters i to M + i - 1.

・If pattern hash = text substring hash, check for a match.

46
Basis for Rabin-Karp substring search

 txt.charAt(i)
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3

0 3 1 4 1 5 % 997 = 508

1 1 4 1 5 9 % 997 = 201

2 4 1 5 9 2 % 997 = 715

3 1 5 9 2 6 % 997 = 971

4 5 9 2 6 5 % 997 = 442

5 9 2 6 5 3 % 997 = 929

6 2 6 5 3 5 % 997 = 613

 pat.charAt(i)
i 0 1 2 3 4

 2 6 5 3 5 % 997 = 613

 return i = 6

 match

Modular hash function. Using the notation ti for txt.charAt(i),

we wish to compute

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

Efficiently computing the hash function

47

// Compute hash for M-digit key
private long hash(String key, int M)
{
 long h = 0;
 for (int j = 0; j < M; j++)
 h = (R * h + key.charAt(j)) % Q;
 return h;
}

xi = ti R M-1 + ti+1 R M-2 + … + ti+M-1 R 0 (mod Q)

Computing the hash value for the pattern with Horner’s method

 pat.charAt()
 i 0 1 2 3 4
 2 6 5 3 5

 0 2 % 997 = 2

 1 2 6 % 997 = (2*10 + 6) % 997 = 26

 2 2 6 5 % 997 = (26*10 + 5) % 997 = 265

 3 2 6 5 3 % 997 = (265*10 + 3) % 997 = 659

 4 2 6 5 3 5 % 997 = (659*10 + 5) % 997 = 613

QR

Challenge. How to efficiently compute xi+1 given that we know xi.

Key property. Can update hash function in constant time!

Efficiently computing the hash function

48

xi = ti R M–1 + ti+1 R M–2 + … + ti+M–1 R0

xi+1 = ti+1 R M–1 + ti+2 R M–2 + … + ti+M R0

Key computation in Rabin-Karp substring search
(move right one position in the text)

 i ... 2 3 4 5 6 7 ...
 1 4 1 5 9 2 6 5
 4 1 5 9 2 6 5

 4 1 5 9 2
 - 4 0 0 0 0
 1 5 9 2
 * 1 0
 1 5 9 2 0
 + 6
 1 5 9 2 6

current value

subtract leading digit

multiply by radix

add new trailing digit

new value

current value
new value

 text

xi+1 = (xi – t i R M–1) R + t i +M

current
value

subtract
leading digit

add new
trailing digit

multiply
by radix

(can precompute RM-1)

Rabin-Karp substring search example

49

Rabin-Karp substring search example

 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3

 0 3 % 997 = 3

 1 3 1 % 997 = (3*10 + 1) % 997 = 31

 2 3 1 4 % 997 = (31*10 + 4) % 997 = 314

 3 3 1 4 1 % 997 = (314*10 + 1) % 997 = 150

 4 3 1 4 1 5 % 997 = (150*10 + 5) % 997 = 508

 5 1 4 1 5 9 % 997 = ((508 + 3*(997 - 30))*10 + 9) % 997 = 201

 6 4 1 5 9 2 % 997 = ((201 + 1*(997 - 30))*10 + 2) % 997 = 715

 7 1 5 9 2 6 % 997 = ((715 + 4*(997 - 30))*10 + 6) % 997 = 971

 8 5 9 2 6 5 % 997 = ((971 + 1*(997 - 30))*10 + 5) % 997 = 442

 9 9 2 6 5 3 % 997 = ((442 + 5*(997 - 30))*10 + 3) % 997 = 929

10 2 6 5 3 5 % 997 = ((929 + 9*(997 - 30))*10 + 5) % 997 = 613

Q

RM R

 return i-M+1 = 6

 match

Rabin-Karp: Java implementation

50

public class RabinKarp
{
 private long patHash; // pattern hash value
 private int M; // pattern length
 private long Q; // modulus
 private int R; // radix
 private long RM; // R^(M-1) % Q

 public RabinKarp(String pat) {
 M = pat.length();
 R = 256;
 Q = longRandomPrime();

 RM = 1;
 for (int i = 1; i <= M-1; i++)
 RM = (R * RM) % Q;
 patHash = hash(pat, M);
 }

 private long hash(String key, int M)
 { /* as before */ }

 public int search(String txt)
 { /* see next slide */ }
}

precompute RM – 1 (mod Q)

a large prime
(but avoid overflow)

Rabin-Karp: Java implementation (continued)

Monte Carlo version. Return match if hash match.

Las Vegas version. Check for substring match if hash match;

continue search if false collision.
51

 public int search(String txt)
 {
 int N = txt.length();
 int txtHash = hash(txt, M);
 if (patHash == txtHash) return 0;
 for (int i = M; i < N; i++)
 {
 txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
 txtHash = (txtHash*R + txt.charAt(i)) % Q;
 if (patHash == txtHash) return i - M + 1;
 }
 return N;
 }

check for hash collision
using rolling hash function

Rabin-Karp analysis

Theory. If Q is a sufficiently large random prime (about M N 2),

then the probability of a false collision is about 1 / N.

Practice. Choose Q to be a large prime (but not so large to cause overflow).

Under reasonable assumptions, probability of a collision is about 1 / Q.

Monte Carlo version.

・Always runs in linear time.

・Extremely likely to return correct answer (but not always!).

Las Vegas version.

・Always returns correct answer.

・Extremely likely to run in linear time (but worst case is M N).

52

Rabin-Karp fingerprint search

Advantages.

・Extends to 2d patterns.

・Extends to finding multiple patterns.

Disadvantages.

・Arithmetic ops slower than char compares.

・Las Vegas version requires backup.

・Poor worst-case guarantee.

Q. How would you extend Rabin-Karp to efficiently search for any

one of P possible patterns in a text of length N ?

53

Cost of searching for an M-character pattern in an N-character text.

54

Substring search cost summary

Rabin-Karp substring search is known as a fingerprint search because it uses a small
amount of information to represent a (potentially very large) pattern. Then it looks
for this fingerprint (the hash value) in the text. The algorithm is efficient because the
fingerprints can be efficiently computed and compared.

Summary The table at the bottom of the page summarizes the algorithms that we
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute force search is easy
to implement and works well in typical cases (Java’s indexOf() method in String uses
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods. These characteristics are summarized in the table below.

algorithm version
operation count backup

in input? correct? extra
spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA
(Algorithm 5.6) 2 N 1.1 N no yes MR

mismatch
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char
heuristic only

(Algorithm 5.7)
M N N / M yes yes R

Rabin-Karp†
Monte Carlo

(Algorithm 5.8) 7 N 7 N no yes † 1

Las Vegas 7 N † 7 N no † yes 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

6795.3 � Substring Search

�������������	�
���������
�����

Rabin-Karp substring search is known as a fingerprint search because it uses a small
amount of information to represent a (potentially very large) pattern. Then it looks
for this fingerprint (the hash value) in the text. The algorithm is efficient because the
fingerprints can be efficiently computed and compared.

Summary The table at the bottom of the page summarizes the algorithms that we
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute force search is easy
to implement and works well in typical cases (Java’s indexOf() method in String uses
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods. These characteristics are summarized in the table below.

algorithm version
operation count backup

in input? correct? extra
spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA
(Algorithm 5.6) 2 N 1.1 N no yes MR

mismatch
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char
heuristic only

(Algorithm 5.7)
M N N / M yes yes R

Rabin-Karp†
Monte Carlo

(Algorithm 5.8) 7 N 7 N no yes † 1

Las Vegas 7 N † 7 N no † yes 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

6795.3 � Substring Search

�������������	�
���������
�����

