Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

~

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

► APIs

shortest-paths properties
Dijkstra's algorithm
edge-weighted DAGs
negative weights

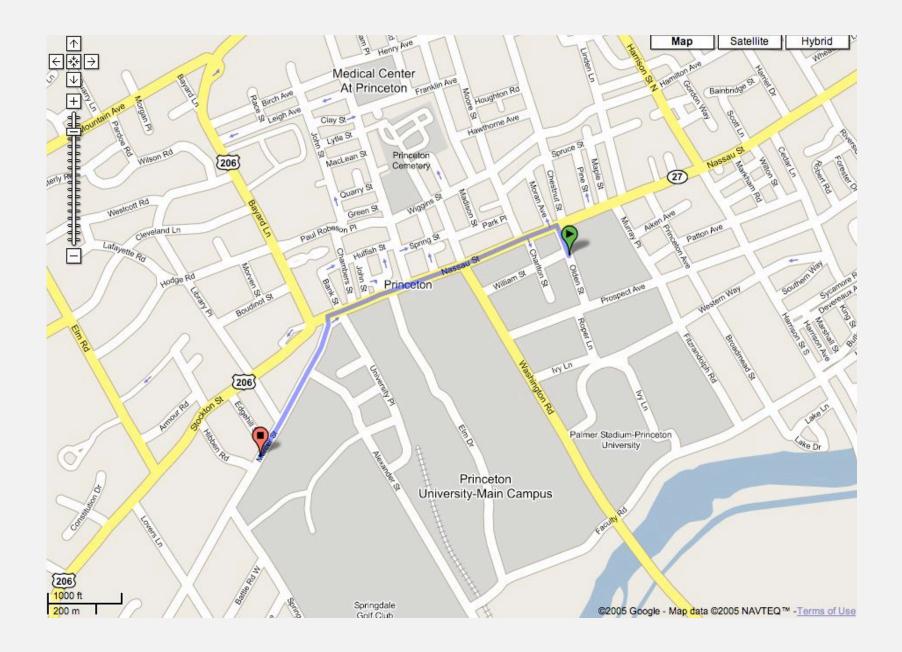
Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from *s* to *t*.

edge-weighted digraph

<u> </u>	_	
4->5	0.35	
5->4	0.35	\sim $(1) \rightarrow (3)$
4->7	0.37	(5)
5->7	0.28	
7->5	0.28	
5->1	0.32	
0->4	0.38	
0->2	0.26	
7->3	0.39	shortest path from 0 to 6
1->3	0.29	0->2 0.26
2->7	0.34	
6->2	0.40	2->7 0.34
3->6	0.52	7->3 0.39
6->0	0.58	3->6 0.52
6->4	0.93	

Google maps



Car navigation

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

- Single source: from one vertex *s* to every other vertex.
- Source-sink: from one vertex *s* to another *t*.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from *s* to each vertex *v* exist.

4.4 SHORTEST PATHS

shortest-paths properties

Dijkstra's algorithm

negative weights

edge-weighted DAGs

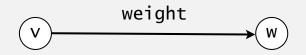
► APIs

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

	DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int	from()	vertex v
int	to()	vertex w
double	weight()	weight of this edge
String	toString()	string representation



Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

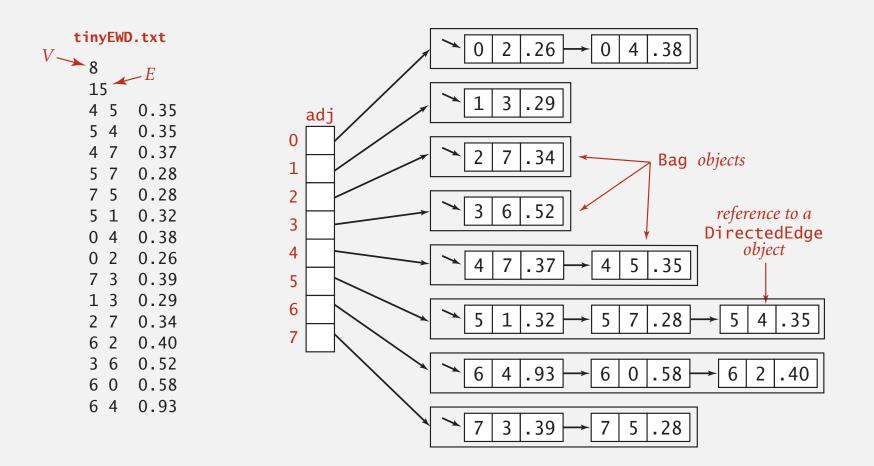
Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
{
   private final int v, w;
   private final double weight;
   public DirectedEdge(int v, int w, double weight)
   {
      this.v = v;
      this.w = w;
      this.weight = weight;
   }
   public int from()
                                                                 from() and to() replace
   { return v; }
                                                                 either() and other()
   public int to()
   { return w; }
   public int weight()
   { return weight; }
}
```

public class	EdgeWeightedDigraph		
	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices	
	EdgeWeightedDigraph(In in)	edge-weighted digraph from input stream	
void	<pre>addEdge(DirectedEdge e)</pre>	add weighted directed edge e	
Iterable <directededge></directededge>	adj(int v)	edges pointing from v	
int	V()	number of vertices	
int	Ε()	number of edges	
Iterable <directededge></directededge>	edges()	all edges	
String	toString()	string representation	

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation



Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```
public class EdgeWeightedDigraph
Ł
   private final int V;
   private final Bag<Edge>[] adj;
   public EdgeWeightedDigraph(int V)
   {
      this.V = V:
      adj = (Bag<DirectedEdge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<DirectedEdge>();
   }
   public void addEdge(DirectedEdge e)
   ł
      int v = e.from();
                                                          add edge e = v \rightarrow w to
      adj[v].add(e);
                                                          only v's adjacency list
   }
   public Iterable<DirectedEdge> adj(int v)
   { return adj[v]; }
}
```

Goal. Find the shortest path from *s* to every other vertex.

public class SP

	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G
double	double distTo(int v)	
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v
boolean	hasPathTo(int v)	is there a path from s to v?

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}</pre>
```

Goal. Find the shortest path from *s* to every other vertex.

public class SP

	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G
double	distTo(int v)	length of shortest path from s to v
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v
boolean	hasPathTo(int v)	is there a path from s to v?

% java SP tinyEWD.txt 0 0 to 0 (0.00): 0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32 0 to 2 (0.26): 0->2 0.26 0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39 0 to 4 (0.38): 0->4 0.38 0 to 5 (0.73): 0->4 0.38 4->5 0.35 0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52 0 to 7 (0.60): 0->2 0.26 2->7 0.34

4.4 SHORTEST PATHS

APIs

shortest-paths properties

Dijkstra's algorithm

negative weights

edge-weighted DAGs

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

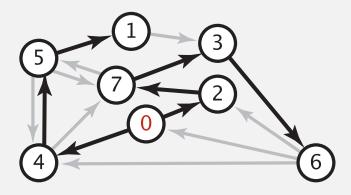
Data structures for single-source shortest paths

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



	edgeTo[]	distTo[]
0	null	0
1	5->1 0.32	1.05
2	0->2 0.26	0.26
3	7->3 0.37	0.97
4	0->4 0.38	0.38
5	4->5 0.35	0.73
6	3->6 0.52	1.49
7	2->7 0.34	0.60

shortest-paths tree from 0

parent-link representation

Data structures for single-source shortest paths

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

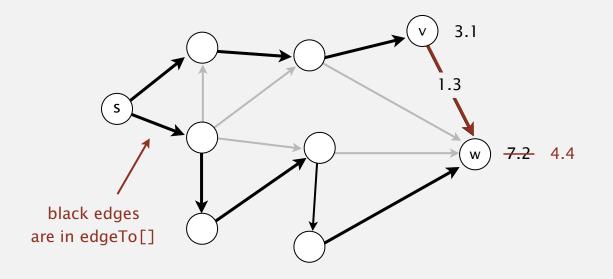
```
public double distTo(int v)
{ return distTo[v]; }
public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

 $v \rightarrow w$ successfully relaxes



Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

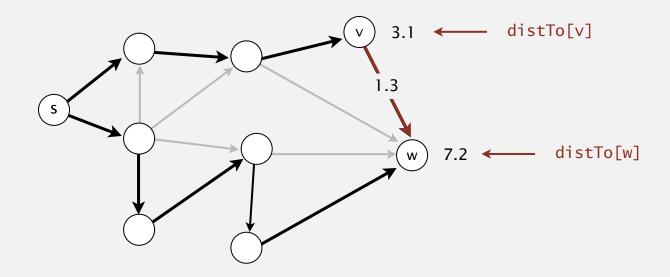
```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Shortest-paths optimality conditions

Proposition. Let *G* be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().
- Pf. \leftarrow [necessary]
 - Suppose that distTo[w] > distTo[v] + e.weight() for some edge $e = v \rightarrow w$.
 - Then, e gives a path from s to w (through v) of length less than distTo[w].



Proposition. Let *G* be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

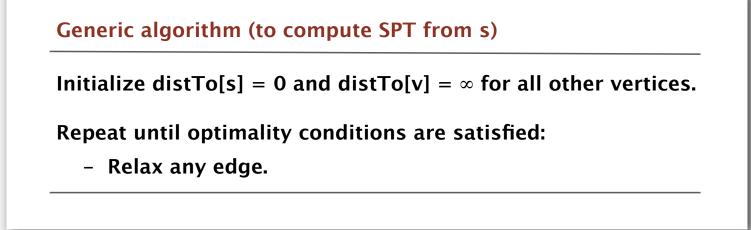
```
Pf. \Rightarrow [ sufficient ]
```

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, distTo[v₁] \leq distTo[v₀] + e₁.weight() distTo[v₂] \leq distTo[v₁] + e₂.weight() \rightarrow $e_i = i^{th} edge on shortest$ \dots distTo[v_k] \leq distTo[v_{k-1}] + e_k.weight()
- Add inequalities; simplify; and substitute distTo[v₀] = distTo[s] = 0:
 distTo[w] = distTo[v_k] ≤ e₁.weight() + e₂.weight() + ... + e_k.weight()

weight of shortest path from s to w

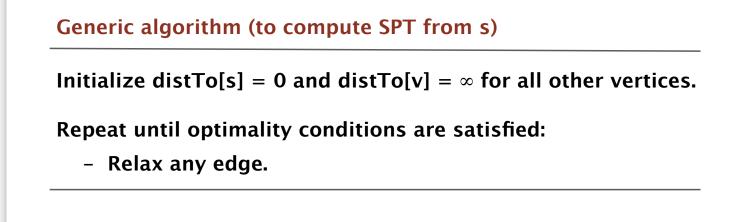
• Thus, distTo[w] is the weight of shortest path to w.

```
weight of some path from s to w
```



Proposition. Generic algorithm computes SPT (if it exists) from s. Pf sketch.

- Throughout algorithm, distTo[v] is the length of a simple path from s to v (and edgeTo[v] is last edge on path).
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.



Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- Ex 3. Bellman-Ford algorithm (no negative cycles).

4.4 SHORTEST PATHS

shortest-paths properties.

Algorithms

Dijkstra's algorithm

negative weights

edge-weighted DAGs

APIs

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

" Do only what only you can do."

" In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."

"The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."

" It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."

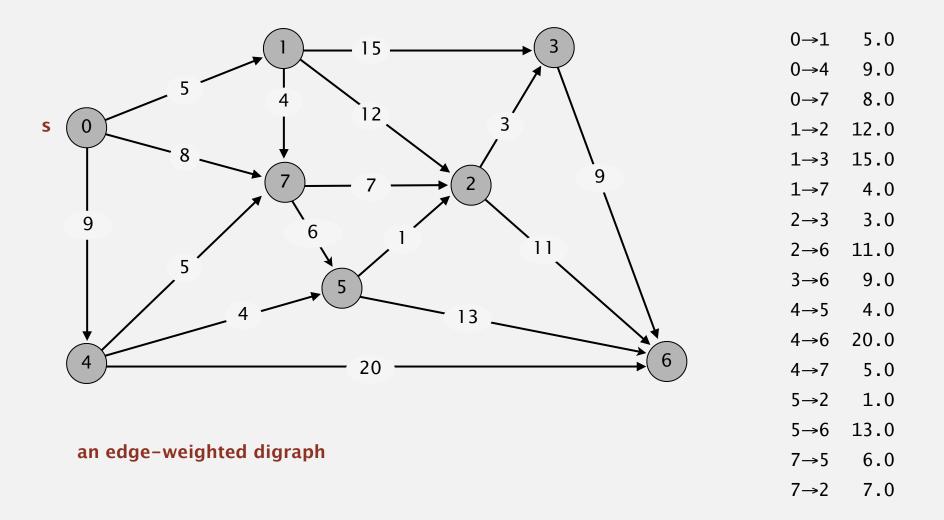
"*APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.*"

Edsger W. Dijkstra Turing award 1972

Edsger W. Dijkstra: select quotes

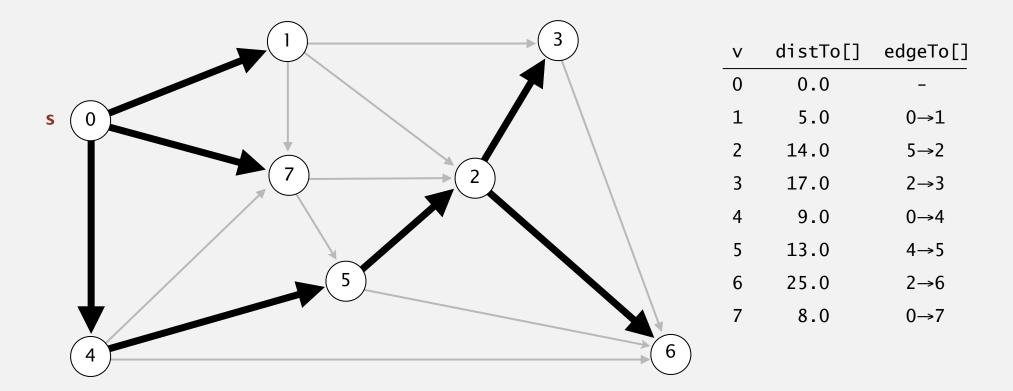
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.



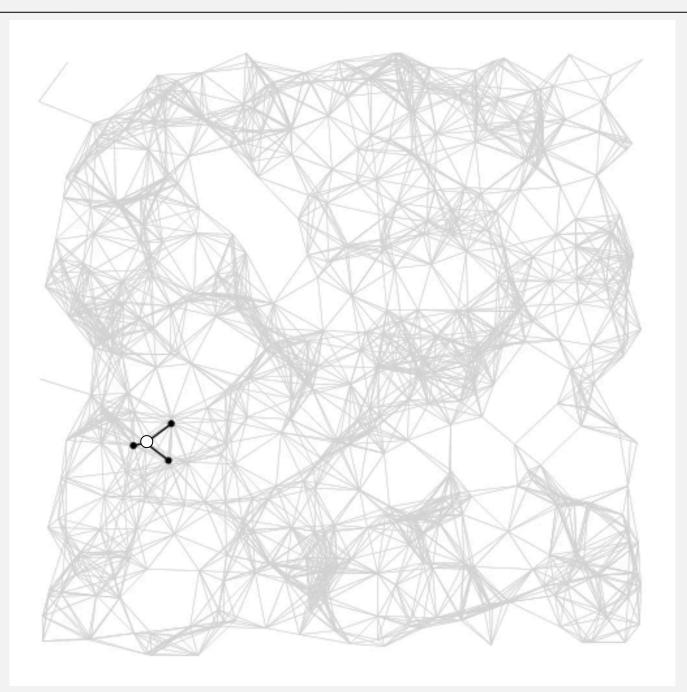
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

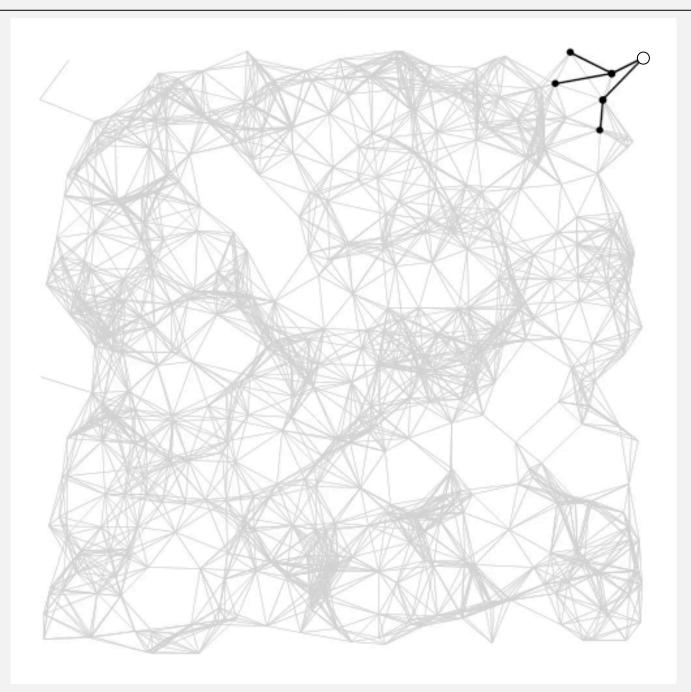


shortest-paths tree from vertex s

Dijkstra's algorithm visualization



Dijkstra's algorithm visualization



Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- Thus, upon termination, shortest-paths optimality conditions hold.

Dijkstra's algorithm: Java implementation

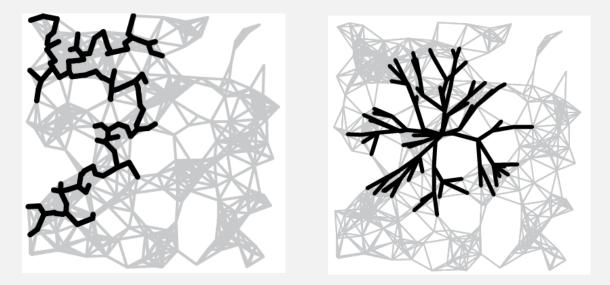
```
public class DijkstraSP
{
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;
   public DijkstraSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
                                                              relax vertices in order
      while (!pq.isEmpty())
                                                               of distance from s
      {
          int v = pq.delMin();
          for (DirectedEdge e : G.adj(v))
             relax(e);
      }
    }
 }
```

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a graph's spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

- Prim's: Closest vertex to the tree (via an undirected edge).
- Dijkstra's: Closest vertex to the source (via a directed path).



Note: DFS and BFS are also in this family of algorithms.

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: *V* insert, *V* delete-min, *E* decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V ²
binary heap	log V	log V	log V	E log V
d-way heap (Johnson 1975)	d log _d V	d log _d V	log _d V	E log _{E/V} V
Fibonacci heap (Fredman-Tarjan 1984)] †	log V †	1 †	E + V log V

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

4.4 SHORTEST PATHS

shortest-paths properties

APIs

Algorithms

edge-weighted DAGs

Dijkstra's algorithm

negative weights

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

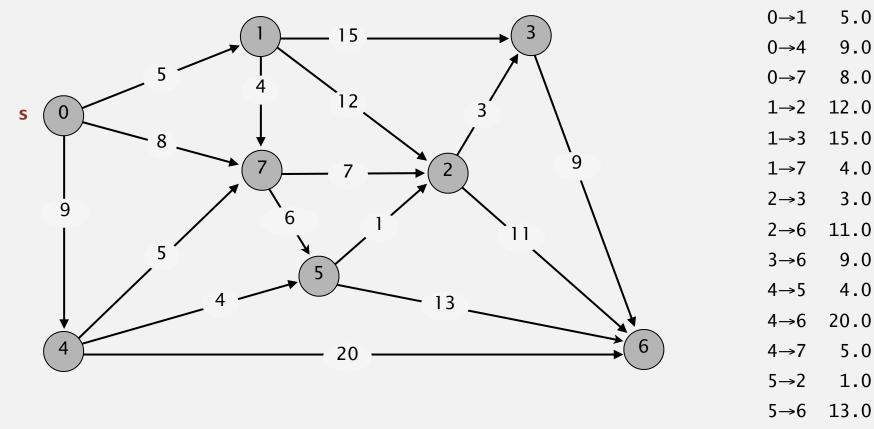
Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.



an edge-weighted DAG

6.0

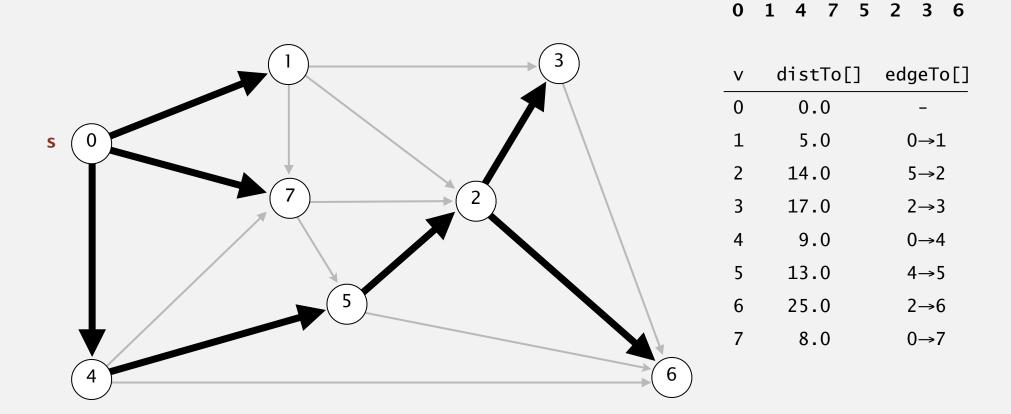
7.0

7→5

7→2

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.



shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edgeweighted DAG in time proportional to E + V.

edge weights can be negative!

Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:

 - distTo[v] will not change because of topological order, no edge pointing to v will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold.

```
public class AcyclicSP
{
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   public AcyclicSP(EdgeWeightedDigraph G, int s)
   {
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      Topological topological = new Topological(G); <-
                                                                 topological order
      for (int v : topological.order())
         for (DirectedEdge e : G.adj(v))
            relax(e);
    }
 }
```

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vIFCV2spKtg

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

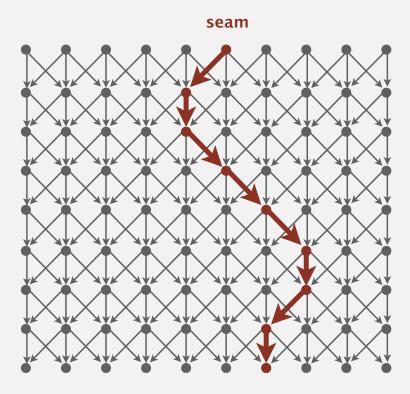
To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

•	•	•	•	٠	٠	٠	•	٠	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	٠	٠	•	•	•	•

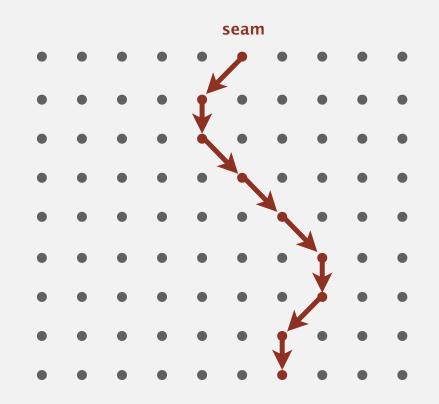
To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.



To remove vertical seam:

• Delete pixels on seam (one in each row).



To remove vertical seam:

• Delete pixels on seam (one in each row).

•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•

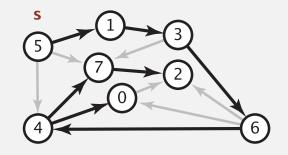
Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.

equivalent: reverse sense of equality in relax()

• Negate weights in result. 4

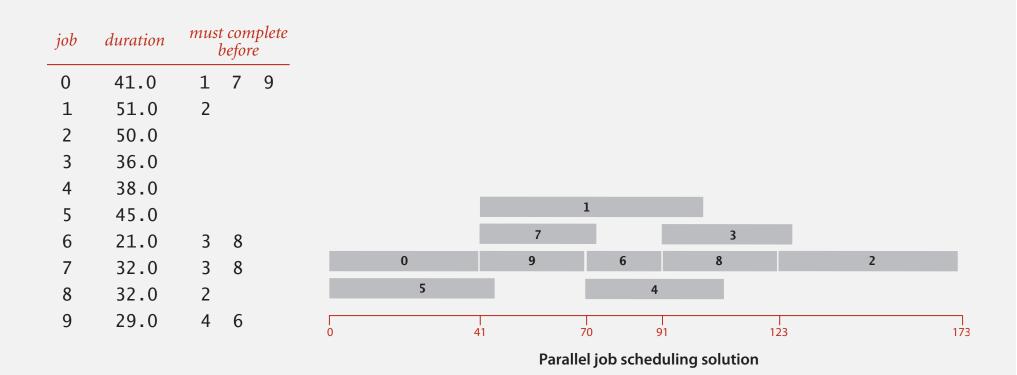
longest p	aths input	shortest paths input			
5->4	0.35	5->4 -0.35			
4->7	0.37	4->7 -0.37			
5->7	0.28	5->7 -0.28			
5->1	0.32	5->1 -0.32			
4->0	0.38	4->0 -0.38			
0->2	0.26	0->2 -0.26			
3->7	0.39	3->7 -0.39			
1->3	0.29	1->3 -0.29			
7->2	0.34	7->2 -0.34			
6->2	0.40	6->2 -0.40			
3->6	0.52	3->6 -0.52			
6->0	0.58	6->0 -0.58			
6->4	0.93	6->4 -0.93			



Key point. Topological sort algorithm works even with negative weights.

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

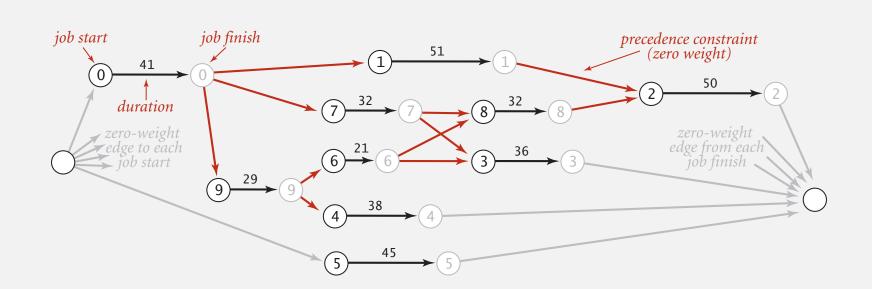


⁴⁹

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

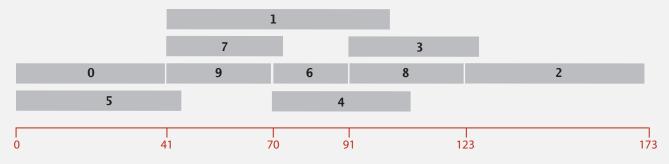
 Source and sink vertices. *must complete* job duration before • Two vertices (begin and end) for each job. 0 41.0 1 • Three edges for each job. 51.0 2 1 2 50.0 begin to end (weighted by duration) 3 36.0 38.0 4 source to begin (0 weight) 45.0 5 6 21.0 3 8 end to sink (0 weight) 3 8 7 32.0 32.0 2 8 • One edge for each precedence constraint (0 weight). 9 29.0 4 6

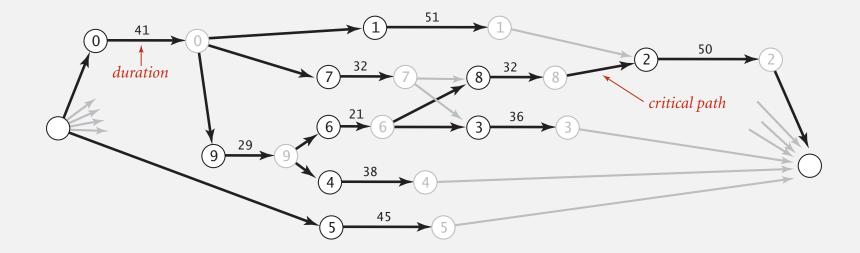


9

7

CPM. Use longest path from the source to schedule each job.





4.4 SHORTEST PATHS

shortest-paths properties

Algorithms

negative weights

Dijkstra's algorithm

edge-weighted DAGs

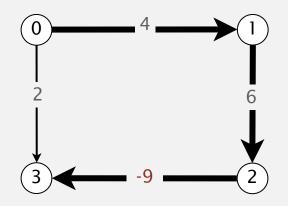
APIs

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

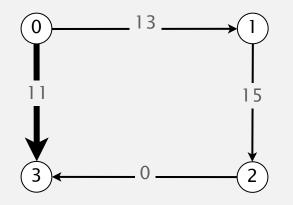
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.



Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

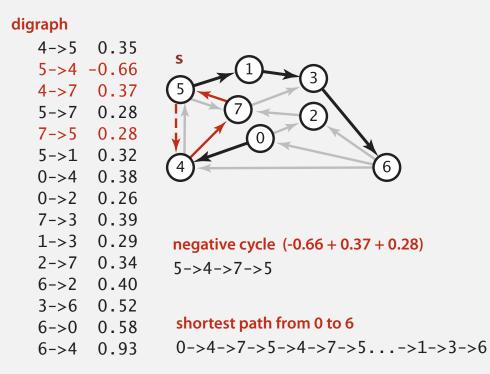
Re-weighting. Add a constant to every edge weight doesn't work.



Adding 9 to each edge weight changes the shortest path from $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ to $0 \rightarrow 3$.

Conclusion. Need a different algorithm.

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.



Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from s

Bellman-Ford algorithm

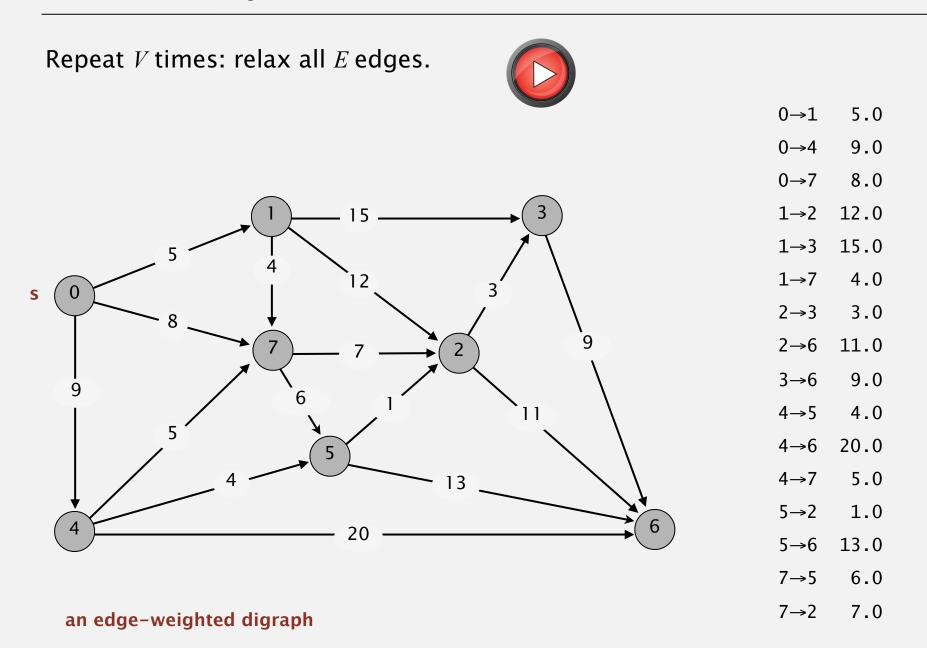
Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

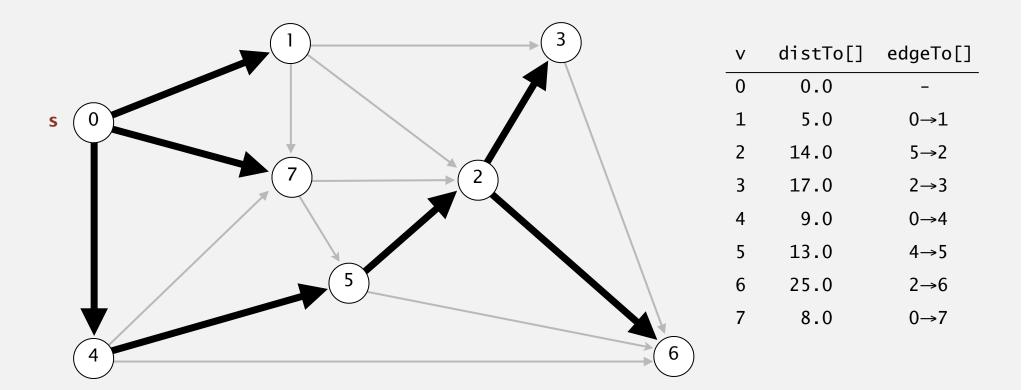
for (int i = 0; i < G.V(); i++)
for (int v = 0; v < G.V(); v++)
for (DirectedEdge e : G.adj(v))
relax(e);</pre>

Bellman-Ford algorithm demo



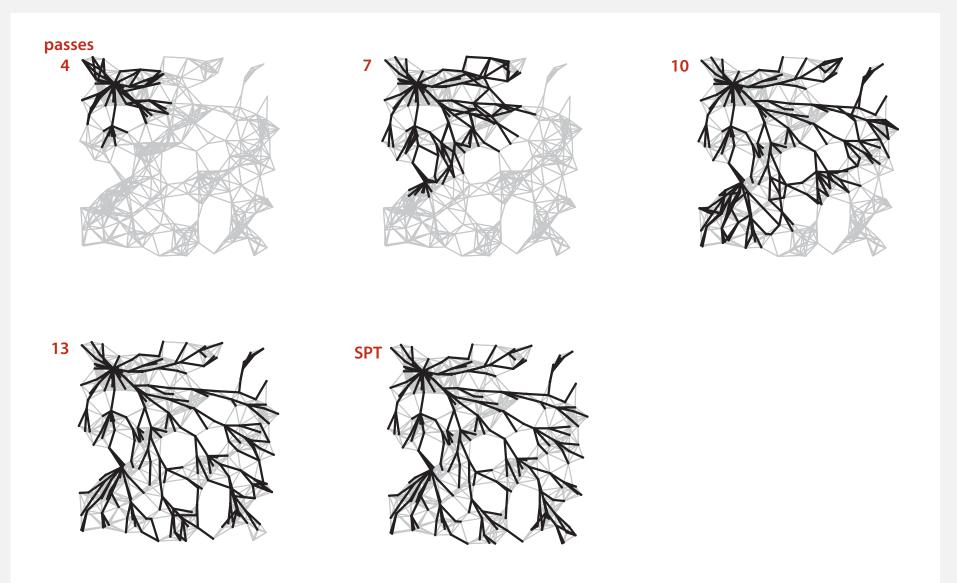
Bellman-Ford algorithm demo

Repeat *V* times: relax all *E* edges.



shortest-paths tree from vertex s

Bellman-Ford algorithm visualization



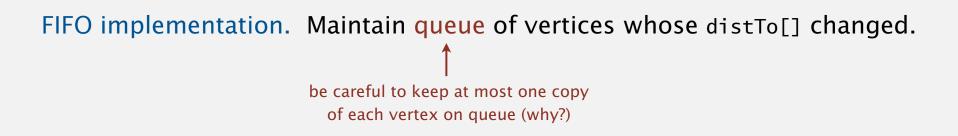
	-
Initi	alize distTo[s] = 0 and distTo[v] = ∞ for all other vertices
Rep	eat V times:
_	Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass *i*, found shortest path containing at most *i* edges.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.



Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	E log V	E log V	V
Bellman-Ford	no negative	EV	EV	V
Bellman-Ford (queue-based)	cycles	E + V	EV	V

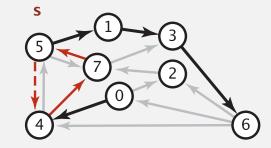
- Remark 1. Directed cycles make the problem harder.
- Remark 2. Negative weights make the problem harder.
- Remark 3. Negative cycles makes the problem intractable.

Negative cycle. Add two method to the API for SP.

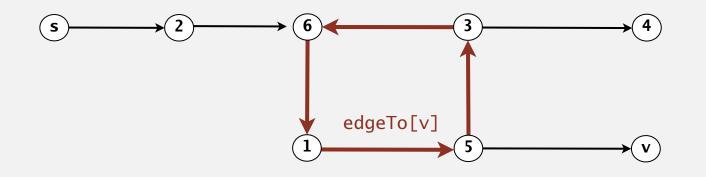
boolean	hasNegativeCycle()	is there a negative cycle?
Iterable <directededge></directededge>	<pre>negativeCycle()</pre>	negative cycle reachable from s

digraph

0.35
-0.66
0.37
0.28
0.28
0.32
0.38
0.26
0.39
0.29
0.34
0.40
0.52
0.58
0.93



negative cycle (-0.66 + 0.37 + 0.28) 5->4->7->5 Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.



Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

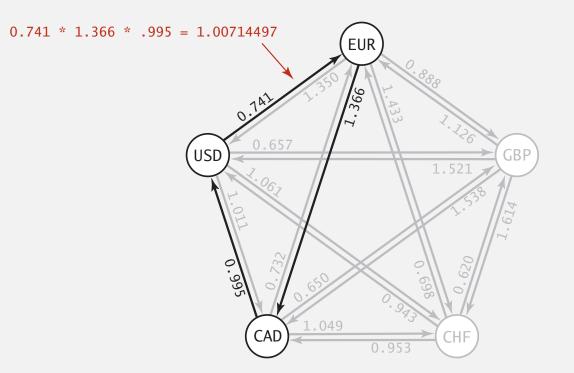
	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $$1,000 \Rightarrow 741 \text{ Euros} \Rightarrow 1,012.206 \text{ Canadian dollars} \Rightarrow $1,007.14497.$ $1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

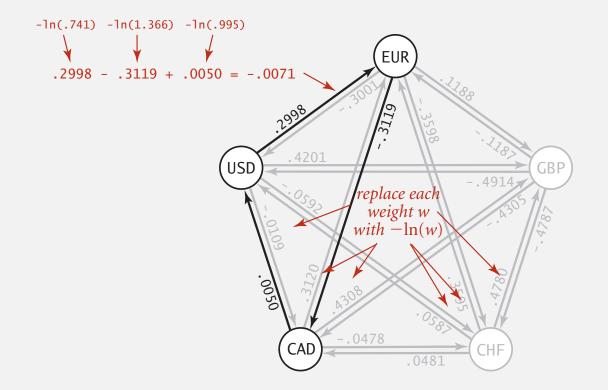


Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be -ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).



Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Dijkstra's algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra's algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.