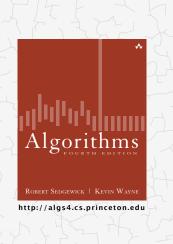
Algorithms

Shortest paths in an edge-weighted digraph

6->0 0.58

6->4 0.93

Given an edge-weighted digraph, find the shortest path from s to t.



4.4 SHORTEST PATHS

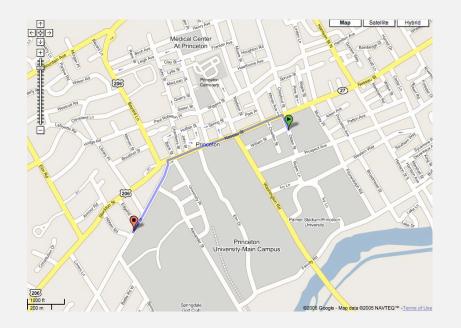
- ► APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

edge-weighted digraph 4->5 0.35 5->4 0.35 4->7 0.37 5->7 0.28 7->5 0.28 5->1 0.32 0->4 0.38 0->2 0.26 7->3 0.39 shortest path from 0 to 6 1->3 0.29 0->2 0.26 2->7 0.34 2->7 0.34 6->2 0.40 7->3 0.39 3->6 0.52

3->6 0.52

2

Google maps



Car navigation

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

http://en.wikipedia.org/wiki/Seam_carving

• Nonnegative weights.

Shortest path variants

Which vertices?

- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from s to each vertex v exist.

• Single source: from one vertex *s* to every other vertex.

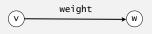
• Source-sink: from one vertex s to another t.

· All pairs: between all pairs of vertices.

Weighted directed edge API

public class DirectedEdge

	DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int	from()	vertex v
int	to()	vertex w
double	weight()	weight of this edge
String	toString()	string representation



Idiom for processing an edge e: int v = e.from(), w = e.to();

4.4 SHORTEST PATHS

► APIs

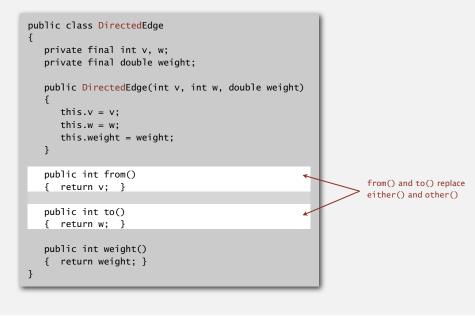
shortest-paths properties
Dijkstra's algorithm
edge-weighted DAGs
negative weights

Robert Sedgewick | Kevin Wayne http://algs4.cs.princeton.edu

Algorithms

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.



Edge-weighted digraph API

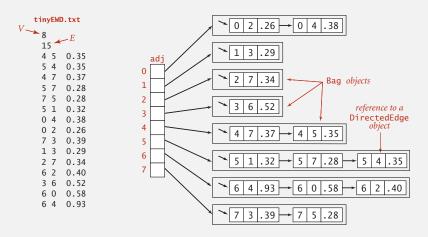
public class	EdgeWeightedDigraph	
	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices
	EdgeWeightedDigraph(In in)	edge-weighted digraph from input stream
void	<pre>addEdge(DirectedEdge e)</pre>	add weighted directed edge e
Iterable <directededge></directededge>	adj(int v)	edges pointing from v
int	V()	number of vertices
int	Ε()	number of edges
Iterable <directededge></directededge>	edges()	all edges
String	toString()	string representation

Conventions. Allow self-loops and parallel edges.

10

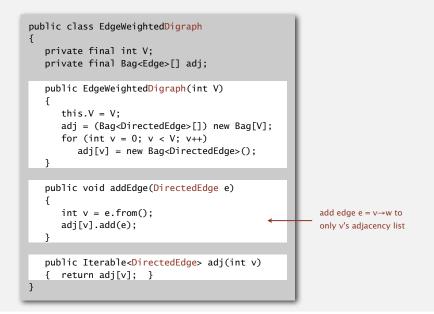
12

Edge-weighted digraph: adjacency-lists representation



Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.



Single-source shortest paths API

Goal. Find the shortest path from *s* to every other vertex.

public class SP					
	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G			
double	distTo(int v)	length of shortest path from s to v			
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v			
boolean	hasPathTo(int v)	is there a path from s to v?			

SP sp = new SP(G, s); for (int v = 0; v < G.V(); v++) { StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v)); for (DirectedEdge e : sp.pathTo(v)) StdOut.print(e + " "); StdOut.println(); }

Single-source shortest paths API

Goal. Find the shortest path from *s* to every other vertex.

public class	SP				
	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G			
double distTo(int v)		length of shortest path from s to v			
<pre>Iterable <directededge></directededge></pre>	pathTo(int v)	shortest path from s to v			
boolean	hasPathTo(int v)	is there a path from s to v?			
<pre>% java SP tinyEWD.txt 0 0 to 0 (0.00): 0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32 0 to 2 (0.25): 0.>2 0.26</pre>					

0 to 2 (0.26): 0->2 0.26 0 to 3 (0.99): 0->2 0.26 0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39 0 to 4 (0.38): 0->4 0.38 0 to 5 (0.73): 0->4 0.38 4->5 0.35 0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52 0 to 7 (0.60): 0->2 0.26 2->7 0.34

Data structures for single-source shortest paths

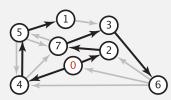
13

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



	edgeTo[]	distTo[]
0	null	0
1	5->1 0.32	1.05
2	0->2 0.26	0.26
3	7->3 0.37	0.97
4	0->4 0.38	0.38
5	4->5 0.35	0.73
6	3->6 0.52	1.49
7	2->7 0.34	0.60

shortest-paths tree from 0

parent-link representation

4.4 SHORTEST PATHS

APIs

shortest-paths properties

Dijkstra's algorithm
 edge-weighted DAGs
 negative weights

Algorithms

Robert Sedgewick | Kevin Wayne http://algs4.cs.princeton.edu

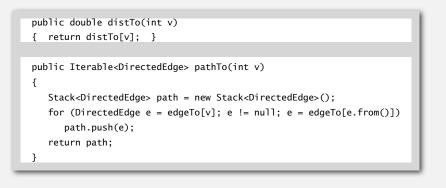
Data structures for single-source shortest paths

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



Edge relaxation

Relax edge $e = v \rightarrow w$.

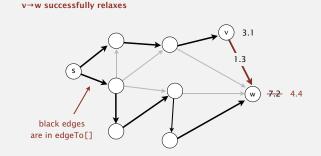
- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].



Shortest-paths optimality conditions

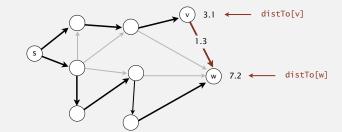
Proposition. Let *G* be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge e = v→w, distTo[w] ≤ distTo[v] + e.weight().

Pf. \leftarrow [necessary]

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than distTo[w].



Shortest-paths optimality conditions

Proposition. Let *G* be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge e = v→w, distTo[w] ≤ distTo[v] + e.weight().

```
Pf. \Rightarrow [sufficient]
```

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_k = w$ is a shortest path from *s* to *w*.
- Then, distTo[v1] ≤ distTo[v0] + e1.weight() distTo[v2] ≤ distTo[v1] + e2.weight() ... distTo[vk] ≤ distTo[vk-1] + ek.weight()
- Add inequalities; simplify; and substitute distTo[v₀] = distTo[s] = 0:
 distTo[w] = distTo[v_k] ≤ <u>e1.weight() + e2.weight() + ... + ek.weight()</u>

weight of shortest path from s to w

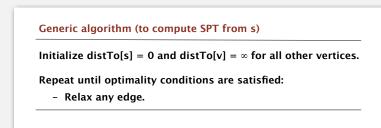
Thus, distTo[w] is the weight of shortest path to w.

 weight of some path from s to w

21

23

Generic shortest-paths algorithm



Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- Ex 3. Bellman-Ford algorithm (no negative cycles).

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s. Pf sketch.

- Throughout algorithm, distTo[v] is the length of a simple path from s to v (and edgeTo[v] is last edge on path).
- Each successful relaxation decreases ${\tt distTo[v]}$ for some v.
- The entry ${\tt distTo[v]}$ can decrease at most a finite number of times. \blacksquare

Edsger W. Dijkstra: select quotes

" Do only what only you can do."

- " In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- " It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."
- " APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Edsger W. Dijkstra Turing award 1972

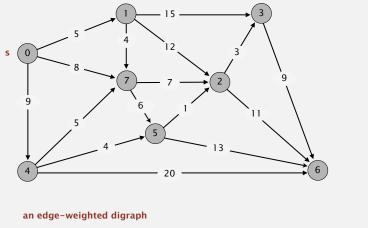
Edsger W. Dijkstra: select quotes

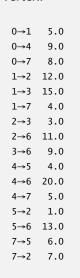
25

27

Dijkstra's algorithm demo

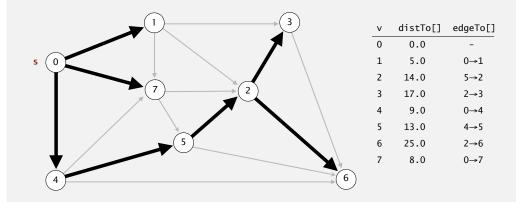
- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- · Add vertex to tree and relax all edges pointing from that vertex.



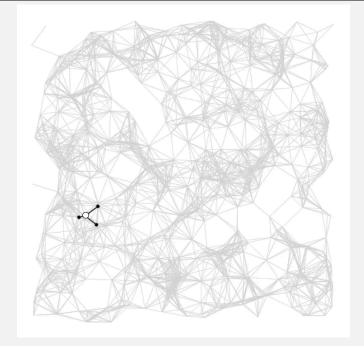


Dijkstra's algorithm demo

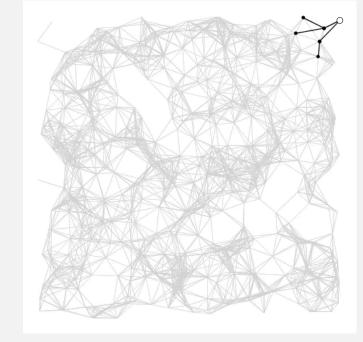
- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.



shortest-paths tree from vertex s



Dijkstra's algorithm visualization



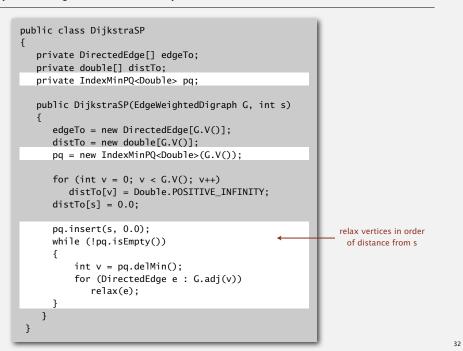
Dijkstra's algorithm: correctness proof

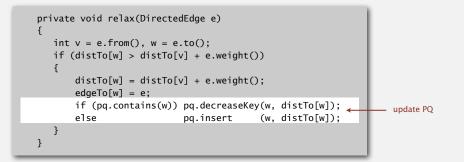
Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- Thus, upon termination, shortest-paths optimality conditions hold.

Dijkstra's algorithm: Java implementation



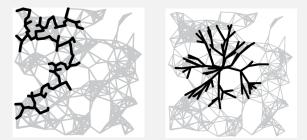


Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a graph's spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

- Prim's: Closest vertex to the tree (via an undirected edge).
- Dijkstra's: Closest vertex to the source (via a directed path).



34

Note: DFS and BFS are also in this family of algorithms.

33

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V ²
binary heap	log V	log V	log V	E log V
d-way heap (Johnson 1975)	d log _d V	d log _d V	log _d V	E log _{E/V} V
Fibonacci heap (Fredman-Tarjan 1984)] †	log V †] †	E + V log V

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- · Fibonacci heap best in theory, but not worth implementing.

Acyclic edge-weighted digraphs

- Q. Suppose that an edge-weighted digraph has no directed cycles.
- Is it easier to find shortest paths than in a general digraph?

A. Yes!

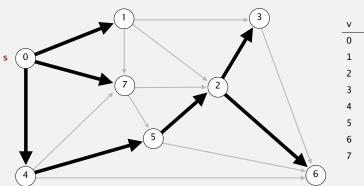
Acyclic shortest paths demo

Consider vertices in topological order.

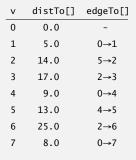
- 5.0 0→1 9.0 $0 \rightarrow 4$ 8.0 $0 \rightarrow 7$ 1→2 12.0 1→3 15.0 4.0 1→7 3.0 2→3 2→6 11.0 3→6 9.0 4→5 4.0 20.0 4→6 5.0 4→7 20 5→2 1.0 5→6 13.0 an edge-weighted DAG 6.0 7→5 7.0 7→2
- 37

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.



$0\quad 1\quad 4\quad 7\quad 5\quad 2\quad 3\quad 6$



Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edgeweighted DAG in time proportional to E + V.

edge weights can be negative! 38

Pf.

s

- Each edge e = v→w is relaxed exactly once (when v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- distTo[v] will not change because of topological order, no edge pointing to v will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold.

Shortest paths in edge-weighted DAGs

public class AcyclicSP { private DirectedEdge[] edgeTo; private double[] distTo; public AcyclicSP(EdgeWeightedDigraph G, int s) edgeTo = new DirectedEdge[G.V()]; distTo = new double[G.V()]; for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; distTo[s] = 0.0; Topological topological = new Topological(G); topological order for (int v : topological.order()) for (DirectedEdge e : G.adj(v)) relax(e); } }

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

Content-aware resizing

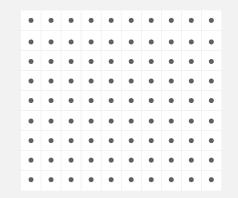
Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

42

Content-aware resizing

To find vertical seam:

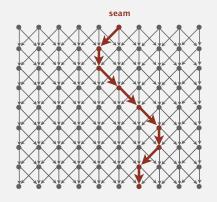
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.



Content-aware resizing

To find vertical seam:

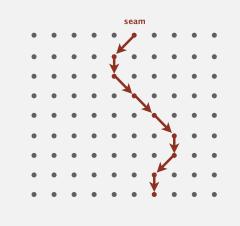
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.



Content-aware resizing

To remove vertical seam:

• Delete pixels on seam (one in each row).

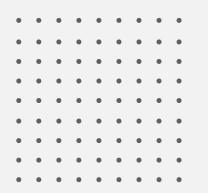


46

Content-aware resizing

To remove vertical seam:

• Delete pixels on seam (one in each row).



Longest paths in edge-weighted DAGs

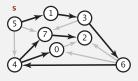
Formulate as a shortest paths problem in edge-weighted DAGs.

Negate all weights.Find shortest paths.

equivalent: reverse sense of equality in relax()

• Negate weights in result.

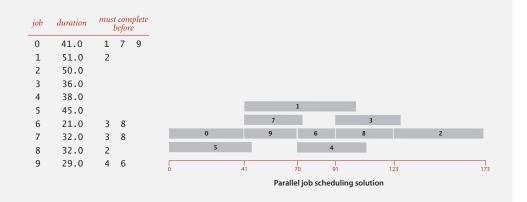
longest p	aths input	shortest paths input
5->4	0.35	5->4 -0.35
4->7	0.37	4->7 -0.37
5->7	0.28	5->7 -0.28
5->1	0.32	5->1 -0.32
4->0	0.38	4->0 -0.38
0->2	0.26	0->2 -0.26
3->7	0.39	3->7 -0.39
1->3	0.29	1->3 -0.29
7->2	0.34	7->2 -0.34
6->2	0.40	6->2 -0.40
3->6	0.52	3->6 -0.52
6->0	0.58	6->0 -0.58
6->4	0.93	6->4 -0.93



Key point. Topological sort algorithm works even with negative weights.

Longest paths in edge-weighted DAGs: application

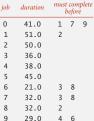
Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.



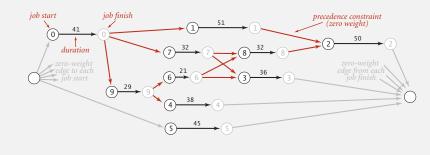
Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 begin to end (weighted by duration)
 source to begin (0 weight)
 end to sink (0 weight)
 7 32.
- One edge for each precedence constraint (0 weight).

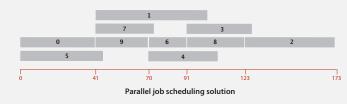


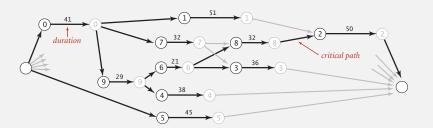
50



Critical path method

CPM. Use longest path from the source to schedule each job.



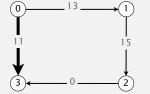


51

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

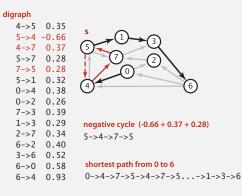
Re-weighting. Add a constant to every edge weight doesn't work.

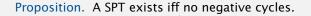


Adding 9 to each edge weight changes the shortest path from $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ to $0 \rightarrow 3$.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

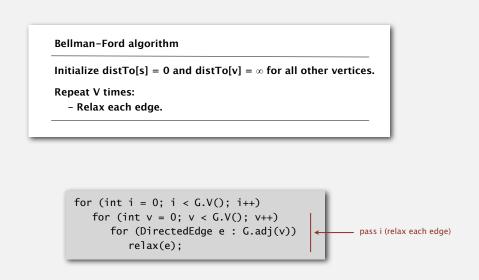


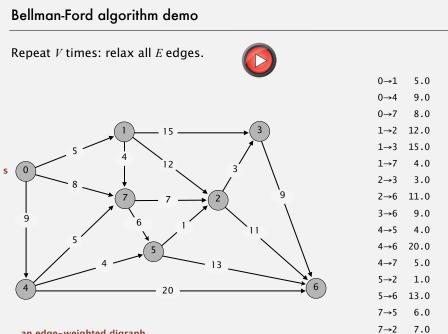


assuming all vertices reachable from s

Bellman-Ford algorithm

Conclusion. Need a different algorithm.





an edge-weighted digraph

56

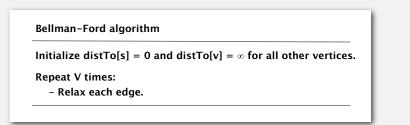
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.



shortest-paths tree from vertex s

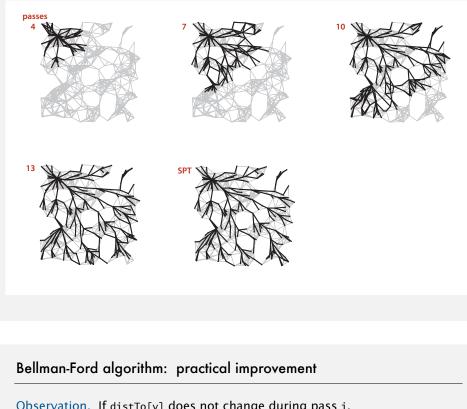
Bellman-Ford algorithm: analysis



Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass *i*, found shortest path containing at most *i* edges.

Bellman-Ford algorithm visualization



Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

57

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	v
Dijkstra (binary heap)	no negative weights	E log V	E log V	V
Bellman-Ford	no negative	EV	EV	V
Bellman-Ford (queue-based)	cycles	E + V	EV	v

Remark 1. Directed cycles make the problem harder.

- Remark 2. Negative weights make the problem harder.
- Remark 3. Negative cycles makes the problem intractable.

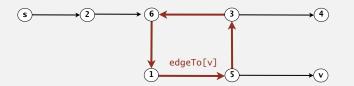
Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean	hasNegativeCycle()	is there a negative cycle?
Iterable <directededge></directededge>	negativeCycle()	negative cycle reachable from s
digraph 4->5 0.35 5->4 -0.66 4->7 0.37 5->7 0.28 5->1 0.32 0->4 0.38 0->2 0.26 7->3 0.39 1->3 0.29 2->7 0.34 6->2 0.40 3->6 0.52 6->4 0.93	s 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3 6 0.66 + 0.37 + 0.28)

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.



Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $1,000 \Rightarrow 741$ Euros $\Rightarrow 1,012.206$ Canadian dollars $\Rightarrow 1,007.14497$.

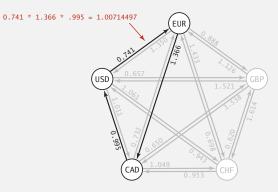
 $1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$

63

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

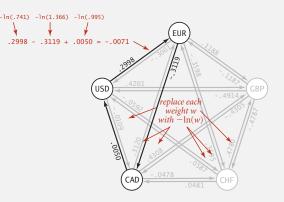


Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).



Remark. Fastest algorithm is extraordinarily valuable!

65

Shortest paths summary

Dijkstra's algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra's algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.