4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from \(s \) to \(t \).

![Diagram of an edge-weighted digraph and shortest path]

Google maps

Car navigation
Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?
- Single source: from one vertex s to every other vertex.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?
- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?
- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from s to each vertex v exist.

Weighted directed edge API

```java
public class DirectedEdge
{
	DirectedEdge(int v, int w, double weight)
		weighted edge $v\rightarrow w$
	int from()
		vertex $v$
	int to()
		vertex $w$
	double weight()
		weight of this edge

	String toString()
		string representation
}
```

Idiom for processing an edge e: $v = e.from(), w = e.to();$
Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge
{
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    { return v; }

    public int to()
    { return w; }

    public int weight()
    { return weight; }
}
```

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph API

```java
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[])(new Bag[V];
        for (int v = 0; v < V; ++v)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```

Same as EdgeWeightedGraph except replace Graph with Digraph.

Edge-weighted digraph: adjacency-lists representation

```java
public class DirectedEdge
{
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    { return v; }

    public int to()
    { return w; }

    public int weight()
    { return weight; }
}
```

```java
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[])(new Bag[V];
        for (int v = 0; v < V; ++v)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```

Edge-weighted digraph: adjacency-lists implementation in Java

```java
public class DirectedEdge
{
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    { return v; }

    public int to()
    { return w; }

    public int weight()
    { return weight; }
}
```

```java
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[])(new Bag[V];
        for (int v = 0; v < V; ++v)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```

tinyEDW.txt

V E
8 15
4 5 0.35
4 7 0.37
5 7 0.28
7 5 0.28
5 1 0.32
0 4 0.38
0 2 0.26
7 3 0.39
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
8 15
0 4 0.38
0 2 0.26
7 3 0.39
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93
7 3 0.39
7 5 0.28
```
Single-source shortest paths API

**Goal.** Find the shortest path from \( s \) to every other vertex.

```java
public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from \(s \) in graph \(G \)

double distTo(int v) length of shortest path from \(s \) to \(v \)

Iterable<DirectedEdge> pathTo(int v) shortest path from \(s \) to \(v \)

boolean hasPathTo(int v) is there a path from \(s \) to \(v \)?
```

```java
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
 StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
 for (DirectedEdge e : sp.pathTo(v))
 StdOut.print(e + " ");
 StdOut.println();
}
```

4.4 **SHORTEST PATHS**

- APIs
  - `SP`<br>  - `distTo(int v)`<br>  - `pathTo(int v)`<br>  - `hasPathTo(int v)`

- Shortest-paths properties
  - `Dijkstra’s algorithm`
  - `edge-weighted DAGs`
  - `negative weights`

**Observation.** A shortest-paths tree (SPT) solution exists. Why?

**Consequence.** Can represent the SPT with two vertex-indexed arrays:

- `distTo[v]` is length of shortest path from \( s \) to \( v \).
- `edgeTo[v]` is last edge on shortest path from \( s \) to \( v \).

```
edgeTo[] distTo[]

0 null 0
1 5->1 0.32 1.05
2 0->2 0.26 0.26
3 7->3 0.37 0.97
4 0->4 0.38 0.38
5 4->5 0.35 0.73
6 3->6 0.52 1.49
7 2->7 0.34 0.60

shortest-paths tree from 0
```

parent-link representation
Data structures for single-source shortest paths

**Goal.** Find the shortest path from \( s \) to every other vertex.

**Observation.** A shortest-paths tree (SPT) solution exists. Why?

**Consequence.** Can represent the SPT with two vertex-indexed arrays:
- \( \text{distTo}[v] \) is length of shortest path from \( s \) to \( v \).
- \( \text{edgeTo}[v] \) is last edge on shortest path from \( s \) to \( v \).

```java
public double distTo(int v) {
 return distTo[v];
}

public Iterable<DirectedEdge> pathTo(int v) {
 Stack<DirectedEdge> path = new Stack<DirectedEdge>();
 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
 path.push(e);
 return path;
}
```

**Edge relaxation**

**Relax edge** \( e = v \rightarrow w \):
- \( \text{distTo}[v] \) is length of shortest known path from \( s \) to \( v \).
- \( \text{distTo}[w] \) is length of shortest known path from \( s \) to \( w \).
- \( \text{edgeTo}[w] \) is last edge on shortest known path from \( s \) to \( w \).
- If \( e = v \rightarrow w \) gives shorter path to \( w \) through \( v \), update both \( \text{distTo}[w] \) and \( \text{edgeTo}[w] \).

```java
private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
}
```

**Shortest-paths optimality conditions**

**Proposition.** Let \( G \) be an edge-weighted digraph.
Then \( \text{distTo}[] \) are the shortest path distances from \( s \) iff:
- For each vertex \( v \), \( \text{distTo}[v] \) is the length of some path from \( s \) to \( v \).
- For each edge \( e = v \rightarrow w \), \( \text{distTo}[w] \leq \text{distTo}[v] + e \cdot \text{weight}() \).

**Pf.** \( \leq \) [necessary]
- Suppose that \( \text{distTo}[w] > \text{distTo}[v] + e \cdot \text{weight}() \) for some edge \( e = v \rightarrow w \).
- Then, \( e \) gives a path from \( s \) to \( w \) (through \( v \)) of length less than \( \text{distTo}[w] \).
Shortest-paths optimality conditions

**Proposition.** Let $G$ be an edge-weighted digraph. Then distTo[] are the shortest path distances from $s$ iff:
- For each vertex $v$, distTo[$v$] is the length of some path from $s$ to $v$.
- For each edge $e = v \rightarrow w$, distTo[$w$] ≤ distTo[$v$] + $e$.weight().

**Pf.** ⇒ [ sufficient ]
- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k = w$ is a shortest path from $s$ to $w$.
- Then, distTo[$v_i$] = distTo[$v_{i-1}$] + $e_i$.weight() for $i = 2, \ldots, k$.
- Thus, distTo[$w$] is the weight of shortest path to $w$. ■

Efficient implementations. How to choose which edge to relax?

**Ex 1.** Dijkstra's algorithm (nonnegative weights).
**Ex 2.** Topological sort algorithm (no directed cycles).
**Ex 3.** Bellman-Ford algorithm (no negative cycles).
Edsger W. Dijkstra: select quotes

“Do only what only you can do.”

“In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”

“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”

Dijkstra’s algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

**shortest-paths tree from vertex s**

<table>
<thead>
<tr>
<th>vertex</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm: correctness proof

**Proposition.** Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

**Pf.**
- Each edge $e = v \rightarrow w$ is relaxed exactly once (when $v$ is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e\.\text{weight}()$.
- Inequality holds until algorithm terminates because:
  - $\text{distTo}[w]$ cannot increase
  - $\text{distTo}[v]$ will not change
- Thus, upon termination, shortest-paths optimality conditions hold. ■

Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 private IndexMinPQ<Double> pq;

 private DijkstraSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 pq = new IndexMinPQ<Double>(G.V());
 for (int v = 0; v < G.V(); v++)
 {
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;
 }
 pq.insert(s, 0.0);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
}
```
Dijkstra’s algorithm: Java implementation

```java
private void relax(DirectedEdge e)
{
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert(w, distTo[w]);
 }
}
```

Computing spanning trees in graphs

**Dijkstra’s algorithm seem familiar?**
- Prim’s algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a graph’s spanning tree.

**Main distinction:** Rule used to choose next vertex for the tree.
- Prim’s: Closest vertex to the **tree** (via an undirected edge).
- Dijkstra’s: Closest vertex to the **source** (via a directed path).

**Note:** DFS and BFS are also in this family of algorithms.

Dijkstra’s algorithm: which priority queue?

Depends on PQ implementation: \( V \) insert, \( V \) delete-min, \( E \) decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>( 1 )</td>
<td>( V )</td>
<td>( 1 )</td>
<td>( V^2 )</td>
</tr>
<tr>
<td>binary heap</td>
<td>log ( V )</td>
<td>log ( V )</td>
<td>log ( V )</td>
<td>( E \log V )</td>
</tr>
<tr>
<td>( d )-way heap</td>
<td>( d \log_d V )</td>
<td>( d \log_d V )</td>
<td>( \log_d V )</td>
<td>( E \log_d V )</td>
</tr>
<tr>
<td>(Johnson 1975)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>( \log V )</td>
<td>( \log V )</td>
<td>( \log V )</td>
<td>( E + V \log V )</td>
</tr>
<tr>
<td>(Fredman–Tarjan 1984)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bottom line.**
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- \( 4 \)-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

4.4 SHORTEST PATHS

- APIs
- shortest-paths properties
- Dijkstra’s algorithm
- edge-weighted DAGs
- negative weights
Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

Shortest paths in edge-weighted DAGs

**Proposition.** Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E + V$.

**Pf.**
- Each edge $e = v \rightarrow w$ is relaxed exactly once (when $v$ is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.
- Inequality holds until algorithm terminates because:
  - $\text{distTo}[w]$ cannot increase because of topological order, no edge pointing to $v$ will be relaxed after $v$ is relaxed
  - $\text{distTo}[v]$ will not change because of topological order, no edge pointing to $v$ will be relaxed after $v$ is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold.
Shortest paths in edge-weighted DAGs

public class AcyclicSP
{
    private DirectedEdge[] edgeTo;
    private double[] distTo;

    public AcyclicSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;

        distTo[s] = 0.0;

        Topological topological = new Topological(G);
        for (int v : topological.order())
            for (DirectedEdge e : G.adj(v))
                relax(e);
    }
}

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

To find vertical seam:
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vIFCV2spKtg

Shai Avidan
Mitsubishi Electric Research Lab
Ariel Shamir
The interdisciplinary Center & MERL
Content-aware resizing

To find vertical seam:
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To remove vertical seam:
- Delete pixels on seam (one in each row).

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
- Negate all weights.
- Find shortest paths.
- Negate weights in result.

Key point. Topological sort algorithm works even with negative weights.
Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>

Parallel job scheduling solution

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:
- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
  - begin to end (weighted by duration)
  - source to begin (0 weight)
  - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

Job start
1 41
2 51
3 50
4 36
5 38
6 45
7 21
8 32
9 29

Job finish
1 51
2 50
3 36
4 38
5 45
6 21
7 32
8 32
9 29

Critical path method

CPM. Use longest path from the source to schedule each job.
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

```
0 4 1
2 6
3 9

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is 0→1→2→3.
```

Re-weighting. Add a constant to every edge weight doesn’t work.

```
0 13 1
1
3 0 2

Adding 9 to each edge weight changes the shortest path from 0→1→2→3 to 0→3.
```

Conclusion. Need a different algorithm.

Negative cycles

**Def.** A **negative cycle** is a directed cycle whose sum of edge weights is negative.

```
0
1
2
3
4
5
6

negative cycle (-0.66 + 0.37 + 0.28)
0→4→7→5
5→4

shortest path from 0 to 6
0→4→7→5→4→7→5...→1→3→6
```

**Proposition.** A SPT exists iff no negative cycles.

Bellman-Ford algorithm

```
Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat V times:
- Relax each edge.
```

```
for (int i = 0; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);
```

Repeat V times: relax all E edges.

```
0→1 5.0
0→4 9.0
0→7 8.0
1→2 12.0
1→3 15.0
1→7 4.0
2→3 3.0
2→6 11.0
3→6 9.0
4→5 4.0
4→6 20.0
4→7 5.0
5→2 1.0
5→6 13.0
7→5 6.0
7→2 7.0
```

Bellman-Ford algorithm demo

```
an edge-weighted digraph
```

```
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

![Graph](image)

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

shortest-paths tree from vertex s

Bellman-Ford algorithm visualization

Bellman-Ford algorithm visualization

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat V times:
 - Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found shortest path containing at most i edges.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass $i+1$.

FIFO implementation. Maintain queue of vertices whose distTo[] changed. Be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.
- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.
Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>E + V</td>
<td>E + V</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>E log V</td>
<td>E log V</td>
<td>V</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>no negative cycles</td>
<td>E V</td>
<td>E V</td>
<td>V</td>
</tr>
<tr>
<td>Bellman-Ford (queue-based)</td>
<td></td>
<td>E + V</td>
<td>E V</td>
<td>V</td>
</tr>
</tbody>
</table>

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating \(\text{distTo}[v] \) and \(\text{edgeTo}[v] \) entries of vertices in the cycle.

Proposition. If any vertex \(v \) is updated in phase \(v \), there exists a negative cycle (and can trace back \(\text{edgeTo}[v] \) entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

Ex. \$1,000 \rightarrow 741 Euros \rightarrow 1,012.206 Canadian dollars \rightarrow 1,007.14497.

\[1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497 \]
Currency exchange graph.
- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

Challenge. Express as a negative cycle detection problem.

Model as a negative cycle detection problem by taking logs.
- Let weight of edge $v \rightarrow w$ be $-\ln$ (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Dijkstra’s algorithm.
- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.
- Arise in applications.
- Faster than Dijkstra’s algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.
- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.