4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.
Road network

Vertex = intersection; edge = one-way street.
Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008
Implication graph

Vertex = variable; edge = logical implication.

if x5 is true, then x0 is true
Combinational circuit

Vertex = logical gate; edge = wire.
WordNet graph

Vertex = synset; edge = hypernym relationship.

http://wordnet.princeton.edu
Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s to t?

Topological sort. Can you draw a digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Digraph API

```java
public class Digraph {
    public Digraph(int V) { create an empty digraph with V vertices }
    public Digraph(In in) { create a digraph from input stream }
    void addEdge(int v, int w) { add a directed edge v→w }
    Iterable<Integer> adj(int v) { vertices pointing from v }
    int V() { number of vertices }
    int E() { number of edges }
    Digraph reverse() { reverse of this digraph }
    String toString() { string representation }
}
```

```java
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
```

- `In in = new In(args[0]);` reads digraph from input stream
- `Digraph G = new Digraph(in);` creates a digraph from input stream
- `for (int v = 0; v < G.V(); v++)` iterates over all vertices
- `for (int w : G.adj(v))` iterates over all adjacent vertices
- `StdOut.println(v + "->" + w);` prints each edge (once)
Digraph API

```java
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
```

% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
...
11->4
11->12
12->9

In the diagram, V represents the vertices, and E represents the edges.

- `tinyDG.txt` is the input file containing the digraph.
- The program reads the digraph from the input stream.
- It prints out each edge once.
- The diagram illustrates the vertices and edges of the digraph according to the input file.
Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.
Adjacency-lists graph representation (review): Java implementation

```java
public class Graph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```
Adjacency-lists digraph representation: Java implementation

```java
public class Digraph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>(());
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```
Digraph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from v to w</th>
<th>edge from v to w?</th>
<th>iterate over vertices pointing from v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1^*</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E + V$</td>
<td>1</td>
<td>outdegree(v)</td>
<td>outdegree(v)</td>
</tr>
</tbody>
</table>

* disallows parallel edges

huge number of vertices, small average vertex degree
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Reachability

Problem. Find all vertices reachable from s along a directed path.
Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.
Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

![Directed Graph](image)
Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

![Graph with vertices and edges demonstrating depth-first search](image)

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>–</td>
</tr>
</tbody>
</table>
Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```java
public class DepthFirstSearch
{
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s)
    {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v)
    { return marked[v]; }
}
```

- true if path to s
- constructor marks vertices connected to s
- recursive DFS does the work
- client can ask whether any vertex is connected to s
Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

true if path from s
constructor marks vertices reachable from s
recursive DFS does the work
client can ask whether any vertex is reachable from s
Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).
Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

✓ Reachability.
 • Path finding.
 • Topological sort.
 • Directed cycle detection.

Basis for solving difficult digraph problems.

• 2-satisfiability.
• Directed Euler path.
• Strongly-connected components.
Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
 add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E + V$.
Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex \(v \) from queue.
- Add to queue all unmarked vertices pointing from \(v \) and mark them.

Graph G

```
tinyDG2.txt
V 6
8 5 0
2 4
3 2
1 2
0 1
4 3
3 5
0 2
```
Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices pointing from v and mark them.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. \(S = \{ 1, 7, 10 \} \).

- Shortest path to 4 is 7 → 6 → 4.
- Shortest path to 5 is 7 → 6 → 0 → 5.
- Shortest path to 12 is 10 → 12.
- ...

Q. How to implement multi-source shortest paths algorithm?
A. Use BFS, but initialize by enqueuing all source vertices.
Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?
Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu"
queue.enqueue(root);
marked.add(root);

while (!queue.isEmpty())
{
 String v = queue.dequeue();
 StdOut.println(v);
 In in = new In(v);
 String input = in.readAll();

 String regexp = "http://(\w+\.)*(\w+)";
 Pattern pattern = Pattern.compile(regexp);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 {
 String w = matcher.group();
 if (!marked.contains(w))
 {
 marked.add(w);
 queue.enqueue(w);
 }
 }
}
4.2 Directed Graphs

- Introduction
- Digraph API
- Digraph search
- Topological sort
- Strong components
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

0. Algorithms
1. Complexity Theory
2. Artificial Intelligence
3. Intro to CS
4. Cryptography
5. Scientific Computing
6. Advanced Programming
Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

```
0→5  0→2
0→1  3→6
3→5  3→4
5→4  6→4
6→0  3→2
1→4
```

directed edges

Solution. DFS. What else?
Topological sort demo

• Run depth-first search.
• Return vertices in reverse postorder.
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
4 1 2 5 0 6 3

topological order
3 6 0 5 2 1 4

done
Depth-first search order

```java
public class DepthFirstOrder {
    private boolean[] marked;
    private Stack<Integer> reversePost;

    public DepthFirstOrder(Digraph G) {
        reversePost = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
        reversePost.push(v);
    }

    public Iterable<Integer> reversePost() {
        return reversePost;
    }
}
```

returns all vertices in “reverse DFS postorder”
Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When $dfs(v)$ is called:

- **Case 1:** $dfs(w)$ has already been called and returned. Thus, w was done before v.
- **Case 2:** $dfs(w)$ has not yet been called. $dfs(w)$ will get called directly or indirectly by $dfs(v)$ and will finish before $dfs(v)$. Thus, w will be done before v.
- **Case 3:** $dfs(w)$ has already been called, but has not yet returned. Can’t happen in a DAG: function call stack contains path from w to v, so $v \rightarrow w$ would complete a cycle.
Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.

Pf.
- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

![A digraph with a directed cycle](image)

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.
Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

![Course Table](http://xkcd.com/754)

Remark. A directed cycle implies scheduling problem is infeasible.
Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```java
public class A extends B {
    ...
}

public class B extends C {
    ...
}

public class C extends A {
    ...
}

% javac A.java
A.java:1: cyclic inheritance involving A
public class A extends B {
    }^  
1 error
Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
**Strongly-connected components**

**Def.** Vertices $v$ and $w$ are **strongly connected** if there is both a directed path from $v$ to $w$ and a directed path from $w$ to $v$.

**Key property.** Strong connectivity is an equivalence relation:
- $v$ is strongly connected to $v$.
- If $v$ is strongly connected to $w$, then $w$ is strongly connected to $v$.
- If $v$ is strongly connected to $w$ and $w$ to $x$, then $v$ is strongly connected to $x$.

**Def.** A **strong component** is a maximal subset of strongly-connected vertices.
Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v

3 connected components

5 strongly-connected components

connected component id (easy to compute with DFS)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc[]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

strongly-connected component id (how to compute?)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>scc[]</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

constant-time client connectivity query

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

constant-time client strong-connectivity query
Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.
Strong component application: software modules

Software module dependency graph.

- **Vertex =** software module.
- **Edge:** from module to dependency.

**Strong component.** Subset of mutually interacting modules.

**Approach 1.** Package strong components together.

**Approach 2.** Use to improve design!
Strong components algorithms: brief history

1960s: Core OR problem.
- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.
Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in $G$ are same as in $G^R$.

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

Diagram:
- Digraph $G$ and its strong components.
- Kernel DAG of $G$ (in reverse topological order).

First vertex is a sink (has no edges pointing from it).
How to compute?
Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in $G^R$.
Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^R$. 

digraph $G$
Kosaraju-Sharir algorithm demo

**Phase 1.** Compute reverse postorder in $G^R$.

```
1 0 2 4 5 3 11 9 12 10 6 7 8
```

reverse digraph $G^R$
Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^R$.

\begin{itemize}
\item 1 0 2 4 5 3 11 9 12 10 6 7 8
\end{itemize}

done
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on $G^R$ to compute reverse postorder.
- Phase 2: run DFS on $G$, considering vertices in order given by first DFS.

DFS in reverse digraph $G^R$

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12

reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on $G^R$ to compute reverse postorder.
- Phase 2: run DFS on $G$, considering vertices in order given by first DFS.
Kosaraju-Sharir algorithm

**Proposition.** Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

**Pf.**
- Running time: bottleneck is running DFS twice (and computing $G^R$).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!
Connected components in an undirected graph (with DFS)

```java
public class CC {
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G) {
 marked = new boolean[G.V()];
 id = new int[G.V()];

 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) {
 dfs(G, v);
 count++;
 }
 }

 private void dfs(Graph G, int v) {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean connected(int v, int w) {
 return id[v] == id[w];
 }
}
```
Strong components in a digraph (with two DFSs)

```java
public class KosarajuSharirSCC {
 private boolean marked[];
 private int[] id;
 private int count;

 public KosarajuSharirSCC(Digraph G) {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
 for (int v : dfs.reversePost()) {
 if (!marked[v]) {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Digraph G, int v) {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean stronglyConnected(int v, int w) {
 return id[v] == id[w];
 }
}
```
Digraph-processing summary: algorithms of the day

- **single-source reachability in a digraph**
  - DFS

- **topological sort in a DAG**
  - DFS

- **strong components in a digraph**
  - Kosaraju-Sharir DFS (twice)