4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

- vertex of outdegree 4 and indegree 2
- directed path from 0 to 2
- directed cycle

Road network

Vertex = intersection; edge = one-way street.
Political blogosphere graph

Vertex = political blog; edge = link.

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

Implication graph

Vertex = variable; edge = logical implication.

Combinational circuit

Vertex = logical gate; edge = wire.
WordNet graph

Vertex = synset; edge = hypernym relationship.

- WordNet graph
 - http://wordnet.princeton.edu

Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relation</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>

Some digraph problems

Path. Is there a directed path from \(s \) to \(t \)?

Shortest path. What is the shortest directed path from \(s \) to \(t \)?

Topological sort. Can you draw a digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices \(v \) and \(w \) is there a path from \(v \) to \(w \)?

PageRank. What is the importance of a web page?
Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

```
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
```

Adjacency-lists graph representation (review): Java implementation

```
public class Graph
{
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V)
    {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v)
    { return adj[v]; }  // iterator for vertices adjacent to v
}
```
Adjacency-lists digraph representation: Java implementation

```java
public class Digraph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[])(new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

Digraph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Space</th>
<th>Insert edge from v to w</th>
<th>Edge from v to w?</th>
<th>Iterate over vertices pointing from v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>E + V</td>
<td>1</td>
<td>outdegree(v)</td>
<td>outdegree(v)</td>
</tr>
</tbody>
</table>

† disallows parallel edges

Reachability

Problem. Find all vertices reachable from \(s \) along a directed path.
Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.

Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;
    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }
    public boolean visited(int v) {
        return marked[v];
    }
}
```
Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

true if path from s
constructor marks vertices reachable from s
recursive DFS does the work
client can ask whether any vertex is reachable from s

Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Mark-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).
Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
✓ Reachability.
✓ Path finding.
✓ Topological sort.
✓ Directed cycle detection.

Basis for solving difficult digraph problems.
• 2-satisfiability.
• Directed Euler path.
• Strongly-connected components.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
 add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E + V$.

Breadth-first search in digraphs

Same method as for undirected graphs.
• Every undirected graph is a digraph (with edges in both directions).
• BFS is a digraph algorithm.

Directed breadth-first search demo
Repeat until queue is empty:
• Remove vertex v from queue.
• Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo
Repeat until queue is empty:
• Remove vertex v from queue.
• Add to queue all unmarked vertices pointing from v and mark them.
Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. \(S = \{1, 7, 10\} \).
- Shortest path to 4 is 7→6→4.
- Shortest path to 5 is 7→6→0→5.
- Shortest path to 12 is 10→12.
- ...

Q. How to implement multi-source shortest paths algorithm?

A. Use BFS, but initialize by enqueuing all source vertices.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
- Choose root web page as source \(s \).
- Maintain a Queue of websites to explore.
- Maintain a set of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?

Bare-bones web crawler: Java implementation

```java
Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root);

while (!queue.isEmpty())
{
    String v = queue.dequeue();
    StdOut.println(v);
    In in = new In(v);
    String input = in.readLine();

    String regexp = "http://([^\w\./]*)\([^\w\./]*\)";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find())
    {
        String w = matcher.group();
        if (!marked.contains(w))
        {
            marked.add(w);
            queue.enqueue(w);
        }
    }
}
```

4.2 Directed Graphs

- Introduction
- Digraph API
- Digraph search
- Topological sort
- Strong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- Tasks
- Precedence constraint graph
- Feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

Postorder

| 4 | 1 | 2 | 5 | 0 | 6 | 3 |

Topological order

| 3 | 6 | 0 | 5 | 2 | 1 | 4 |

Directed edges

DAG

Topological order

| 3 | 6 | 0 | 5 | 2 | 1 | 4 |
Depth-first search order

```java
public class DepthFirstOrder {
    private boolean[] marked;
    private Stack<Integer> reversePost;

    public DepthFirstOrder(Digraph G) {
        reversePost = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
        reversePost.push(v);
    }

    public Iterable<Integer> reversePost() {
        return reversePost;
    }
}
```

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When $dfs(v)$ is called:

- **Case 1:** $dfs(w)$ has already been called and returned. Thus, w was done before v.
- **Case 2:** $dfs(w)$ has not yet been called. $dfs(w)$ will get called directly or indirectly by $dfs(v)$ and will finish before $dfs(v)$. Thus, w will be done before v.
- **Case 3:** $dfs(w)$ has already been called, but has not yet returned. Can't happen in a DAG: function call stack contains path from w to v, so $v \rightarrow w$ would complete a cycle.

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.

Pf.
- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.

Direced cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.
Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```java
public class A extends B {
    ...
}

public class B extends C {
    ...
}

public class C extends A {
    ...
}
```

\[\text{% javac A.java} \]

A.java:1: cyclic inheritance involving A
public class A extends B {
 ^
1 error

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Strongly-connected components

Def. Vertices \(v \) and \(w \) are **strongly connected** if there is both a directed path from \(v \) to \(w \) and a directed path from \(w \) to \(v \).

Key property. Strong connectivity is an **equivalence relation**:

- \(v \) is strongly connected to \(v \).
- If \(v \) is strongly connected to \(w \), then \(w \) is strongly connected to \(v \).
- If \(v \) is strongly connected to \(w \) and \(w \) to \(x \), then \(v \) is strongly connected to \(x \).

Def. A **strong component** is a maximal subset of strongly-connected vertices.
Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component application: software modules

Software module dependency graph.
- Vertex = software module.
- Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.

Approach 1. Package strongly connected components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.
- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.
Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^R.

Kernel DAG. Contract each strong component into a single vertex.

Idea.
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

![digraph G and its strong components](image1)

![kernel DAG of G (in reverse topological order)](image2)

Phase 1. Compute reverse postorder in G^R.

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

![reverse digraph G^R](image3)

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

![Kosaraju-Sharir algorithm demo](image4)

<table>
<thead>
<tr>
<th>v</th>
<th>scc[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

![done](image5)
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

Pf.
- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

Connected components in an undirected graph (with DFS)

```java
public class CC
{
    private boolean marked[];
    private int[] id;
    private int count;

    public CC(Graph G)
    {
        marked = new boolean[G.VO];
        id = new int[G.VO];
        for (int v = 0; v < G.VO; v++)
        {
            if (!marked[v])
            {
                dfs(G, v);
                count++;
            }
        }

        private void dfs(Graph G, int v)
        {
            marked[v] = true;
            id[v] = count;
            for (int w : G.adj(v))
                if (marked[w])
                    dfs(G, w);
        }

    public boolean connected(int v, int w)
    {
        return id[v] == id[w];
    }
}```
Strong components in a digraph (with two DFSs)

```java
public class KosarajuSharirSCC {
 private boolean marked[];
 private int[] id;
 private int count;

 public KosarajuSharirSCC(Digraph G) {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
 for (int v : dfs.reversePost()) {
 if (!marked[v]) {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Digraph G, int v) {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v)) {
 if (!marked[w])
 dfs(G, w);
 }
 }

 public boolean stronglyConnected(int v, int w) {
 return id[v] == id[w];
 }
}
```

Digraph-processing summary: algorithms of the day

- single-source reachability in a digraph
- topological sort in a DAG
- strong components in a digraph
- Kosaraju-Sharir DFS (twice)