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Undirected graphs Protein-protein interaction network

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

« Thousands of practical applications.

« Hundreds of graph algorithms known.

« Interesting and broadly useful abstraction.

« Challenging branch of computer science and discrete math.

Reference: Jeong et al, Nature Review | Genetics



The Internet as mapped by the Opte Project
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Framingham heart study

The evolution of FCC lobbying coalitions
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“The lution of FCC Lobbying

Graph terminology

Graph applications

Path. Sequence of vertices connected by edges.

| .
Cycle. Path whose first and last vertices are the same.

communication telephone, computer fiber optic cable
circuit gate, register, processor wire Two vertices are connected if there is a path between them.
mechanical joint rod, beam, spring
vertex
) . ) edge
financial stock, currency transactions cycle of
length 5\ 1
transportation street intersection, airport highway, airway route
path of
internet class C network connection « length 4
game board position legal move vertex of
degree 3 L
social relationship person, actor friendship, movie cast
neural network neuron synapse
connected
protein network protein protein-protein interaction components
chemical compound molecule bond




Some graph-processing problems

Path. Is there a path between s and ¢?
Shortest path. What is the shortest path between s and ¢?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once.
Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

0
GQG
ol O®
O e

two drawings of the same graph

Caveat. Intuition can be misleading.
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Graph representation

Vertex representation.
» This lecture: use integers between 0 and V—1.

» Applications: convert between names and integers with symbol table.

() ()
(O DT ¢— | O ) T

symbol table

L=t T e

Anomalies.




Graph API

public class Graph

Graph(int V)
Graph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO

int EQ

In in = new In(args[0]);

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices

number of edges

read graph from

Graph G = new Graph(in); input stream
for (int v =0; v <G.VO; v++) T
for (int w : G.adj(v)) > edge (twice)

StdOut.println(v + "-" + w);

Typical graph-processing code

public class Graph

Graph(int V)
Graph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO

int EQ

// degree of vertex v in graph G

public static int degree(Graph G
{
int degree = 0;
for (int w : G.adj(v))
degree++;

return degree;

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices

number of edges

, int v)

Graph API: sample client

Graph input format.

tinyG. txt
1Y%
Tt
05
43 o
01 eoe
9 12 )0
6 4
02
11 12 o @@
9 10
06
78
911
53

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v =0; v <G.VQO; v++)
for (int w : G.adj(v))
StdOut.printinCv + "-" + w);

% java Test tinyG.txt

0-6

0-2

0-1

0-5

1-0

2-0

3-5

3-4

12-11

12-9

read graph from
| input stream
print out each

1 edge (twice)

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).
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Adjacency-matrix graph representation

Maintain a two-dimensional V-by-¥ boolean array;

for each edge v—w in graph: adj[v][w] = adj[w][v]

two entries
for each edge

Adjacency-list graph representation: Java implementation

public class Graph

{

private final int V;
private Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v =0; v <V; v++)
adj[v] = new Bag<Integer>();
}

public void addEdge(int v, int w)
{

adj[v].addw);

adj[w].add(v);

public Iterable<Integer> adj(int v)
{ return adj[v]; }

A

<«

adjacency lists
(using Bag data type )

create empty graph
with V vertices

add edge v-w
(parallel edges and
self-loops allowed)

iterator for vertices adjacent to v

= true.

\ 2 3 4 5 6 7 8 9 10 11 12
0 1 0 1.1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0O 0 O
1 0 0NN0 O 0O 0 O O 0 O0 O
0 0 0 ON\IN1 0 0 0 0 0 0 ©
0 0 0 1 10 0 0 0 0 O
1 0 0 1 1\0 0 0 0 0 0 O
10 0 0 1 0 0 0 0 0 0
0 0 0 0 0 O ol o o o o
0o o o o o offflo o o o0 o
00 0 0 0 0 0O 0 0 0 1 1 1
00 0 0 0 0 0O 0 0 1 0 0 0
00 0 0 0 0 0O 0 0 1 0 0 1
00 0 0 0 0 0O 0 0 1 0 1 0

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

Graph representations

~ERHEEE

>

Bag objects

representations
of the same edge

In practice. Use adjacency-lists representation.

» Algorithms based on iterating over vertices adjacent to v.

« Real-world graphs tend to be sparse.

sparse (E=200)

dense (E=1000)

\ huge number of vertices,
small average vertex degree

Two graphs (V =50)

22
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Graph representations

In practice. Use adjacency-lists representation.
» Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

representation space add edge edge between iterate over vertices
v and w? adjacent to v?
E 1 E

list of edges E
adjacency matrix V2 1* 1 \Y,
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

Maze exploration

Maze graph.
« Vertex = intersection.
« Edge = passage.

o=l o

ey

intersection passage

Goal. Explore every intersection in the maze.

4.1 UNDIRECTED GRAPHS

Algorithms » depth-first search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu
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Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each visited intersection and each visited passage.
« Retrace steps when no unvisited options.

= (= =
& A =

28



Trémaux maze exploration Maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each visited intersection and each visited passage. ]
« Retrace steps when no unvisited options. T N ’j—L
First use? Theseus entered Labyrinth to kill the monstrous Minotaur; J |— — [
Ariadne instructed Theseus to use a ball of string to find his way back out. | | | | —
_J_\_‘ioj N
L L
| |
1
1] | [
[ J
Claude Shannon (with Theseus mouse)
29
Maze exploration Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

[ DFS (to visit a vertex v)
Mark v as visited.
l—rm Recursively visit all unmarked
vertices w adjacent to v.

b

]

Typical applications.

« Find all vertices connected to a given source vertex.

|

| « Find a path between two vertices.

Design challenge. How to implement?

31
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Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.
« Create a Graph object.
« Pass the Graph to a graph-processing routine.
« Query the graph-processing routine for information.

public class Paths

Paths(Graph G, int s)

find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Paths paths = new Paths(G, s);
for (int v =0; v < G.VQ; v++)
if (paths.hasPathTo(v))
StdOut.printin(v);

print all vertices
connected to s

Depth-first search demo

To visit a vertex v:
* Mark vertex v as visited.
» Recursively visit all unmarked vertices adjacent to v.

v marked[] edgeTo[v]

00 NO VT A WN —= O
—

Zow
T T T T T T B B B I |

N

vertices reachable from 0

o A OO L1 O O |

33
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Depth-first search demo

To visit a vertex v:

®

» Recursively visit all unmarked vertices adjacent to v.

« Mark vertex v as visited.

tinyG. txt
0 O—® v
\‘135
13«
05
43
01
O » T O 0 12
6 4
54
02
(3—%) (—2)
9 10
06
78
9 11
> 53

graph G

Depth-first search

Goal. Find all vertices connected to s (and a corresponding path).
Idea. Mimic maze exploration.

Algorithm.
« Use recursion (ball of string).
« Mark each visited vertex (and keep track of edge taken to visit it).
e Return (retrace steps) when no unvisited options.

Data structures.
e boolean[] marked to mark visited vertices.
o 1int[] edgeTo to keep tree of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

34



Depth-first search

public class DepthFirstPaths
{ marked[v] = true
private boolean[] marked; «——+—— ifvconnectedtos
private int[] edgeTo; «——+  edgeTo[v] = previous
private int s; vertex on path from s to v
pubTlic DepthFirstSearch(Graph G, int s)
{
. «——+—— initialize data structures
} dfs(G, s); «——+—— find vertices connected to s
[{)I’“I vate void dfs (Gr‘aph G, int V) <«——+F—— recursive DFS does the work
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w])
{
dfs(G, w);
edgeTo[w] =
}
}
}

Depth-first search properties

37

Proposition. After DFS, can find vertices connected to s in constant time

and can find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at s.

public boolean hasPathTo(int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{
if (!'hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x !=s; x = edgeTo[x])

path.push(x);

path.push(s);
return path;

dgeTo[]
(:)_._._______’_Ig) e ge [¢)
O
=@

v A W N
wwNo N

39

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf. [COI’I’eCtI’IESS] source set of marked

/ vertices
» If w marked, then w connected to s (why?)
e If w connected to s, then w marked.

(if w unmarked, then consider last edge

on a path from s to w that goes from a
no such edge

set of «— can exist

unmarked

vertices

marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to s is visited once.

Depth-first search application: preparing for a date

PREPPRING FOR A DATE: AT
OKAY, WHAT KINDS OF HAM. WHICH SNAKES ARE
WHAT SITUATIONS EMERGENCIES CAN HAPPEN?  DANGEROUS? LET' SEE... Tni RESEARCH éommNG
MIGHT T PREPARE. RR? ) A) SNAKEBITE DAY CORN SNAKE. w? SNAKE VENOVS 1S SCATTERED D
1) MEDWAL EMERGENCY B) LIGHTNING SRIKE ¥) GARTER SNAKE. 7 AND WCONSISTENT: TLL

2) DPNCING O FALLRRM CHAR COPFERHEAD A SPREADSHEET T ORGRNIZE IT.
2)R0D TOEPENSVE 2
K O°O

IMHERETOPKK.  BY Dy, THE INAND
YOUUP. YOURE  TAIPAN HAS THE DEADUEST
NOT DRESSED?  VENOM OF @Y SNAKE!
\ )
(12
1
xkcd
http://xkcd.com/761/
T REALY NEED To SToP

USING DEPTH-FIRST SEARCHES.

38
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Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.

Solution. Build a grid graph.
« Vertex: pixel.
« Edge: between two adjacent gray pixels.
« Blob: all pixels connected to given pixel.

Breadth-first search demo

Repeat until queue is empty: °
* Remove vertex v from queue.

» Add to queue all unmarked vertices adjacent to v and mark them.

graph G

c)’/<
\t‘n

O WWORrRNNO O
NUuBARNWRUV

tinyCG. txt

41
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Algorithms
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Breadth-first search demo

4.1 UNDIRECTED GRAPHS

» breadth-first search

Repeat until queue is empty:

» Remove vertex v from queue.

» Add to queue all unmarked vertices adjacent to v and mark them.

done

v

edgeTo[] distTol[]

U A W N — O

o NN O O |

0

1
1
2
2
1

44



Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

\

Intuition. BFS examines vertices in increasing distance from s.

Breadth-first search

4

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>(Q);
g.enqueue(s);
marked[s] = true;
distTo[s] = 0;

while (!q.isEmpty()) {
int v = g.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
g.enqueue(w);
marked[w] = true;
edgeTo[w] =

v;
distTo[w] distTo[v] + 1;

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v-w

45
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Breadth-first search properties

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a graph in time proportional to E+ V.

Pf. [correctness] Queue always consists of zero or more vertices of

distance k from s, followed by zero or more vertices of distance k+ 1.

Pf. [running time] Each vertex connected to s is visited once.

graph dist=0

Breadth-first search application: routing

dist=1

dist = 2

Fewest number of hops in a communication network.

A SATELLITE CIRCUIT
[
a
& PLURIBUS NP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS )

NAMES SHOWN ARE IMP NAMCS, NOT [NECESSARILY) HOST NAMES

ARPANET, July 1977

46
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Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

.XoXs N The Oracle of Bacon s
(Lo e NS IB) € rmo rmm osieoinc e ool

(1) The Curtis |_see of Music  COS 126 568 ACM Amarés Wang 514 McCiancy | Memepage Stocks COSIZ6FO7 TP ASS (1742)+ Eschaten

THE ORACLE

OF BACON

Endless Games board game
Buzz Mauro

‘Sweet Dreams (2005)

Tluna‘ﬁamruz

- De
M‘ Uma Thurman

es Soarss Be Cool ‘(2005) ,
Carlta's s'w (2004) | Scott Adsit

Paula L;nns m The In‘formant! (2009)

FW 2008) Matt ;:mon
me‘w

Ko Bacen 10 Suzz Moo Tind b ) (Vire cmoms 5>

http:/ /oracleofbacon.org SixDegrees iPhone App

49

Breadth-first search application: Erdds numbers

FED

o
D)
]

hand-drawing of part of the Erdés graph by Ron Graham

Kevin Bacon graph

 Include one vertex for each performer and one for each movie.
« Connect a movie to all performers that appear in that movie.
o Compute shortest path from s = Kevin Bacon.

performer
vertex

movie
vertex

Eternal Sunshine]
of the Spotless
Mind

4.1 UNDIRECTED GRAPHS

Algorithms

» connected components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu
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Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to w?
in constant time.

public class CC

CC(Graph G find connected components in G
boolean connected(int v, int w) are v and w connected?
int count() number of connected components

component identifier for v

int id(int v
¢ ) (between 0 and count() - 1)

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

Connected components

Def. A connected component is a maximal set of connected vertices.

63 connected components

Connected components

The relation "is connected to" is an equivalence relation:

« Reflexive: vis connected to v.

« Symmetric: if vis connected to w, then w is connected to v.

« Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

)

3 connected components

id[]

N VA WNEREOIK

NNNNRFROOOOO

Remark. Given connected components, can answer queries in constant time.

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

@
D)0

© @
O

5

® ®

tinyG. txt

54
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Connected components demo

To visit a vertex v : @
* Mark vertex v as visited.

» Recursively visit all unmarked vertices adjacent to v.

:

graph G

Finding connected components with DFS

v marked[] id[]

0 N O VAW N —= O

©
M M M M M Mm M M m Tm M Tm M
|

public class CC
{

private boolean[] marked;

private int[] id; ]
private int count; D

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.VQ];
for (int v = 0; v < G.VQ; v++)
{
if (!marked[v])
{

dfs(G, v);
count++;

3

public int count() —

public int id(int v)
private void dfs(Graph G, int v)

id[v] = id of component containing v

number of components

run DFS from one vertex in
each component

see next slide

Connected components demo

To visit a vertex v:
« Mark vertex v as visited.

» Recursively visit all unmarked vertices adjacent to v.

done

v marked[]
0 T
1 T
2 T
3 T
4 T
5 T
6 T
7 T
8 T
9 T
10 T
11 T
12 T

Finding connected components with DFS (continued)

id[]

o

N N NN = — OO O O O O

public int count()
{ return count; }

public int id(int v)
{ return id[v]; }

private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);

number of components

id of component containing v

all vertices discovered in
same call of dfs have same id
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Connected components application: study spread of STDs
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Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

4.1 UNDIRECTED GRAPHS

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

» challenges
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Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
o Vertex: pixel.
« Edge: between two adjacent pixels with grayscale value = 70.
» Blob: connected component of 20-30 pixels.

black = 0
white = 255

Particle tracking. Track moving particles over time.

Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult? o
« Any programmer could do it.

¥« Typical diligent algorithms student could do it. e

» Hire an expert. \

simple DFS-based solution
(see textbook)

« Intractable.
« No one knows.
o Impossible.
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Bipartiteness application: is dating graph bipartite? Graph-processing challenge 2

Problem. Find a cycle.
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Bridges of Kénigsberg Graph-processing challenge 3
The Seven Bridges of Kénigsberg. [Leonhard Euler 1736] Problem. Find a (general) cycle that uses every edge exactly once.
“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a
way that he could cross each bridge once and only once.” How difficult?

« Any programmer could do it.
¥« Typical diligent algorithms student could do it.
¥ » Hire an expert. \

v E « Intractable. Eulerian tour
(classic graph-processing problem)

0-1-2-3-4-2-0-6-4-5-0

« No one knows.

o Impossible.

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
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Graph-processing challenge 4 Graph-processing challenge 5

Problem. Find a cycle that visits every vertex exactly once. Problem. Are two graphs identical except for vertex names?

How difficult?

) (3—%)
« Any programmer could do it. o/

Typical diligent algorithms student could do it.

How difficult?

. (3—%)
« Any programmer could do it. o/

Typical diligent algorithms student could do it.

(<) VL BV, B e RV I S

A DA WWNREOOOO
|
Ui hOONO UVIN R

« Hire an expert.

Intractable.
\ Hamiltonian cycle

« No one knows. (classical NP-complete problem) V'« No one knows. 0
Impossible. Impossible. \ (4)

graph isomorphism is

longstanding open problem e"o

0<4, 1«3, 2<2, 3<6, 4«5, 5«0, 6<1

« Hire an expert.
0-5-3-4-6-2-1-0

<

.

Intractable. o

mwN|I—1}I—lOOO
[ S S N I
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Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

e 0-1

0-2

% (D) o

0-6

I &

How difficult? (3) &o .
« Any programmer could do it. 4-5
« Typical diligent algorithms student could do it. 0 4-6

« Hire an expert.

« Intractable. 0
N Kk linear-time DFS-based planarity algorithm

* 0 one kKnows. discovered by Tarjan in 1970s

o Impossible. (too complicated for most practitioners) o e e
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