A 1 gO r 1 t h ms ROBERT SEDGEWICK | KEVIN WAYNE

4.1 UNDIRECTED GRAPHS 4.1 UNDIRECTED GRAPHS
» introduction » introduction
» graph API

» depth-first search

Algorithms

R » breadth-first search

Algorithms

» connected components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu > Chal/enges

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Undirected graphs Protein-protein interaction network

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

« Thousands of practical applications.

« Hundreds of graph algorithms known.

« Interesting and broadly useful abstraction.

« Challenging branch of computer science and discrete math.

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

10 million Facebook friends

Map of science clickstreams

" /anthiopolog;
Psychiology.
o .

Manufacturing
.

o
Production Material science
research Engineering

Socialland personality
ychology B
o,

Chemical
Engineering

gohaviow : &

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

One week of Enron emails

facebook

ng Friendships" by Paul Butler

KEY:
EMPLOYEE (E-MAIL ADDRESS)-

AT LEAST ONE E-MAIL CONTACT
BETWEEN EMPLOYEES

juan hemandaz

oy townsend

heth

ason witlams Keviarusc

fetrey hodge
Joftoy shankman @

jett.skilling

December

Company leaders e-mail "™
less frequently, leaving ['.
some communication to
subordinates.

Finding Patterns
In Corporate Chatter

wotte arry may

jobn grten

berjamn rogers 4 of
bilragp

1

dannymocanty | stopharie parus
dared schooir H o sianley hortox
darron gron i stacy dickson
daid doaney O sholley corman
o g trad mekay
cetea paringee,
purt bill wilkams. poanst
4 marin V2V VAF e aN i say bock
arowtossum s, The analysis detected andrea g p ryan singer
d.omas prg an anomaly: a new e- rod haysiett
) Joand mail address for this ~
ovchpdgiy joysenme R peracn, who had been p fckbuy
o haodicke feting “phillip.allen” for 131 chard.sancers
‘elizabeth sager e & previous weeks. richard ring
jooprks @ "
ool mctaughlin Wvia présio hilip platter
et o ship
t.campbell g oy - ® phip iove
barry
ge sob o ormey jomes siefies pockthomas
Merh o
gerald viadi pimenov cott
greg whate: fonathan makay m presio

mornka caushal
ke, grigsty

mike meconnell

micheso cash
® m somey
matmowloohan ® g
maft motiey ® matsman
mike carson : o raannt
mkemagy |
ke swerzbin mark taylor
monique sanchez . thot
ot ocge @
j. sturm
Kamkeser |
hate symes kevin

hyat

kenneth.lay ¥mved

Framingham heart study

The evolution of FCC lobbying coalitions

Consalidated Comparies N
rdable Telecom PiofityOne Raw Bandwidth
Fich Mforéable Teleoom JowBangudh

Fred Willamson & Associates Lo O Tel Aesoriaton & “
KePR A VemontDPS Lt 4 OR Tel Association .G’“‘ fains Comm I
N M PUC S i el Asscciaton MegaCLEC — / Ji -
SN\ Nebraska PSC ® \WAIdTel Associmion Bluegrass Wireless Havatha Broacband &~ Ui Sy Apcase™ 3 e
tome Telephone 8 ipomingesc 40 @ Norght g mesra Teoom % Knclozy Seabrmacom S , :
- g Focal Noric R Y o S Fefdcompnirigatips, | AstoTel
Vissouls Plan Suppecrs || oo 4] o TelCove e Mo N L onst
Rural tlies Serv . A Bridgecom Eanhlik® o Telcertes Gt {Jonsive
Roral Ulies Servie - » U TekePaciic b iatons
USDA o Acoess One v Ionsey Consuling
. o e Yo | ‘\&Clum Telephone .
Lincolmille Networks . New Jersey SPU oy 250 Penn Telecom New Hope
Oxdord Telephane oepse * > N e e aw?
. . Delaware PSC sae ¢ | Norh River
AsContact Communications Neiw York PSC Shenel Teleghone Cos.
. Virnual Geosatelite . M CP Telecom. . Pembroke
. :ﬁé‘ric Lewcom Telephone, R85 %)
Hot Springs Telephone / W SranCiy NesiodS e
@RonanTelephone T Any = ol
. e 4 lWpccess Poirt
-

.
poercom o
. HCIMCO Communications

* Google
.
EPG m i
®_ARIC ») Jipercitel]
. Poinind oA . | Telesat
. \
oy, SIS TET ¥ Cosibortly { : Hughes
o8k @ Callpso / Conalhs B *—_nmarsat
Acs # % o i,
Spire ekl \ ot Bel Telaphone MSV. WidBlue
s Lond ¥ ol s S e
sk Apfbrica \Grai s
Texas O y; ?
oG W7/) P\ Public Servios Telephone
=) ° | rangé/Commuics Charter Communications *.._ Townes Telecommunications
-)y 2 . §
) (Posh House Networks Veriture Communications Cooperative .
Citzens Telephone e BT America DCl Voice Solutons & South Slope
ingdom Telephone P Loog Sesing % : 7 - . ¢
: /) G e Teeom RS Ses e amer Catle % Core Commricaions State of Havii
Latamus becn : Rt el S A \ B . Saeofhlaska
. & Colliar Coeyond Time Wamer .
Aot Paging e .cﬂ.rvwa&cl,w.mm)&ummsﬂn{, . |KMC Telecom
< NeP m Wireless R Bt Attt ,‘e"“‘“my‘*; ecom \Lhshe | CTC &3P Communicatons Advisory Counsel
. ATET Wisless nCorm Wireless 7 \ . TDS Telecom . . . N .
@ SprmpC SunCom Wirsless FACom | Rl CHRS C)\ Forversent @ People’s Telephone Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
. VoiceStream Wirless 7\ US Calltsr 0 \ e of Rurc! amers NECA #.__ Cascade Utiites . . Ao .
. : e 1A Molalla Communs #._Beaver Creek Telephone Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
J ehsar Communicatons Tt Calilar % NE Colorado Cellular BabofisRove @ Molalla Communicaions. i :
A Aventure v VobiPCs —® . ERTA . network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
Audiocom .. All Amarican Telephone o B Montana PCS Frontier Windsiream . Nebalem Telecomrunicatons.. Trang Cascades Telephone . N 5 . B N g 7 B
. i ot it Bagley . @ ® Embun MR Lo T — is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
¢ cbal Conference Parmners orvIdaho Uslies X
BT . I Fﬂfxﬁﬁth' FairPaint CommyTat T4 NRTA Jibmeoe Telephone ‘:ng e yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
& nein lowa Network Services st Wireless enturyTel o umboid: Telephone) g N . N N iy
. Baraga Telephone 8. ® BlueCasa Comr ToaTd o L4 e Tlepher i Teleghone. ® ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
. Solsh Dakota Network Slue Casa Communications 08 fiGated Communications Great Lakes Communications: Plonear Telephone: o feieshens familial ti
. Oey Jelscape Communicatons & Sueless $—_ OmeiTe . ‘Stoyion Telephone denotes a familial tie.
. .

Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010 “The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

“The lution of FCC Lobbying

Graph terminology

Graph applications

Path. Sequence of vertices connected by edges.

| .
Cycle. Path whose first and last vertices are the same.

communication telephone, computer fiber optic cable
circuit gate, register, processor wire Two vertices are connected if there is a path between them.
mechanical joint rod, beam, spring
vertex
) .) edge
financial stock, currency transactions cycle of
length 5\ 1
transportation street intersection, airport highway, airway route
path of
internet class C network connection « length 4
game board position legal move vertex of
degree 3 L
social relationship person, actor friendship, movie cast
neural network neuron synapse
connected
protein network protein protein-protein interaction components
chemical compound molecule bond

Some graph-processing problems

Path. Is there a path between s and ¢?
Shortest path. What is the shortest path between s and ¢?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once.
Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

0
GQG
ol O®
O e

two drawings of the same graph

Caveat. Intuition can be misleading.

4.1 UNDIRECTED GRAPHS

» graph API

Algorithms

ROBERT SEDGEWICK | KEVIN WaYNE

http://algs4.cs.princeton.edu

Graph representation

Vertex representation.
» This lecture: use integers between 0 and V—1.

» Applications: convert between names and integers with symbol table.

() ()
(O DT ¢— | O) T

symbol table

L=t T e

Anomalies.

Graph API

public class Graph

Graph(int V)
Graph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO

int EQ

In in = new In(args[0]);

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices

number of edges

read graph from

Graph G = new Graph(in); input stream
for (int v =0; v <G.VO; v++) T
for (int w : G.adj(v)) > edge (twice)

StdOut.println(v + "-" + w);

Typical graph-processing code

public class Graph

Graph(int V)
Graph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO

int EQ

// degree of vertex v in graph G

public static int degree(Graph G
{
int degree = 0;
for (int w : G.adj(v))
degree++;

return degree;

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices

number of edges

, int v)

Graph API: sample client

Graph input format.

tinyG. txt
1Y%
Tt
05
43 o
01 eoe
9 12)0
6 4
02
11 12 o @@
9 10
06
78
911
53

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v =0; v <G.VQO; v++)
for (int w : G.adj(v))
StdOut.printinCv + "-" + w);

% java Test tinyG.txt

0-6

0-2

0-1

0-5

1-0

2-0

3-5

3-4

12-11

12-9

read graph from
| input stream
print out each

1 edge (twice)

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

0 oV LT A OYUTN R

=
P LOWVWOUNADWWOOOO
o e e
NN RO

20

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-¥ boolean array;

for each edge v—w in graph: adj[v][w] = adj[w][v]

two entries
for each edge

Adjacency-list graph representation: Java implementation

public class Graph

{

private final int V;
private Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v =0; v <V; v++)
adj[v] = new Bag<Integer>();
}

public void addEdge(int v, int w)
{

adj[v].addw);

adj[w].add(v);

public Iterable<Integer> adj(int v)
{ return adj[v]; }

A

<«

adjacency lists
(using Bag data type)

create empty graph
with V vertices

add edge v-w
(parallel edges and
self-loops allowed)

iterator for vertices adjacent to v

= true.

\ 2 3 4 5 6 7 8 9 10 11 12
0 1 0 1.1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0O 0 O
1 0 0NN0 O 0O 0 O O 0 O0 O
0 0 0 ON\IN1 0 0 0 0 0 0 ©
0 0 0 1 10 0 0 0 0 O
1 0 0 1 1\0 0 0 0 0 0 O
10 0 0 1 0 0 0 0 0 0
0 0 0 0 0 O ol o o o o
0o o o o o offflo o o o0 o
00 0 0 0 0 0O 0 0 0 1 1 1
00 0 0 0 0 0O 0 0 1 0 0 0
00 0 0 0 0 0O 0 0 1 0 0 1
00 0 0 0 0 0O 0 0 1 0 1 0

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

Graph representations

~ERHEEE

>

Bag objects

representations
of the same edge

In practice. Use adjacency-lists representation.

» Algorithms based on iterating over vertices adjacent to v.

« Real-world graphs tend to be sparse.

sparse (E=200)

dense (E=1000)

\ huge number of vertices,
small average vertex degree

Two graphs (V =50)

22

24

Graph representations

In practice. Use adjacency-lists representation.
» Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

representation space add edge edge between iterate over vertices
v and w? adjacent to v?
E 1 E

list of edges E
adjacency matrix V2 1* 1 \Y,
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

Maze exploration

Maze graph.
« Vertex = intersection.
« Edge = passage.

o=l o

ey

intersection passage

Goal. Explore every intersection in the maze.

4.1 UNDIRECTED GRAPHS

Algorithms » depth-first search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

25

Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each visited intersection and each visited passage.
« Retrace steps when no unvisited options.

= (= =
& A =

28

Trémaux maze exploration Maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each visited intersection and each visited passage.]
« Retrace steps when no unvisited options. T N ’j—L
First use? Theseus entered Labyrinth to kill the monstrous Minotaur; J |— — [
Ariadne instructed Theseus to use a ball of string to find his way back out. | | | | —
_J__‘ioj N
L L
| |
1
1] | [
[J
Claude Shannon (with Theseus mouse)
29
Maze exploration Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

[DFS (to visit a vertex v)
Mark v as visited.
l—rm Recursively visit all unmarked
vertices w adjacent to v.

b

]

Typical applications.

« Find all vertices connected to a given source vertex.

|

| « Find a path between two vertices.

Design challenge. How to implement?

31

30

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.
« Create a Graph object.
« Pass the Graph to a graph-processing routine.
« Query the graph-processing routine for information.

public class Paths

Paths(Graph G, int s)

find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Paths paths = new Paths(G, s);
for (int v =0; v < G.VQ; v++)
if (paths.hasPathTo(v))
StdOut.printin(v);

print all vertices
connected to s

Depth-first search demo

To visit a vertex v:
* Mark vertex v as visited.
» Recursively visit all unmarked vertices adjacent to v.

v marked[] edgeTo[v]

00 NO VT A WN —= O
—

Zow
T T T T T T B B B I |

N

vertices reachable from 0

o A OO L1 O O |

33

35

Depth-first search demo

To visit a vertex v:

®

» Recursively visit all unmarked vertices adjacent to v.

« Mark vertex v as visited.

tinyG. txt
0 O—® v
\‘135
13«
05
43
01
O » T O 0 12
6 4
54
02
(3—%) (—2)
9 10
06
78
9 11
> 53

graph G

Depth-first search

Goal. Find all vertices connected to s (and a corresponding path).
Idea. Mimic maze exploration.

Algorithm.
« Use recursion (ball of string).
« Mark each visited vertex (and keep track of edge taken to visit it).
e Return (retrace steps) when no unvisited options.

Data structures.
e boolean[] marked to mark visited vertices.
o 1int[] edgeTo to keep tree of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

34

Depth-first search

public class DepthFirstPaths
{ marked[v] = true
private boolean[] marked; «——+—— ifvconnectedtos
private int[] edgeTo; «——+ edgeTo[v] = previous
private int s; vertex on path from s to v
pubTlic DepthFirstSearch(Graph G, int s)
{
. «——+—— initialize data structures
} dfs(G, s); «——+—— find vertices connected to s
[{)I’“I vate void dfs (Gr‘aph G, int V) <«——+F—— recursive DFS does the work
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w])
{
dfs(G, w);
edgeTo[w] =
}
}
}

Depth-first search properties

37

Proposition. After DFS, can find vertices connected to s in constant time

and can find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at s.

public boolean hasPathTo(int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{
if (!'hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x !=s; x = edgeTo[x])

path.push(x);

path.push(s);
return path;

dgeTo[]
(:)_._._______’_Ig) e ge [¢)
O
=@

v A W N
wwNo N

39

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf. [COI’I’eCtI’IESS] source set of marked

/ vertices
» If w marked, then w connected to s (why?)
e If w connected to s, then w marked.

(if w unmarked, then consider last edge

on a path from s to w that goes from a
no such edge

set of «— can exist

unmarked

vertices

marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to s is visited once.

Depth-first search application: preparing for a date

PREPPRING FOR A DATE: AT
OKAY, WHAT KINDS OF HAM. WHICH SNAKES ARE
WHAT SITUATIONS EMERGENCIES CAN HAPPEN? DANGEROUS? LET' SEE... Tni RESEARCH éommNG
MIGHT T PREPARE. RR?) A) SNAKEBITE DAY CORN SNAKE. w? SNAKE VENOVS 1S SCATTERED D
1) MEDWAL EMERGENCY B) LIGHTNING SRIKE ¥) GARTER SNAKE. 7 AND WCONSISTENT: TLL

2) DPNCING O FALLRRM CHAR COPFERHEAD A SPREADSHEET T ORGRNIZE IT.
2)R0D TOEPENSVE 2
K O°O

IMHERETOPKK. BY Dy, THE INAND
YOUUP. YOURE TAIPAN HAS THE DEADUEST
NOT DRESSED? VENOM OF @Y SNAKE!
\)
(12
1
xkcd
http://xkcd.com/761/
T REALY NEED To SToP

USING DEPTH-FIRST SEARCHES.

38

40

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.

Solution. Build a grid graph.
« Vertex: pixel.
« Edge: between two adjacent gray pixels.
« Blob: all pixels connected to given pixel.

Breadth-first search demo

Repeat until queue is empty: °
* Remove vertex v from queue.

» Add to queue all unmarked vertices adjacent to v and mark them.

graph G

c)’/<
\t‘n

O WWORrRNNO O
NUuBARNWRUV

tinyCG. txt

41

43

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Breadth-first search demo

4.1 UNDIRECTED GRAPHS

» breadth-first search

Repeat until queue is empty:

» Remove vertex v from queue.

» Add to queue all unmarked vertices adjacent to v and mark them.

done

v

edgeTo[] distTol[]

U A W N — O

o NN O O |

0

1
1
2
2
1

44

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

\

Intuition. BFS examines vertices in increasing distance from s.

Breadth-first search

4

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>(Q);
g.enqueue(s);
marked[s] = true;
distTo[s] = 0;

while (!q.isEmpty()) {
int v = g.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
g.enqueue(w);
marked[w] = true;
edgeTo[w] =

v;
distTo[w] distTo[v] + 1;

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v-w

45

47

Breadth-first search properties

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a graph in time proportional to E+ V.

Pf. [correctness] Queue always consists of zero or more vertices of

distance k from s, followed by zero or more vertices of distance k+ 1.

Pf. [running time] Each vertex connected to s is visited once.

graph dist=0

Breadth-first search application: routing

dist=1

dist = 2

Fewest number of hops in a communication network.

A SATELLITE CIRCUIT
[
a
& PLURIBUS NP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE IMP NAMCS, NOT [NECESSARILY) HOST NAMES

ARPANET, July 1977

46

48

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

.XoXs N The Oracle of Bacon s
(Lo e NS IB) € rmo rmm osieoinc e ool

(1) The Curtis |_see of Music COS 126 568 ACM Amarés Wang 514 McCiancy | Memepage Stocks COSIZ6FO7 TP ASS (1742)+ Eschaten

THE ORACLE

OF BACON

Endless Games board game
Buzz Mauro

‘Sweet Dreams (2005)

Tluna‘ﬁamruz

- De
M‘ Uma Thurman

es Soarss Be Cool ‘(2005) ,
Carlta's s'w (2004) | Scott Adsit

Paula L;nns m The In‘formant! (2009)

FW 2008) Matt ;:mon
me‘w

Ko Bacen 10 Suzz Moo Tind b) (Vire cmoms 5>

http:/ /oracleofbacon.org SixDegrees iPhone App

49

Breadth-first search application: Erdds numbers

FED

o
D)
]

hand-drawing of part of the Erdés graph by Ron Graham

Kevin Bacon graph

 Include one vertex for each performer and one for each movie.
« Connect a movie to all performers that appear in that movie.
o Compute shortest path from s = Kevin Bacon.

performer
vertex

movie
vertex

Eternal Sunshine]
of the Spotless
Mind

4.1 UNDIRECTED GRAPHS

Algorithms

» connected components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

50

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to w?
in constant time.

public class CC

CC(Graph G find connected components in G
boolean connected(int v, int w) are v and w connected?
int count() number of connected components

component identifier for v

int id(int v
¢) (between 0 and count() - 1)

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

Connected components

Def. A connected component is a maximal set of connected vertices.

63 connected components

Connected components

The relation "is connected to" is an equivalence relation:

« Reflexive: vis connected to v.

« Symmetric: if vis connected to w, then w is connected to v.

« Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

)

3 connected components

id[]

N VA WNEREOIK

NNNNRFROOOOO

Remark. Given connected components, can answer queries in constant time.

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

@
D)0

© @
O

5

® ®

tinyG. txt

54

56

Connected components demo

To visit a vertex v : @
* Mark vertex v as visited.

» Recursively visit all unmarked vertices adjacent to v.

:

graph G

Finding connected components with DFS

v marked[] id[]

0 N O VAW N —= O

©
M M M M M Mm M M m Tm M Tm M
|

public class CC
{

private boolean[] marked;

private int[] id;]
private int count; D

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.VQ];
for (int v = 0; v < G.VQ; v++)
{
if (!marked[v])
{

dfs(G, v);
count++;

3

public int count() —

public int id(int v)
private void dfs(Graph G, int v)

id[v] = id of component containing v

number of components

run DFS from one vertex in
each component

see next slide

Connected components demo

To visit a vertex v:
« Mark vertex v as visited.

» Recursively visit all unmarked vertices adjacent to v.

done

v marked[]
0 T
1 T
2 T
3 T
4 T
5 T
6 T
7 T
8 T
9 T
10 T
11 T
12 T

Finding connected components with DFS (continued)

id[]

o

N N NN = — OO O O O O

public int count()
{ return count; }

public int id(int v)
{ return id[v]; }

private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);

number of components

id of component containing v

all vertices discovered in
same call of dfs have same id

58

60

Connected components application: study spread of STDs

«ta
NI
L W e /
- F %A 4y
o, § N{F 3 \«,
[e ot SRS 21 L g - -
; Ry //0—-‘ F‘J‘\t Z%*er » /\ /
8 - Ve
hay 22 ol 5o ol \\
-) 3 "
(4’ s .-.):}/K\
"/i \/'\4*’7" r):._‘b ‘!—\r B .
¢ e R Ko 7 T
A% oY, e \T/
/ i’ /7\\
X
\ \ 12 "o A
T o
S~
N | (/\ e -—

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

4.1 UNDIRECTED GRAPHS

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

» challenges

61

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
o Vertex: pixel.
« Edge: between two adjacent pixels with grayscale value = 70.
» Blob: connected component of 20-30 pixels.

black = 0
white = 255

Particle tracking. Track moving particles over time.

Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult? o
« Any programmer could do it.

¥« Typical diligent algorithms student could do it. e

» Hire an expert. \

simple DFS-based solution
(see textbook)

« Intractable.
« No one knows.
o Impossible.

.b.bNNlI—lOOOO
SOV A WWOoO WUVIN R

.;>.;:.NN||—\OOOO
oV wwowuN R

62

64

Bipartiteness application: is dating graph bipartite? Graph-processing challenge 2

Problem. Find a cycle.

A ANNR OOOO

OV AW WO VTN

Q. QO)
0g®
gdb,,O—Qg
oo
mlad
OP g qo,gg,o 0
,Opo g S OD og o0
°
&N 0o ORORO
[o] e X A
e 0% 1 arded.. P How difficult? oo
o4] Q9 1N [& 0O .
o o o %0 To Qi’ 800 « Any programmer could do it.
LAY g:8 /d °© O*b?) o v . a1 q . e
(}3?30 X0 ¢ g3 8 « Typical diligent algorithms student could do it.
00Oy o ® ® X
gj,o%%ooo ?59 . foe._ ¥e « Hire an expert. \ 0-5-4-6-0
Poy R o O o500
OO/O oofjooqbo °- og « |ntractable. simple DFS-based solution
46" e o = (see textbook)
o G e 5. « No one knows
o do o 0 ®e gf Roe .
P O L P08 O oo « Impossible.
9 % “og Q
o 6 6° o
d °
200" 0% o
°d 4 oo %o
oq o Peg
0@ Q
e} Image created by Mark Newman.
65
Bridges of Kénigsberg Graph-processing challenge 3
The Seven Bridges of Kénigsberg. [Leonhard Euler 1736] Problem. Find a (general) cycle that uses every edge exactly once.
“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a
way that he could cross each bridge once and only once.” How difficult?

« Any programmer could do it.
¥« Typical diligent algorithms student could do it.
¥ » Hire an expert. \

v E « Intractable. Eulerian tour
(classic graph-processing problem)

0-1-2-3-4-2-0-6-4-5-0

« No one knows.

o Impossible.

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.

67

A DWNNREOOOO

OOV A B WNO VN

Graph-processing challenge 4 Graph-processing challenge 5

Problem. Find a cycle that visits every vertex exactly once. Problem. Are two graphs identical except for vertex names?

How difficult?

) (3—%)
« Any programmer could do it. o/

Typical diligent algorithms student could do it.

How difficult?

. (3—%)
« Any programmer could do it. o/

Typical diligent algorithms student could do it.

(<) VL BV, B e RV I S

A DA WWNREOOOO
|
Ui hOONO UVIN R

« Hire an expert.

Intractable.
\ Hamiltonian cycle

« No one knows. (classical NP-complete problem) V'« No one knows. 0
Impossible. Impossible. \ (4)

graph isomorphism is

longstanding open problem e"o

0<4, 1«3, 2<2, 3<6, 4«5, 5«0, 6<1

« Hire an expert.
0-5-3-4-6-2-1-0

<

.

Intractable. o

mwN|I—1}I—lOOO
[S S N I

69

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

e 0-1

0-2

% (D) o

0-6

I &

How difficult? (3) &o .
« Any programmer could do it. 4-5
« Typical diligent algorithms student could do it. 0 4-6

« Hire an expert.

« Intractable. 0
N Kk linear-time DFS-based planarity algorithm

* 0 one kKnows. discovered by Tarjan in 1970s

o Impossible. (too complicated for most practitioners) o e e

71

