Two classic sorting algorithms

Critical components in the world’s computational infrastructure.
- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort. [this lecture]
- Java sort for objects.
- Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort. [next lecture]
- Java sort for primitive types.
- C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

2.2 MERGESORT

- mergesort
- bottom-up mergesort
- sorting complexity
- comparators
- stability

Mergesort overview

Mergesort

Basic plan.
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

Example

<table>
<thead>
<tr>
<th>input</th>
<th>M E R G E S O R T E X A M P L E</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort left half</td>
<td>E E G M O R R S</td>
</tr>
<tr>
<td>sort right half</td>
<td>A E E L M P T X</td>
</tr>
<tr>
<td>merge results</td>
<td>A E E E E G L M M O P R R S T X</td>
</tr>
</tbody>
</table>

First Draft of a Report on the EDVAC

John von Neumann
Abstract in-place merge demo

Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

<table>
<thead>
<tr>
<th>lo</th>
<th>mid</th>
<th>mid+1</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

sorted \hspace{1cm} \text{sorted}

Merging: Java implementation

```java
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
    assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
    assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
        if (i > mid)
            a[k] = aux[j++];
        else if (j > hi)
            a[k] = aux[i++];
        else if (!less(aux[j], aux[i]))
            a[k] = aux[j++];
        else
            a[k] = aux[i++];
    assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}
```

Assertions

Assertion. Statement to test assumptions about your program.
- Helps detect logic bugs.
- Documents code.

Java assert statement. Throws exception unless boolean condition is true.

Can enable or disable at runtime. \(\Rightarrow \) No cost in production code.

```
java -ea MyProgram // enable assertions
java -da MyProgram // disable assertions (default)
```

Best practices. Use assertions to check internal invariants; assume assertions will be disabled in production code.
Mergesort: Java implementation

```java
public class Merge {
    private static void merge(...) {
        /* as before */
    }

    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }

    public static void sort(Comparable[] a) {
        aux = new Comparable[a.length];
        sort(a, aux, 0, a.length - 1);
    }
}
```

Mergesort: trace

```
<table>
<thead>
<tr>
<th>lo</th>
<th>mid</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
</tbody>
</table>
```

result after recursive call

Mergesort: animation

http://www.sorting-algorithms.com/merge-sort

50 random items

50 reverse-sorted items

http://www.sorting-algorithms.com/merge-sort
Mergesort: empirical analysis

Running time estimates:
- Laptop executes 10^8 compares/second.
- Supercomputer executes 10^{12} compares/second.

<table>
<thead>
<tr>
<th>computer</th>
<th>thousand</th>
<th>million</th>
<th>billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
<td>317 years</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
<td>1 week</td>
</tr>
</tbody>
</table>

Bottom line. Good algorithms are better than supercomputers.

<table>
<thead>
<tr>
<th>insertion sort (N^2)</th>
<th>mergesort (N log N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>thousand</td>
</tr>
<tr>
<td>home</td>
<td>instant</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
</tr>
</tbody>
</table>

Mergesort: number of compares and array accesses

Proposition. Mergesort uses at most $N \lg N$ compares and $6N \lg N$ array accesses to sort any array of size N.

Pf sketch. The number of compares $C(N)$ and array accesses $A(N)$ to mergesort an array of size N satisfy the recurrences:

$$C(N) = C(\lceil N/2 \rceil) + C(\lfloor N/2 \rfloor) + N$$

for $N > 1$, with $C(1) = 0$.

$$A(N) = A(\lceil N/2 \rceil) + A(\lfloor N/2 \rfloor) + 6N$$

for $N > 1$, with $A(1) = 0$.

We solve the recurrence when N is a power of 2. \(\rightarrow\) result holds for all N

$$D(N) = 2D(N/2) + N$$

for $N > 1$, with $D(1) = 0$.

Divide-and-conquer recurrence: proof by picture

Proposition. If $D(N)$ satisfies $D(N) = 2D(N/2) + N$ for $N > 1$, with $D(1) = 0$, then $D(N) = N \lg N$.

Pf 1. [assuming N is a power of 2]

Given:
- Divide both sides by N
- Apply first term
- Apply first term again
- Stop applying, $D(1) = 0$

Divide-and-conquer recurrence: proof by expansion

Proposition. If $D(N)$ satisfies $D(N) = 2D(N/2) + N$ for $N > 1$, with $D(1) = 0$, then $D(N) = N \lg N$.

Pf 2. [assuming N is a power of 2]

$$D(N) = 2D(N/2) + N$$

$$D(N)/N = 2D(N/2)/N + 1$$

$$= D(N/2)/(N/2) + 1$$

$$= D(N/4)/(N/4) + 1 + 1$$

$$= D(N/8)/(N/8) + 1 + 1 + 1$$

$$\ldots$$

$$= D(N/N)/(N/N) + 1 + 1 + \ldots + 1$$

$$= \lg N$$
Divide-and-conquer recurrence: proof by induction

Proposition. If $D(N)$ satisfies $D(N) = 2D(N/2) + N$ for $N > 1$, with $D(1) = 0$, then $D(N) = N \lg N$.

Pf 3. [assuming N is a power of 2]
- **Base case:** $N = 1$.
- **Inductive hypothesis:** $D(N) = N \lg N$.
- **Goal:** show that $D(2N) = (2N) \lg (2N)$.

\[
D(2N) = 2D(N) + 2N \\
= 2 \cdot N \lg N + 2N \\
= 2N (\lg (2N) - 1) + 2N \\
= 2N \lg (2N)
\]

QED

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to N.

Pf. The array `aux[]` needs to be of size N for the last merge.

Def. A sorting algorithm is in-place if it uses $\leq c \log N$ extra memory.

Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrod, 1969]

Mergesort: practical improvements

Use insertion sort for small subarrays.
- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ~ 7 items.

```java
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
    if (hi <= lo + CUTOFF - 1) Insertion.sort(a, lo, hi);
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}
```

Mergesort: practical improvements

Stop if already sorted.
- Is biggest item in first half \leq smallest item in second half?
- Helps for partially-ordered arrays.

```java
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    if (!less(a[mid+1], a[mid])) return;
    merge(a, aux, lo, mid, hi);
}
```
Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

```java
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
        if (i > mid) aux[k] = a[j++];
        else if (j > hi) aux[k] = a[i++];
        else if (less(a[i], a[j])) aux[k] = a[i++];
        else aux[k] = a[j++];
}
```

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(aux, a, lo, mid);
 sort(aux, a, mid, hi);
 merge(aux, a, lo, mid, hi);
}

switch roles of aux[] and a[]

2.2 Mergesort

- Mergesort
- bottom-up mergesort
- sorting complexity
- comparators
- stability

Bottom-up mergesort

Basic plan.
- Pass through array, merging subarrays of size 1.
- Repeat for subarrays of size 2, 4, 8, 16, ...
Bottom-up mergesort: Java implementation

```java
public class MergeBU
{
    private static void merge(...)
    { /* as before */ }

    public static void sort(Comparable[] a)
    {
        int N = a.length;
        Comparable[] aux = new Comparable[N];
        for (int sz = 1; sz < N; sz = sz+sz)
            for (int lo = 0; lo < N-sz; lo += sz+sz)
                merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
    }
}
```

Bottom line. Simple and non-recursive version of mergesort.

but about 10% slower than recursive, top-down mergesort on typical systems

Bottom-up mergesort: visual trace

2
4
8
16
32

Visual trace of bottom-up mergesort

Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X.

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of all algorithms for X.

Optimal algorithm. Algorithm with best possible cost guarantee for X.

Example: sorting.

- Model of computation: decision tree.
- Cost model: # compares.
- Upper bound: $\sim N \lg N$ from mergesort.
- Lower bound: $?$
- Optimal algorithm: $?$
Proposition. Any compare-based sorting algorithm must use at least \(\lg (N!) \sim N \lg N \) compares in the worst-case.

\textbf{Pf.}
- Assume array consists of \(N \) distinct values \(a_1 \) through \(a_N \).
- Worst case dictated by height \(h \) of decision tree.
- Binary tree of height \(h \) has at most \(2^h \) leaves.
- \(N! \) different orderings \(\Rightarrow \) at least \(N! \) leaves.

\[2^h \geq \# \text{leaves} \geq N! \]
\[\Rightarrow h \geq \lg (N!) \sim N \lg N \]

Stirling's formula

Complexity of sorting

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for \(X \).
Lower bound. Proven limit on cost guarantee of all algorithms for \(X \).
Optimal algorithm. Algorithm with best possible cost guarantee for \(X \).

Example: sorting.
- Model of computation: decision tree.
- Cost model: \# compares.
- Upper bound: \(\sim N \lg N \) from mergesort.
- Lower bound: \(\sim N \lg N \).
- Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.
Complexity results in context

Compares? Mergesort is optimal with respect to number compares.

Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.

Ex. Design sorting algorithm that guarantees \(\frac{1}{2} N \lg N \) compares?

Ex. Design sorting algorithm that is both time- and space-optimal?

2.2 MERGESORT

- mergesort
- bottom-up mergesort
- sorting complexity
- comparators
- stability

Sort music library by artist name
Comparable interface: sort using a type's natural order.

```java
public class Date implements Comparable<Date> {
    private final int month, day, year;
    public Date(int m, int d, int y) {
        month = m;
        day = d;
        year = y;
    }
    public int compareTo(Date that) {
        if (this.year < that.year) return -1;
        if (this.year > that.year) return +1;
        if (this.month < that.month) return -1;
        if (this.month > that.month) return +1;
        if (this.day < that.day) return -1;
        if (this.day > that.day) return +1;
        return 0;
    }
}
```

Comparator interface: system sort

To use with Java system sort:
- Create Comparator object.
- Pass as second argument to Arrays.sort().

```java
String[] a;
... Arrays.sort(a);
... Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
... Arrays.sort(a, Collator.getInstance(new Locale("es")));
... Arrays.sort(a, new BritishPhoneBookOrder());
```

Bottom line. Decouples the definition of the data type from the definition of what it means to compare two objects of that type.
Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:
- Use Object instead of Comparable.
- Pass Comparator to sort() and less() and use in less().

insertion sort using a Comparator

```java
public static void sort(Object[] a, Comparator comparator)
{
    int N = a.length;
    for (int i = 0; i < N; i++)
        for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
            exch(a, j, j-1);
}
```

Comparator interface: implementing

To implement a comparator:
- Define a (nested) class that implements the Comparator interface.
- Implement the compare() method.

```java
public class Student
{
    public static final Comparator<Student> BY_NAME = new ByName();
    public static final Comparator<Student> BY_SECTION = new BySection();
    private final String name;
    private final int section;
    ...
    one Comparator for the class
    private static class ByName implements Comparator<Student>
    {
        public int compare(Student v, Student w)
        { return v.name.compareTo(w.name); }
    }
    private static class BySection implements Comparator<Student>
    {
        public int compare(Student v, Student w)
        { return v.section - w.section; }
    }
}
```

this technique works here since no danger of overflow

Comparator interface: implementing

To implement a comparator:
- Define a (nested) class that implements the Comparator interface.
- Implement the compare() method.

```java
public static void sort(Object[] a, Comparator comparator)
{
    int N = a.length;
    for (int i = 0; i < N; i++)
        for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
            exch(a, j, j-1);
}
private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }
private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }
```

Polar order

Polar order. Given a point p, order points by polar angle they make with p.

Application. Graham scan algorithm for convex hull. [see previous lecture]

High-school trig solution. Compute polar angle θ w.r.t. p using $\text{atan2}()$.

Drawback. Evaluating a trigonometric function is expensive.
2.2 MERGESORT

- mergesort
- bottom-up mergesort
- sorting complexity
- comparators
- stability

Comparator interface: polar order

```java
public class Point2D
{
    public final Comparator<Point2D> POLAR_ORDER = new PolarOrder();
    private final double x, y;
    ...

    private static int ccw(Point2D a, Point2D b, Point2D c)
    {
        return a.compareTo(b) - a.compareTo(c);
    }

    public class PolarOrder implements Comparator<Point2D>
    {
        public int compare(Point2D q1, Point2D q2)
        {
            double dy1 = q1.y - y;
            double dy2 = q2.y - y;
            if (dy1 == 0 && dy2 == 0) { ... }
            else if (dy1 > 0 && dy2 < 0) return -1;
            else if (dy2 >= 0 && dy1 < 0) return +1;
            else return -ccw(Point2D.this, q1, q2);
        }
    }
}
```

Stability

A typical application. First, sort by name; then sort by section.

Selection.sort(a, Student.BY_NAME);
Selection.sort(a, Student.BY_SECTION);

<table>
<thead>
<tr>
<th>Name</th>
<th>Grade</th>
<th>ID</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A 664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>C 874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>A 991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>A 884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Furia</td>
<td>1</td>
<td>A 766-093-8783</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>B 766-093-8783</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>B 898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>A 232-343-5555</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A 664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>A 232-343-5555</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>A 991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>A 884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A 664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>B 898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>B 766-093-8783</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>C 874-088-1212</td>
<td>121 Whitman</td>
</tr>
</tbody>
</table>

@##@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.
Stability

Q. Which sorts are stable?

A. Insertion sort and mergesort (but not selection sort or shellsort).

<table>
<thead>
<tr>
<th>Time</th>
<th>Location (Not Stable)</th>
<th>Location (Stable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago 09:00:00</td>
<td>Chicago 09:25:52</td>
<td>Chicago 09:00:00</td>
</tr>
<tr>
<td>Phoenix 09:00:03</td>
<td>Los Angeles 09:03:13</td>
<td>Phoenix 09:00:59</td>
</tr>
<tr>
<td>Houston 09:00:13</td>
<td>Dallas 09:19:46</td>
<td>Houston 09:01:10</td>
</tr>
<tr>
<td>Chicago 09:00:59</td>
<td>Chicago 09:21:05</td>
<td>Chicago 09:19:32</td>
</tr>
<tr>
<td>Houston 09:01:10</td>
<td>Chicago 09:19:46</td>
<td>Houston 09:01:10</td>
</tr>
<tr>
<td>Chicago 09:03:13</td>
<td>Chicago 09:21:05</td>
<td>Chicago 09:19:32</td>
</tr>
<tr>
<td>Seattle 09:10:11</td>
<td>Chicago 09:35:21</td>
<td>Chicago 09:25:52</td>
</tr>
<tr>
<td>Seattle 09:10:25</td>
<td>Chicago 09:35:21</td>
<td>Chicago 09:35:21</td>
</tr>
<tr>
<td>Phoenix 09:14:25</td>
<td>Houston 09:01:10</td>
<td>Houston 09:01:10</td>
</tr>
<tr>
<td>Chicago 09:19:32</td>
<td>Houston 09:00:13</td>
<td>Houston 09:00:13</td>
</tr>
<tr>
<td>Chicago 09:19:46</td>
<td>Phoenix 09:37:44</td>
<td>Phoenix 09:00:03</td>
</tr>
<tr>
<td>Chicago 09:21:05</td>
<td>Phoenix 09:00:03</td>
<td>Phoenix 09:14:25</td>
</tr>
<tr>
<td>Seattle 09:22:54</td>
<td>Seattle 09:10:25</td>
<td>Seattle 09:10:25</td>
</tr>
<tr>
<td>Chicago 09:25:52</td>
<td>Seattle 09:36:14</td>
<td>Seattle 09:10:25</td>
</tr>
<tr>
<td>Seattle 09:36:14</td>
<td>Seattle 09:10:11</td>
<td>Seattle 09:22:54</td>
</tr>
<tr>
<td>Phoenix 09:37:44</td>
<td>Seattle 09:22:54</td>
<td>Seattle 09:36:14</td>
</tr>
</tbody>
</table>

Note. Need to carefully check code ("less than" vs. "less than or equal to").

Stability: selection sort

Proposition. Selection sort is not stable.

```java
public class Selection
{
    public static Selection sort(Comparable[] a)
    {
        int N = a.length;
        for (int i = 0; i < N; i++)
            for (int j = i + 1; j < N; j++)
                if (less(a[j], a[min]))
                    min = j;
        exch(a, i, min);
    }
}
```

Pf by counterexample. Long-distance exchange might move an item past some equal item.

Stability: shellsort

Proposition. Shellsort sort is not stable.

```java
public class Shellsort
{
    public static Shellsort sort(Comparable[] a)
    {
        int N = a.length;
        int h = 1;
        while (h < N/3) h = 3*h + 1;
        while (h >= 1)
        {
            for (int i = h; i < N; i++)
                if (j < h) h = less(a[j], a[h]);
                exch(a, j, h);
            h = h/3;
        }
    }
}
```

Pf by counterexample. Long-distance exchanges.
Stability: mergesort

Proposition. Mergesort is stable.

```java
public class Merge
{
    private static Comparable[] aux;
    private static void merge(Comparable[] a, int lo, int mid, int hi)
    {
        /* as before */
    }

    private static void sort(Comparable[] a, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, lo, mid);
        sort(a, mid+1, hi);
        merge(a, lo, mid, hi);
    }

    public static void sort(Comparable[] a)
    { /* as before */
    }
}
```

Pf. Suffices to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

```java
private static void merge(...)
{
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];

    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
    }
}
```

Pf. Takes from left subarray if equal keys.