COS 226	Algorithms and Data Structures	Fall 2008
	Midterm Solutions	

1. 8 sorting algorithms.

 $0\; 6\; 5\; 2\; 4\; 9\; 3\; 8\; 7\; 1$

2. Sorting equal keys.

Insertion	
Selection	$A_0 \ A_1 \ A_2 \ A_3 \ A_4 \ A_5 \ A_6$
Shellsort	$A_0 \ A_1 \ A_2 \ A_3 \ A_4 \ A_5 \ A_6$
Mergesort	$A_0 \ A_1 \ A_2 \ A_3 \ A_4 \ A_5 \ A_6$
Quicksort	$A_4 \ A_3 \ A_5 \ A_6 \ A_0 \ A_2 \ A_1$
Heapsort	$A_1 \ A_2 \ A_3 \ A_4 \ A_5 \ A_6 \ A_0$

3. Analysis of algorithms.

(a) I and II only

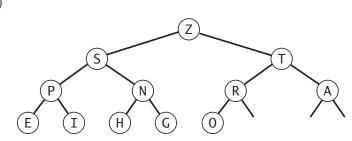
Big-Oh notation and tilde notation both suppress lower order terms.

(b) I only

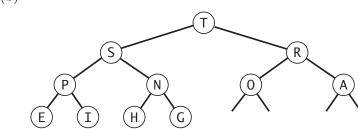
Amortized analysis provides a worst-case guarantee on any sequence of operations starting from an empty data structure.

4. Binary heaps.

(a)



(b)

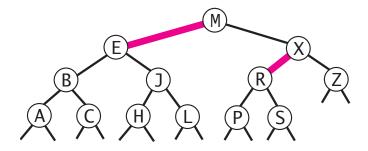


(c) True.

5. Ordered-array implementation of a set.

add(key)	add the key to the set	N
contains(key)	is the key in the set?	$\log N$
ceiling(key)	$smallest \ key \ in \ set \geq given \ key$	$\log N$
rank(key)	number of keys in set < given key	$\log N$
select(i)	ith largest key in the set	1
min()	minimum key in the set	1
delete(key)	delete the given key from the set	N
iterator()	iterate over all N keys in the set in order	N

6. Red-black trees.



7. Line intersection.

- (a) There are two cases:
 - If the two lines have the same slope $(a_0 = a_1)$, then return no intersection.
 - Otherwise, the point (x, y) of intersection is given by:

$$x = -\frac{b_1 - b_0}{a_1 - a_0}, \quad y = a_0 x + b_0$$

- (b) To determine whether the *i*th line is involved in an intersection with 3 (or more) lines:
 - Create a symbol table with key = point, value = list (say, a queue) of lines.
 - For each line $j \neq i$ in order:
 - Compute the intersection point p between line i and line j.
 - If they don't intersect, continue.
 - If the key p is not already in the symbol table, add an entry to the symbol table with key = p and value = empty list.
 - Add line j to the end of the list associated with p.
 - For each key in the symbol table, if it's list contains 2 (or more) lines, they correspond to 3 (or more) lines intersecting at a single point (line *i*, plus the lines in the list).

Implement the symbol table using a separate-chaining (or linear-probing) hash table so that each insert/search takes O(1) time. Thus, the overall subroutine takes O(N) time.

To determine whether any 3 (or more lines) intersect at a point, run the previous subroutine N times, once for each line i. The total running time is $O(N^2)$.

(c) Only print out a set of lines in the last step of the subroutine if the index of the first line in the list is greater than *i*. This guarantees we only find a set of lines once, when using the line with the smallest index as the base line.

3