1. Analysis of algorithms.

(a)
\[P \] Printing the keys in a binary search tree in ascending order.

\[U \] Finding a minimum spanning tree in a weighted graph.

\[P \] Finding all vertices reachable from a given source vertex in a graph.

\[P \] Checking whether a digraph has a directed cycle.

\[P \] Building the Knuth-Morris-Pratt DFA for a given string.

\[P \] Sorting an array of strings, accessing the data solely via calls to `charAt()`.

\[I \] Sorting an array of strings, accessing the data solely via calls to `compareTo()`.

\[I \] Finding the closest pair of points among a set of points in the plane, accessing the data solely via calls to `distanceTo()`.

(b)
\[A \] Insert into a red-black tree.
\[B \] Insert into a binary heap.
\[C \] Insert into a 2d-tree.

\[A \] \(\log N \) worst case

\[B \] \(\log N \) amortized

\[C \] \(\log N \) average case on random inputs

(c)
- The \(N^3 \) one might be much easier to correctly implement, debug, and test.
- The \(N^3 \) algorithm might be faster for the values of \(N \) of interest (e.g., because of the leading constant).
- The \(N^3 \) algorithm might use less memory.

(d)
56 bytes.

Each `Point` object consumes 32 bytes (8 bytes for each of the three `double` instance variables; 8 bytes of object overhead).

Each `Node` object consumes 56 bytes (4 bytes for each of the 3 reference instance variables; 4 bytes for the `int` instance variable; 32 bytes for the `Point3D` object; 8 bytes of object overhead).
2. Breadth-first search.
 (a) A B C D E G F H I
 (b) d

3. Minimum spanning tree.
 (a) 1 2 3 5 6 7 8 12
 (b) $w \leq 8$
 (c) 6 1 3 2 5 7 8 12
 (d) Find the unique path between x and y in T. This takes $O(V)$ time using DFS because there are only $V - 1$ edges in T. We claim the edge T remains an MST if and only if w is greater than or equal to the weight of every edge on the path.
 - If any edge on the path has weight greater than w, we can decrease the weight of T by swapping the largest weight edge on the path with x-y. Thus, T does not remain an MST.
 - If w is greater than or equal to the weight of every edge on the path, then the cycle property asserts that x-y is not in some MST (because it is the largest weight edge on the cycle consisting of the path from x to y plus the edge x-y). Thus, T remains an MST.

4. Shortest paths.
 (a) vertex: A C D F H E B G I
distance: 0 1 12 20 25 28 34 40 53
 (b) $A \rightarrow C$, $C \rightarrow D$, $C \rightarrow B$, $D \rightarrow F$, $F \rightarrow H$, $H \rightarrow E$, $E \rightarrow G$, $G \rightarrow I$

5. Ternary search tries.
 (a) ear fo his hitch hold holdup hotel hum humble ill
 (b)
 (c) • faster, especially for search miss
 • support character-based operations such as prefix match (autocomplete), longest prefix, and wildcard match

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
7. Regular expressions.

 (a) 5
 b b a b a c a a

 (b) b a b a b a a b a

 I only.

10. Tandem repeats.
 (a) This problem is a generalization of substring search (is there at least one consecutive copy of b within s?) so we need an algorithm that generalizes substring search.

 Create the Knuth-Morris-Pratt DFA for \(k \) copies of b, where \(k = \lfloor N/M \rfloor \). Now, simulate DFA on input \(s \) and record the largest state that it reaches. From this, we can identify the longest repeat.

 (b) \(M + N \).

11. Reductions.
 (a) \(\{ -3M, x_1 + M, x_2 + M, \ldots, x_N + M \} \)

 If we can force any solution to this 4SUM instance to choose \(x_i = -3M \) as one of the integers, then the remaining three integers are \(x_i + M, x_j + M, \) and \(x_k + M \) and we have \(x_i + x_j + x_k = 0 \).

 We force any solution to this 4SUM instance to choose \(-3M\) by choosing \(M = 1 + \max\{|x_1|, |x_2|, \ldots, |x_N|\} \) to be large, thereby making \(-3M\) the only negative integer.

 (b) None.