.

T Ak I

(1) \[zV
\% u
N 4208,

" é . ‘]:plﬂuw_ o

THIS I

S = S0V = e
f—) s

CAVToN (2 s

ECECTRIC HoT
] S MoRAL
F—b—’l RECTIFIER
L~
1 10~
pam— | wa,'é }bém He f'“ L
1;"5% NO ‘ S,Q H l A‘l“ A'A'A
Al
Close swittH |(Peest) A
FAST. m'mwm”m
\Y A szmxée%
ARENA !
. .v . . “
m
D%)RY soov (~
Nor?glo'r = ’
CEER
g
O Tie SALE
TAKE. OFF SHIRT
CDU-EEHCRIOR 3 Lnr;:: vﬁ(& WIRING THIS -
? PART. COH, YEAH, =

T UKE THAT. HOLD
W,

Let's build a computer!

CPU: "central processing unit”

computer: CPU + display + optical disk + metal case + power supply + ...

™\ the difference
between your computer

Last lecture: circuit that implements an adder and a TV set

This lecture: circuit that implements a CPU

TOY Lite

TOY machine.

» 256 16-bit words of memory.
16 16-bit registers.

« 1 8-bit program counter. \o:eb;i?r?;gzs
e 2 instruction types

e 16 instructions.

™\ 8 bits to specify
one of 256 memory words

TOY-Lite machine.
e 16 10-bit words of memory.
* 4 10-bit registers.

"\ 2 bits to specify

* 1 4-bit program counter. one of 4 registers
* 2 instruction types
e 16 instructions. ™\ 4bits to specify

one of 16 memory words

Goal: CPU circuit for TOY-Lite (same design extends to TOY, your computer)

3

Primary Components of Toy-Lite CPU

v/ Arithmetic and Logic Unit (ALV)

Memory

Toy-Lite Registers

Processor Registers: Program Counter and Instruction Register

“Control”

A New Ingredient: Circuits With Memory

Xyz

Combinational circuits. [E3. %
* Output determined solely by inputs. -_?i}‘—-/xy
* Ex: majority, adder, decoder, MUX, ALU. ‘?i}e_i/

v

Sequential circuits.
e Output determined by inputs and current "state”.
* Ex: memory, program counter, CPU.

Ex. Simplest feedback loop.
* Two controlled switches A and B, both connected
to power, each blocked by the other.

B
» State determined by whichever switches first. _‘::‘ 0 state _l:q 1 state
e Stable.

A 0 1

Aside. Feedback with an odd number of switches is a buzzer (not stable).

Doorbell: buzzer made with relays.)(;2‘ g X;Z—

SR Flip-Flop

SR Flip-flop. <y e
 Two cross-coupled NOR gates '| |}< oy xey)
* A way to control the feedback loop. o gate » g’ORgatjmm
* Abstraction that "remembers" one bit. |
e Basic building block for memory and registers. '

*1
memory bit

mttc 0 wm 1
write 0 remember 0 write 1 remember 1 unused

I i I L g 4

read mlm
R
—) >

Ql

Caveats. Timing, switching delay.

Memory Overview

Computers and TOY have several memory components.
* Program counter and other processor registers.
e TOY registers (4 10-bit words in Toy-Lite).
e Main memory (16 10-bit words in Toy-Lite).

write 0

write 1

memory bit

Implementation. .l

 Use one flip-flop for each bit of memory.
» Use buses and multiplexers to group bits into words.

Access mechanism: when are contents available?
* Processor registers: enable write.
* Main memory: select and enable write.

* TOY register: dual select and enable write
"\ need to be able to
read two registers at once

read

Processor register Bit

Processor register bit. Extend a flip-flop to allow easy access to values.

input input
va7ue\\ enable va7ue\\ enable
I / write s / write -
write write
ggg’: when input is O . when input is 1
AND — s — AND
enable write is 1 J enable write is 1

output value output value
available available

Memory Bit Interface

Memory and TOY register bits: Add selection mechanism.

input

input
input va7ue.\\ enable value \ enable
va7ue\ ena_b7e J/ write | V4 write
| / write
—REG MEM DP ; 1
BIT select MEM select
BIT for read BIT for read
select 2
| '\ 1-hot OR with 4 for read
AN other values 4
output value d
available % [stay funed]
REGISTER BIT \output value r }(
available
IF select on output value output value
available available
MEMORY-BANK BIT if select 1 on if select 2 on

DUAL-PORT MEMORY-BANK BIT

[TOY PC, IR] [TOY main memory] [TOY registers]

Memory Bit: Switch Level Implementation

Memory and TOY register bits: Add selection mechanism.

input

input
input va7ue.\\ enable value \ enable
va7ue\ enap7e V4 write | V4 write
/ write
i . B '1(5(‘
XX T olaen T select 1
[for read
for read
% & select 2
‘\\\\\\\ANDQMBS 1 FE /jbrr&m
output value |mp|em§n’r <—> 33
available selection
REGISTER BIT \output value r }(
available
IF select on output value output value
available available
MEMORY-BANK BIT if select 1 on if select 2 on

DUAL-PORT MEMORY-BANK BIT

[TOY PC, IR] [TOY main memory] [TOY registers]

10

Processor Register

Processor register. < don't confuse with TOY register
» Stores k bits.
* Register contents always available on output bus.
* If enable write is asserted, k input bits get copied into register.

Ex 1. TOY-Lite program counter (PC) holds 4-bit address.
Ex 2. TOY-Lite instruction register (IR) holds 10-bit current instruction.

input bus — enable

- .
write

output bus —

1

Processor Register

Processor register. . don't confuse with TOY register
 Stores k bits.
* Register contents always available on output bus.
 If enable write is asserted, k input bits get copied info register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

input bus —

I , enable
REG™ REG | REG™ REG~ =~ write
BIT BIT BIT BIT

output bus — !

12

Processor Register

Processor r'egisTer'. — don't confuse with TOY register

e Stores k bits.

* Register contents always available on output bus.

 If enable write is asserted, k input bits get copied info register.

Ex 1. TOY program counter (PC) holds 8-bit address.

Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

input bus —

REGISTER (4-bit)

gt

gt

et

output bus —

A

enable
write

13

Memory Bank

Memory bank.
* Bank of n registers; each stores k bits.
* Read and write information to one of n registers.
* Address inputs specify whichone. | css bits needed
» Addressed bits always appear on output.
 If write enabled, k input bits are copied into addressed register.

Ex O (for lecture). 4-by-6
(four 6-bit words)

Ex 1. Main memory bank.
e TOY: 256-by-16
e TOY-Lite: 16-by-10

Ex 2. Registers.

« TOY: 16-by-16

* TOY Lite: 4-by-10 enabre wriee
e Two output buses.

~—output bus

14

Memory: Interface

6-bit
input bus
2-bit
address N 6-bit

enable write —
~—output bus

15

Memory: Component Level Implementation

Decoder plus memory selection: connect only to addressed word.

~— input bus

DECODER —
| ~—word 0
m |
| ~—word 1
only one of l > —
these lines i
is “*hot" (1) —
_|\ ~—word 2
\ N
\ :\ 1-hot OR
| ~—word 3
Tk |
address N | d
enable write — —
~—output bus

16

Memory: Switch Level Implementation

(four 6-bit words)

<~—output bus

MEMORY

E

5

g

|
._”inﬁ# an.Wﬁﬂ- ..muIWﬁ - ._”iuﬁwr
I_HM.._HﬂWM_H I_HM.*_HﬂWM_” I_HM.E » I_HM.mHﬁ.wM-
._”w.._Hﬁw% e T &ﬁ .wiuﬁ - ._Hiuﬁww
B | PR | e | e
L”M.Wﬁ.ﬂ- L”M.Wﬁ.ﬂ- I_HM.E x L”M.ﬂ“ﬁ.wm-
L”M.ﬂ”ﬁﬂu I_”M.Wﬁ.ﬂu I_”M.Wﬁ » I_HM.E.WM-
i JE— S JE— 5 JE— 5 JE—
i L i L

Ik [k fa i

~

address
enable write —

17

TOY-Lite Memory

16 10-bit words

* input connected to registers for "store”

* output connected to registers for "load"

e addr connect to processor Instruction Register (IR)

to registers (in)
to registers (out)

v otk «_ l

Llllllllllllllll

H\: =
T

Another Useful Combinational Circuit: Multiplexer

Multiplexer (MUX). Combinational circuit that selects among input buses.
» Exactly one select line i is activated.
e Copies bits from input bus i to output bus.

input bus 1 —
input bus 2 —
input bus 3 —

/se7ect 1

~— select 2 kexacﬂy onhe of

\se7ect 3« these lines
is hot

output bus —

19

Nuts and Bolts: Buses and Multiplexers

Multiplexer (MUX). Combinational circuit that selects among input buses.
» Exactly one select line i is activated.
* Copies bits from input bus i to output bus.

MUX (3-way)
input bus 1 —
input bus 2 —
input bus 3 —
2,200 1.2 2 P
'_I}u '_l}cz I I\sk i _'}u
ek | Ik | Ik LIk :
T 2 L TG T 3 /se ect 1
;:se7ect 2
output bus — select 3

Toy-Lite Registers

4 10-bit words
* Dual-ported to support connecting two different registers to ALU
e Input MUX to support input connection to ALU, memory, IR, PC

to ALU (in) to ALU (out)
/N N MUX select /

XNW LNdNI ¥31SI93Y

118~

<«—to memory, IR

to PC
21

v

v

ALU

Memory

Registers

Processor Registers: Program Counter and Instruction Register

“Control”

Primary Components of Toy-Lite CPU

\ Not quite done.

Need to be able to increment.

22

How To Design a Digital Device

How to design a digital device.

* Design interface: input buses, output buses, control wires.
e Determine components.

* Determine datapath requirements: "flow" of bits.

e Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

Goal. Design TOY-Lite computer (10 devices, 27 control wires).

23

Program Counter: Interface

Counter. Holds value that represents a binary number.
* Load: set value from input bus.
e Increment: add one to value.
 Enable Write: make value available on output bus.

Ex. TOY-Lite program counter (4-bit).

COUNTER

input bus —

v load

N increment

enable
write

output bus —

24

Program Counter: Components

Components.
 Register.
e Incrementer.
 Multiplexer (to provide connections for both load and increment).

25

Program Counter: Datapath and Control

Datapath.
* Layout and interconnection of components.
e Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

26

Program Counter: Datapath and Control

Datapath.
* Layout and interconnection of components.
e Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

COUNTER

input bus —

/ load
\~increment

enable
write

output bus —

27

Program Counter: Datapath and Control

Datapath.
* Layout and interconnection of components.
e Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

COUNTER MUX
input bus —
e LM [[[SR
fad eared | A A oA oA
= B N o o = o load
Tﬁ{ ?-F- N increment
[
= FTF il REGISTER
E % S x - enable
I e e e ¢ write
LE) ||J;i_ F-.F- I"“ I"“ I"“ I"“
I I I
output bus —

Program Counter: Datapath and Control

COUNTER

input bus —

Vv Toad

output bus —

1. load:
copy input to register

COUNTER

input bus —

enable
write

output bus —

2. enable write:
register contents available on output

COUNTER

input bus —

N increment

write enable OFF
blocks feedback Toop

output bus —

3. increment:
output plus 1 available in MUX
copy to register

COUNTER

input bus —

enable
write

output bus —

4. enable write:
register contents available on output

29

v

v

Primary Components of Toy-Lite CPU

ALU

Memory

Toy-Lite Registers

Processor Registers: Program Counter and Instruction Register

“Control”

30

How To Design a Digital Device

How to design a digital device.

* Design interface: input buses, output buses, control wires.
e Determine components.

* Determine datapath requirements: "flow" of bits.

e Establish control sequence.

Next. Design TOY-Lite computer (10 devices, 27 control wires).

31

TOY-Lite: Interface

CPU is a circuit.

Interface: switches and lights.
* set memory contents
* set PC value
e press RUN
* [details of connection to circuit omitted]

OUTPUT

32

TOY-Lite: Components

MEMORY

CLOCK

TOY-Lite:

CONTROL

PC MUX

O
o

ONI

ADDR
MUX

o
-

Layout

SY11SIDIA

ALU

XNW ¥31SIDIN

34

TOY-Lite Datapath Requirements: Fetch

Basic machine operation is a cycle.
* Fetch
 Execute

Fetch.
e Memory[PC] to IR
e Tncrement PC

\ W o

Execute.
 Datapath depends on instruction

35

TOY-Lite Datapath Requirements: Execute

Instructions determine datapaths and control sequences for execute

halt

add

subtract

and

xor

shift left

shift right

IR opcode to control
control to ALU
two registers to ALU
ALU to register MUX

load address

load

Store

load indirect

store indirect

branch zero

branch positive

Jjump register

m MmO QO | |>» v o (N o oD |w N = O

jump and link

36

TOY-Lite: Datapaths and Control

-

é_‘
1 ||

fetch:
Memory[PC] to IR

increment
increment PC

Datapath: Add

execute:

IR opcode to control
control fo ALU
two registers to ALU
ALU to register MUX

38

Datapath: Load

fetch:
Memory[PC] to IR

execute:

IR opcode to control
IR to addr MUX
memory to register MUX

increment
increment PC

39

Last step

Control. Each instruction corresponds to a sequence of control signals.

Q. How do we create the sequence?
A. Need a "physical” clock.

Solution 2: Use a buzzer [need sufficiently long cycle to cover CPU switching]
clock

Solution 1: Use some other technology

, N § ,‘,.\,.

CCUERTT S e A .'.'
TN CPU
SRy & JONOK

Q i A

. ! G ! o

. - bu
=t N

40

Clock

Solution 3?

* Fundamental abstraction: regular on-off pulse. =
-on: fetch phase m
-off: execute phase s

* "external” device. i

 Synchronizes operations of different circuit elements.

 Requirement: clock cycle longer than max switching time.

cycle time
on

Clock . off

41

How much does it Hert?

Frequency is inverse of cycle time.
 Expressed in hertz.
 Frequency of 1 Hz means that there is 1 cycle per second.
-1 kilohertz (kHz) means 1000 cycles/sec.
-1 megahertz (MHz) means 1 million cycles/sec.
-1 gigahertz (GHz) means 1 billion cycles/sec.
-1 terahertz (THz) means 1 trillion cycles/sec.

Heinrich Rudolf Hertz
(1857-1894)

42

Clocking Methodology

Two-cycle design.
* Each control signal is in one of four epochs.

- fetch [set memory address from pc]
- fetch and clock [write instruction to IR]
- execute [set ALU inputs from registers]

- execute and clock [write result of ALU to registers]

Fetch

Execute

Clock (((((

43

One Last Combinational Circuit: Control

Control. Circuit that determines control line sequencing.

external clock just ticks

I
(@)
=
o
0
~

o
=

()
o
=
=
e

. \
control lines

to processor registers and AV

bk | |k
a0 T ?

become hot in sequence
determined /—
by clock, opcode —

data bus
to memory input

o for
- conditional
x| branches
. = q% = q q ﬁ :|| q q ﬁ :|| q ’_L|| ﬁ
opcode
from IR opcode decoder
trol li data bus
control lines from ALU

to ALU

44

Tick-Tock

CPU is a circuit, driven by a clock. Fetch
Switches initialize memory, PC contents ﬁ

9)no%oxg
Clock ticks

e fetch instruction from memory[PC] to IR
e increment PC
e execute instruction

e fetch next instruction

That's all there is to it!

TOY "Classic", Back Of Envelope Design

- 0
CONTROL ‘= =illl
]
_(:TT T O
= = TR
L\'&Eﬁl n—— . | P
[
— |
B Re 6 EeE = évg% MEMO BY Efm
2 = z—-<£ E: = =8
R {V\Erf\:\?pfgzb = ;&5 =
= - £ == W o -
l
T
LU
| == B
=== E %
= ———

46

TOY-Lite

— m— i1}
== 1 1 1 L Qi
d £ ¢
:f s _‘ [
T

F R

R EERED

o

Bl

CPU

REEEE

{h R R

R and

fend

Ty
THT

TITIT
il
i

HE

’I'l‘x'
HNI

|

T
|
’l

N\
@)
@)
@)
@)
o
(a4
Vp)
Q-
[
=
St
C
o
v
v
Q)
Q
o
C
a
o
C
9
=
IS,
Q
(a4

YrRrEET21)
Sad ad A8 b4
|

Layers of Abstraction

Abstract Switch
Connector

Clock

Logic Gates

Combinational Circuit

Sequential Circuit

Components

Computer

raw materials
raw materials

raw materials

abstract switches,
conhnectors

logic gates, connectors

logic gates, clock,
cohnector

decoder, multiplexer,
adder, flip-flop

components

transistor, relay
wire

crystal oscillator

AND, OR, NOT

decoder, multiplexer,
adder

flip-flop

registers, ALU,
counter, control

TOY

49

History + Future

Computer constructed by layering abstractions.
* Better implementation at low levels improves everything.
* Ongoing search for better abstract switch!

History.

 1820s: mechanical switches.

* 1940s: relays, vacuum tubes.

» 1950s: transistor, core memory.
* 1960s: integrated circuit.

« 1970s: microprocessor.

« 1980s: VLSI.

* 1990s: integrated systems.

» 2000s: web computer.

e Future: quantum, optical soliton, .. 500 1910 1920 1590 1940 1950 1960 1970 190 1950 200

Year

Moore’s Law

The Fifth Paradigm Logarithmic Plot

[=}
o
=
=
3
i
@
Q
o
c
Q
3]
o)
(%]
s
o
Q
)
=
=
=
L
3
O
[
O

Ray Kurzweil
http://en.wikipedia.org/wiki/Image:PPTMooresLawai. jpg

50

