Let's build a computer!

ゴルト 「2v BROWN / GLUE OPEN SCARAB 1200 PULL THIS WIRE REALLY TIGHT ONT THISIF YOU'RE A WILME ЦS WARM ELECTR SMAGIC SMOKE FER ARDUN FOR BL Ó HIRE SOMEWE TO OPEN AND CLOSE SWITCH REAL FAST. 50 ELECTRON SINGLE FILE テ BURY DEEP, BUT NOT 700 PEEP -TO CENTER OF SU w WIRE JUST Örgae 벌 TEAR G OLY

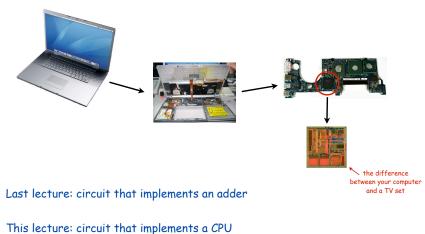
TOY Lite

TOY machine.

• 256 16-bit words of memory.

- 16 16-bit registers.
- 1 8-bit program counter.
- 2 instruction types
- 16 instructions.

TOY-Lite machine.


- 16 10-bit words of memory.
- 4 10-bit registers.
- 1 4-bit program counter.
- 2 instruction types
- 16 instructions.

opcode	Rs	Rd1	Rd2	
opcode	Rs	ada		4 bits to specify one of 16 registers
			8 bits one of 256	to specify memory words
	opcode	Rs F	Rd1 Rd2	
]
	opcode	Rs	addr	2 bits to specify one of 4 registers

CPU: "central processing unit"

computer: CPU + display + optical disk + metal case + power supply + ...

Primary Components of Toy-Lite CPU

2

4

Arithmetic and Logic Unit (ALU) 1

Memory

Toy-Lite Registers

Processor Registers: Program Counter and Instruction Register

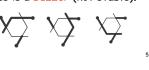
"Control"

Goal: CPU circuit for TOY-Lite (same design extends to TOY, your computer)

A New Ingredient: Circuits With Memory

Combinational circuits.

- Output determined solely by inputs.
- Ex: majority, adder, decoder, MUX, ALU.


Sequential circuits.

- Output determined by inputs and current "state".
- Ex: memory, program counter, CPU.

Ex. Simplest feedback loop.

- Two controlled switches A and B, both connected to power, each blocked by the other.
- State determined by whichever switches first.
- Stable.
- Aside. Feedback with an odd number of switches is a buzzer (not stable).

Doorbell: buzzer made with relays.

write 0

write 1

read

0 state

1 state

Memory Overview

Computers and TOY have several memory components.

- Program counter and other processor registers.
- TOY registers (4 10-bit words in Toy-Lite).
- Main memory (16 10-bit words in Toy-Lite).

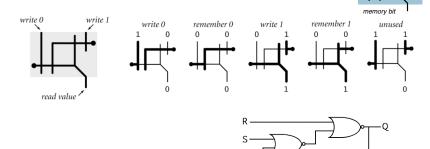
Implementation.

- Use one flip-flop for each bit of memory.
- Use buses and multiplexers to group bits into words.

Access mechanism: when are contents available?

- Processor registers: enable write.
- Main memory: select and enable write.
- TOY register: dual select and enable write

need to be able to read two registers at once



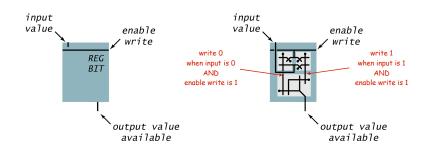
memory bit

• Two cross-coupled NOR gates

- A way to control the feedback loop.
- Abstraction that "remembers" one bit.
- Basic building block for memory and registers.

OR gate

NOR gate

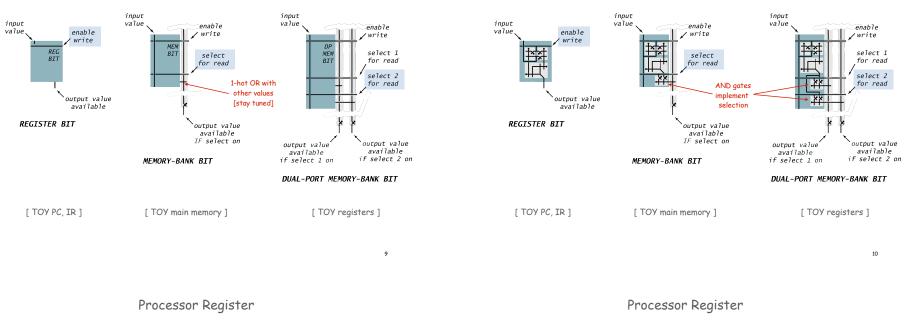

write

write 0

Caveats. Timing, switching delay.

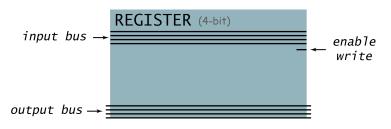
Processor register Bit

Processor register bit. Extend a flip-flop to allow easy access to values.

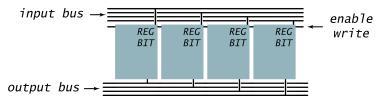


SR Flip-Flop

Memory Bit: Switch Level Implementation


Memory and TOY register bits: Add selection mechanism.

Memory and TOY register bits: Add selection mechanism.

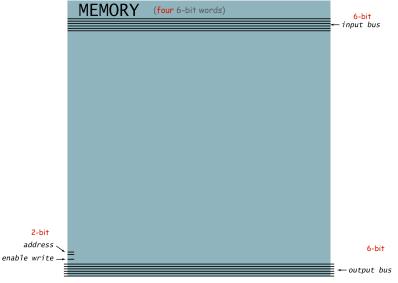

Processor register. — don't confuse with TOY register

- Stores k bits.
- Register contents always available on output bus.
- If enable write is asserted, k input bits get copied into register.
- Ex 1. TOY-Lite program counter (PC) holds 4-bit address.
- Ex 2. TOY-Lite instruction register (IR) holds 10-bit current instruction.

Processor register. ____ don't confuse with TOY register

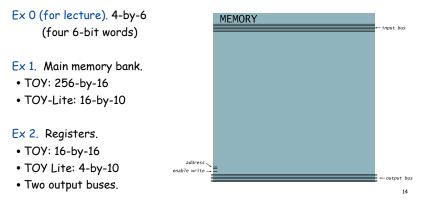
- Stores k bits.
- Register contents always available on output bus.
- If enable write is asserted, k input bits get copied into register.
- Ex 1. TOY program counter (PC) holds 8-bit address.
- Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

Memory Bank

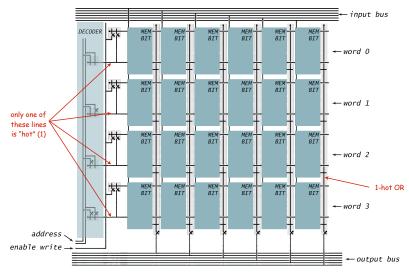

Processor register. _____ don't confuse with TOY register

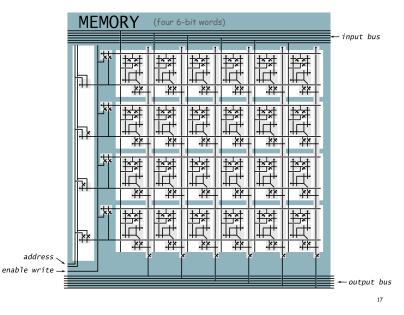
• Stores k bits.

- Register contents always available on output bus.
- If enable write is asserted, k input bits get copied into register.
- Ex 1. TOY program counter (PC) holds 8-bit address.
- Ex 2. TOY instruction register (IR) holds 16-bit current instruction.


input bus → REGISTER (4-bit) track track

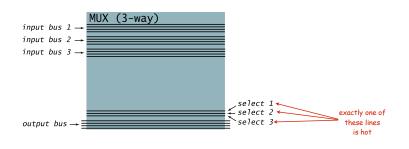
Memory: Interface


Memory bank.


- Bank of n registers; each stores k bits.
- Read and write information to one of n registers.
- Address inputs specify which one. _____ log_n address bits needed
- Addressed bits always appear on output.
- If write enabled, k input bits are copied into addressed register.

Memory: Component Level Implementation

Decoder plus memory selection: connect only to addressed word.

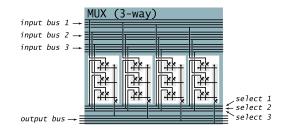


Another Useful Combinational Circuit: Multiplexer

Multiplexer (MUX). Combinational circuit that selects among input buses.

- Exactly one select line i is activated.
- Copies bits from input bus i to output bus.

16 10-bit words

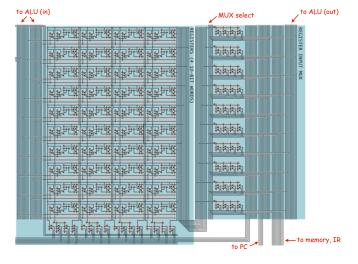

- input connected to registers for "store"
- output connected to registers for "load"
- addr connect to processor Instruction Register (IR)

o registers (out)	to registers (
	to IR
<u> </u>	
····································	4천 茶 4천
·····································	4월 梁년 (1997년)
·成为冲成为冲成为冲成为冲成为冲成为冲成为冲成为冲成为冲成为冲成为冲成为冲成为冲成	4월 24년 11 11 11 11 11 11 11 11 11 11 11 11 11
· · · · · · · · · · · · · · · · · · ·	4천 56-4천
***************************************	4 ² 444
·····································	4 ² 444
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4 ² 44
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4 ² 44
······································	
1.2. Khu 2. Khu	
	18

Nuts and Bolts: Buses and Multiplexers

Multiplexer (MUX). Combinational circuit that selects among input buses.

- Exactly one select line i is activated.
- Copies bits from input bus i to output bus.



19

to pagistans (in)

4 10-bit words

- Dual-ported to support connecting two different registers to ALU
- Input MUX to support input connection to ALU, memory, IR, PC

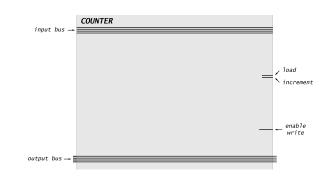
How To Design a Digital Device

How to design a digital device.

- Design interface: input buses, output buses, control wires.
- Determine components.
- Determine datapath requirements: "flow" of bits.
- Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

Goal. Design TOY-Lite computer (10 devices, 27 control wires).



Program Counter: Interface

Counter. Holds value that represents a binary number.

- Load: set value from input bus.
- Increment: add one to value.
- Enable Write: make value available on output bus.

Ex. TOY-Lite program counter (4-bit).

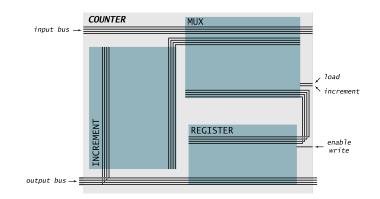
Program Counter: Components

Components.

- Register.
- Incrementer.
- Multiplexer (to provide connections for both load and increment).

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

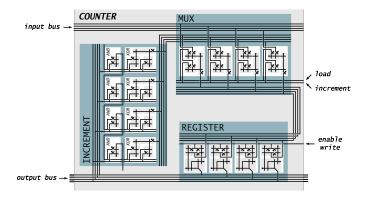

Control. Choreographs the "flow" of information on the datapath.

Program Counter: Datapath and Control

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.



Program Counter: Datapath and Control

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

25

Program Counter: Datapath and Control

input bus -	input bus -
output bus 1. load: copy input to register	ourgut. bus 3. increment: output plus 1 available in MUX copy to register
input bus -	input bus
REGISTER evite	europut bus
2. enable write: register contents available on output	 enable write: register contents available on output

Primary Components of Toy-Lite CPU

🗸 ALU

- ✓ Memory
- ✓ Toy-Lite Registers

Processor Registers: Program Counter and Instruction Register

"Control"

How To Design a Digital Device

How to design a digital device.

- Design interface: input buses, output buses, control wires.
- Determine components.
- Determine datapath requirements: "flow" of bits.
- Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

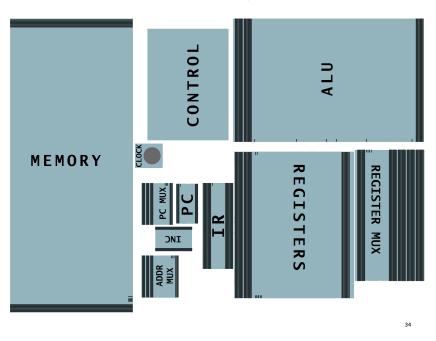
Next. Design TOY-Lite computer (10 devices, 27 control wires).

TOY-Lite: Interface

CPU is a circuit.

Interface: switches and lights.

- set memory contents
- set PC value
- press RUN
- [details of connection to circuit omitted]



29

TOY-Lite: Components

TOY-Lite Datapath Requirements: Fetch

Basic machine operation is a cycle.

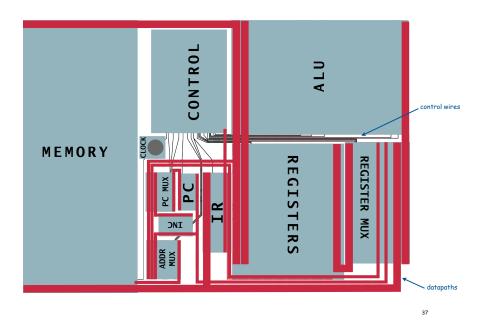
- Fetch
- Execute

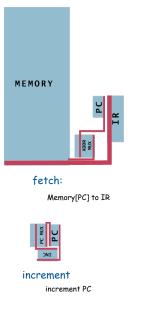
Fetch.

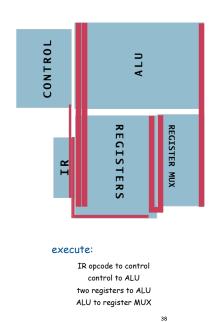
- Memory[PC] to IR
- Increment PC

Execute.

• Datapath depends on instruction

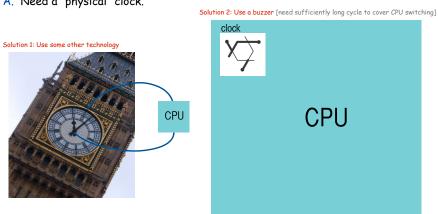

TOY-Lite Datapath Requirements: Execute

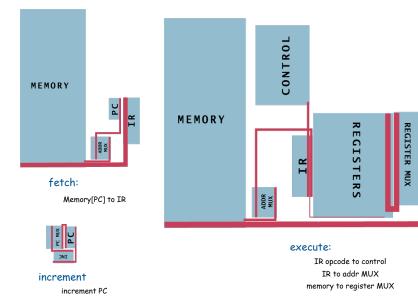

Instructions determine datapaths and control sequences for execute


0	halt	
1	add	
2	subtract	IR opcode to control
3	and	control to ALU
4	xor	two registers to ALU
5	shift left	ALU to register MUX
6	shift right	
7	load address	
8	load	
9	store	
А	load indirect	
В	store indirect	
С	branch zero	
D	branch positive	
E	jump register	
F	jump and link	

TOY-Lite: Datapaths and Control

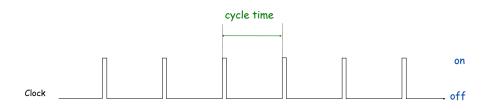
Datapath: Add




Last step

Control. Each instruction corresponds to a sequence of control signals.

- Q. How do we create the sequence?
- A. Need a "physical" clock.


How much does it Hert?

Clock.

- Fundamental abstraction: regular on-off pulse.
 - -on: fetch phase
 - -off: execute phase
- "external" device.
- Synchronizes operations of different circuit elements.
- Requirement: clock cycle longer than max switching time.

Frequency is inverse of cycle time.

- Expressed in hertz.
- $^{\,\rm s}$ Frequency of 1 Hz means that there is 1 cycle per second.
 - -1 kilohertz (kHz) means 1000 cycles/sec.
 - -1 megahertz (MHz) means 1 million cycles/sec.
 - -1 gigahertz (GHz) means 1 billion cycles/sec.
 - -1 terahertz (THz) means 1 trillion cycles/sec.

Heinrich Rudolf Hertz (1857-1894)

42

Solution 3?

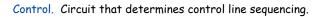
Fetch

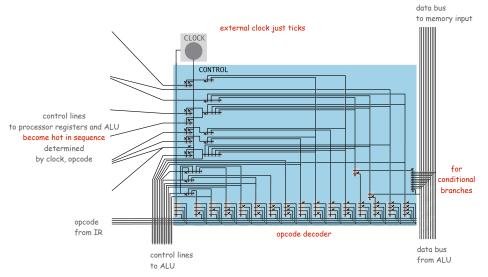
etucete

41

Two-cycle design.

• Each control signal is in one of four epochs.


-fetch [set


[set memory address from pc] [write instruction to IR]

Clocking Methodology

- fetch and clock [write instruction to IR]
- execute [set ALU inputs from registers]
- execute and clock [write result of ALU to registers]

Tick-Tock

CPU is a circuit, driven by a clock.

Switches initialize memory, PC contents

Clock ticks

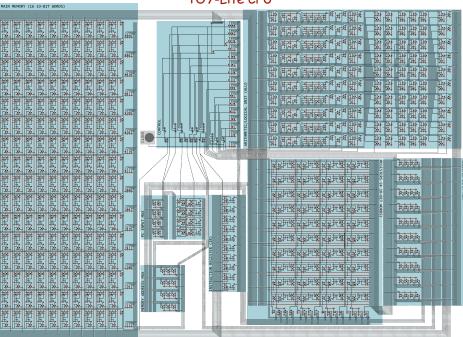
- fetch instruction from memory[PC] to IR
- increment PC
- execute instruction

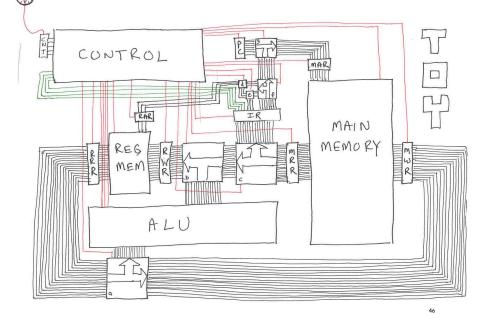
[details of instruction execution differ]

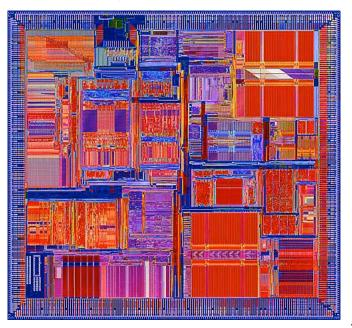
fetch next instruction

• ...

That's all there is to it!





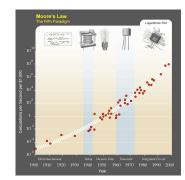

TOY-Lite CPU

TOY "Classic", Back Of Envelope Design

Real Microprocessor (MIPS R10000)

History + Fu	ture
--------------	------

Abstraction	Built From	Examples
Abstract Switch	raw materials	transistor, relay
Connector	raw materials	wire
Clock	raw materials	crystal oscillator
Logic Gates	abstract switches, connectors	AND, OR, NOT
Combinational Circuit	logic gates, connectors	decoder, multiplexer, adder
Sequential Circuit	logic gates, clock, connector	flip-flop
Components	decoder, multiplexer, adder, flip-flop	registers, ALU, counter, control
Computer	components	ТОУ


Computer constructed by layering abstractions.

- Better implementation at low levels improves everything.
- Ongoing search for better abstract switch!

History.

- 1820s: mechanical switches.
- 1940s: relays, vacuum tubes.
- 1950s: transistor, core memory.
- 1960s: integrated circuit.
- 1970s: microprocessor.
- 1980s: VLSI.

- 1990s: integrated systems.
- 2000s: web computer.
- Future: quantum, optical soliton, ...

Ray Kurzweil http://en.wikipedia.org/wiki/Image:PPTMooresLawai.jpg