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Traveling salesperson problem (TSP)

Given:  A set of N cities and $M for gas.
Problem:  Does a traveling salesperson have enough $ for gas to visit all the cities?

An algorithm (“exhaustive search”):  
    Try all N! orderings of the cities to find one that can be visited for $M
 

A difficult problem
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Q.  Which algorithms are useful in practice?

A.  [von Neumann 1953, Gödel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

•Model of computation = deterministic Turing machine.
•Measure running time as a function of input size N.
• Polynomial time: Number of steps less than aNb for some constants a, b.
•Useful in practice (“efficient”) = polynomial time for all inputs.

A Reasonable Question about Algorithms

In theory:  Definition is broad and robust (since a and b tend to be small).
In practice:  Poly-time algorithms tend to scale to handle large problems.

Ex 1.  Sorting N elements 

          Insertion sort takes less than aN2 steps for all inputs.

efficient

Ex 2.  TSP on N cities

          Exhaustive search could take aN! steps.

not efficient
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Exponential Growth

Exponential growth dwarfs technological change.
• Suppose you have a giant parallel computing device…
•With as many processors as electrons in the universe…
•And each processor has power of today's supercomputers…
•And each processor works for the life of the universe…

•Will not help solve 1,000 city TSP problem via exhaustive search.

quantity

electrons in universe †

supercomputer instructions per second

value

1079

1013

age of universe in seconds † 1017

†  estimated

1000!  >>  101000  >>  1079 × 1013 × 1017
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Q.  Which problems can we solve in practice?
A.  Those with easy-to-find answers or 
      with guaranteed poly-time algorithms.

Q.  Which problems have guaranteed poly-time algorithms?
A.  Not so easy to know.  Focus of today's lecture.

Reasonable Questions about Problems

no known poly-time algorithm for TSPmany known poly-time algorithms for sorting
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Four Fundamental Problems

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

LP.   Given a system of linear inequalities, find a solution.
€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

LSOLVE.  Given a system of linear equations, find a solution.

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

ILP.  Given a system of linear inequalities, find a 0-1 solution.

SAT.  Given a system of boolean equations, find a solution.

(x0  and x1  and x2)  or  (x1 and x2)  or  (x0  and x2)   = true
      (x0  and x1)                                  or  (x1  and x2)   = false
       (x1  and x2)         or  (x0 and x2)   or      (x0)              = true

x0   = false
x1   = true
x2  = true

variables are
real numbers

variables are
real numbers

variables are
0 or 1

variables are
“true” or “false”



8

LSOLVE.  Given a system of linear equations, find a solution.
LP.   Given a system of linear inequalities, find a solution.
ILP.  Given a system of linear inequalities, find a binary solution.
SAT.  Given a system of boolean equations, find a solution.

Q.  Which of these problems have guaranteed poly-time solutions?
A.  No easy answers.

    LSOLVE.  Yes.  Gaussian elimination solves n-by-n system in n3 time.
    LP.  Yes.  Ellipsoid algorithm is poly-time.
    ILP, SAT.  No poly-time algorithm known or believed to exist!

Four Fundamental Problems

?

✓

✓ problem was open for decades
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

poly-time in size of instance I

or report none exists
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

LSOLVE.  Given a system of linear equations, find a solution.

• To check solution S, plug in values and verify each equation. 
€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

or report none exists

poly-time in size of instance I

instance I solution S
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€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

LP.  Given a system of linear inequalities, find a solution.

• To check solution S, plug in values and verify each inequality. 

or report none exists

poly-time in size of instance I

instance I solution S
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

ILP.  Given a system of linear inequalities, find a binary solution.

• To check solution S, check that values are 0/1 , then plug in values and 
verify each inequality. 

instance I solution S

or report none exists

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

poly-time in size of instance I
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

SAT.  Given a system of boolean equations, find a solution.

• To check solution S, plug in values and verify each equation. 

instance I solution S

or report none exists

poly-time in size of instance I

(x0  and x1  and x2)  or  (x1 and x2)  or  (x0  and x2)   = true
      (x0  and x1)                                  or  (x1  and x2)   = false
       (x1  and x2)         or  (x0 and x2)   or      (x0)              = true

x0   = false
x1   = true
x2  = true
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

FACTOR.  Find a nontrivial factor of the integer x.

• To check solution S, long divide 193707721 into 147573952589676412927. 

147573952589676412927

or report none exists

poly-time in size of instance I

193707721

instance I solution S
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Def.  NP is the class of all search problems 

Significance.  What scientists, engineers, and applications programmers
                      aspire to compute feasibly.

8784561

problem description poly-time
algorithm instance I solution S

SAT
 (A, b)

Find a boolean vector x
that satisfies Ax = b. ???

FACTOR
 (x)

Find a nontrivial factor
of the integer x. ??? 10657

LP
(A, b)

Find a vector x that
satisfies Ax ≤ b. ellipsoid

LSOLVE
 (A, b)

Find a vector x that
satisfies Ax = b.

Gaussian
elimination

NP

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

problems with poly-time checkable solutions

ILP
 (A, b)

Find a binary vector x
that satisfies Ax ≤ b. ???

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

(x1 and x2)  or  (x0  and x2)     = true

(x0  and x1)   or  (x1  and x2)   = false

  (x0 and x2)   or      (x0)              = true

x0   = false
x1   = true
x2  = true
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P

Def.  P is the class of search problems solvable in poly-time.
A search problem that is not in P is said to be intractable.

Significance.  What scientists and engineers, and applications programmers
                      do compute feasibly.

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

problem description poly-time algorithm instance I solution S

LSOLVE
(A, b)

Find a vector x that
satisfies Ax = b.

Gaussian elimination
(Edmonds, 1967)

LP
(A, b)

Find a vector x that
satisfies Ax ≤ b.

ellipsoid
(Khachiyan, 1979)

SORT
(a)

Find permutation that
puts a in ascending order.

mergesort
(von Neumann 1945)

2.3 8.5 1.2
9.1 2.2 0.3

5 2 4 0 1 3

STCONN
(G, s, t)

Find a path from s to t
in digraph G.

depth-first search
(Theseus)

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5



Other types of problems

Search problem. Find a solution.

Decision problem. Is there a solution?

Optimization problem. Find the best solution.

Some problems are more naturally formulated in one regime than another.
Ex. TSP is usually “find the shortest tour that connects all the cities.”

Not technically equivalent, but main conclusions that we draw apply to all 3.

Note: Standard definitions of P and NP are in terms of decision problems.
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Nondeterminism

Nondeterministic machine can guess the desired solution

Ex. int[] a = new a[N];
•Java: values are all 0
• nondeterministic machine: values are the answer!

ILP.  Given a system of linear inequalities, guess a 0/1 solution.

Ex. Turing machine
• deterministic: state, input determines next state
• nondeterministic: more than one possible next state

NP: Search problems solvable in poly time on a nondeterministic machine.

18

instance I solution S

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

A

B

C

0:x

0:y

all of them!
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Extended Church-Turing Thesis

Extended Church-Turing thesis.

Evidence supporting thesis.  
• True for all physical computers.
• Simulating one computer on another adds poly-time cost factor.
•Nondeterministic machine seems to be a fantasy.

Implication.  To make future computers more efficient,
suffices to focus on improving implementation of existing designs.

A new law of physics?  A constraint on what is possible.
Possible counterexample?  Quantum computer

P = search problems solvable in poly-time in this universe.
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P vs. NP
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Automating Creativity

Q.  Being creative vs. appreciating creativity?

Ex.  Mozart composes a piece of music; our neurons appreciate it.
Ex.  Wiles proves a deep theorem; a colleague referees it.
Ex.  Boeing designs an efficient airfoil; a simulator verifies it.
Ex.  Einstein proposes a theory; an experimentalist validates it.

Computational analog.  Does P = NP?

creative ordinary
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P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems.

Does P = NP?  
• can you always avoid brute-force search and do better??
• does nondeterminism make a computer more efficient??
• are there any intractable search problems??

Two possible universes.

If yes…  Poly-time algorithms for 3-SAT, ILP, TSP, FACTOR, …
If no…  Would learn something fundamental about our universe.

Overwhelming consensus.  P ≠ NP.

The Central Question

P ≠ NP P = NP

EXP
P = NP

NP

P



23

P = NP? in Popular Culture: The Simpsons

Copyright © 1990, Matt Groening
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P = NP? in Popular Culture: Futurama

Copyright © 2000, Twentieth Century Fox
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Fame and Fortune through CS

Some writers for the Simpsons and Futurama.
• J. Steward Burns.  M.S. in mathematics, Berkeley, 1993.
•David X. Cohen.  M.S. in computer science, Berkeley, 1992.
•Al Jean.  B.S. in mathematics, Harvard, 1981.
• Ken Keeler.  Ph.D. in applied mathematics, Harvard, 1990.
• Jeff Westbrook.  Ph.D. in computer science, Princeton, 1989.
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Classifying Problems
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Q.  How to solve an instance of SAT with n variables?
A.  Exhaustive search:  try all 2n truth assignments.

Q.  Can we do anything substantially more clever?
Conjecture.  No poly-time algorithm for SAT. 

Exhaustive Search

SAT is intractable
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Classifying Problems

Q.  Which search problems are in P?
Q.  Which search problems are not in P (intractable)?

A.  No easy answers (we don't even know whether P = NP).

First step.  Formalize notion:

Problem X is computationally not much harder than problem Y.
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Def.  Problem X reduces to problem Y if you can use an efficient solution
         to Y to develop an efficient solution to X 

To solve X, use:
• a poly number of standard computational steps, plus
• a poly number of calls to a method that solves instances of Y.

Reductions

instance I
(of X)

method for solving X

solution S to Imethod
for solving Y
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Def.  Problem X reduces to problem Y if you can solve X given:
•A poly number of standard computational steps, plus
•A poly number of calls to a subroutine for solving instances of Y.

Design algorithms.  If poly-time algorithm for Y, then one for X too.
Establish intractability.  If no poly-time algorithm for X, then none for Y.

Reductions:  Consequences

3-SAT your research problem

previously solved problem your research problem

instance I
(of X)

method for solving X

solution S to Imethod
for solving Y
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LSOLVE Reduces to LP

LSOLVE.  Given a system of linear equations, find a solution.

LP.  Given a system of linear inequalities, find a solution.

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

0x0 +  1x1 +  1x2 ≤   4
0x0 +  1x1 +  1x2 ≥    4
2x0 +  4x1 −  2x2 ≤   2
2x0 +  4x1 −  2x2 ≥    2
0x0 +  3x1 + 15x2 ≤ 36
0x0 +  3x1 + 15x2 ≥   36

€ 

⇒   0x0  +  1x1  +  1x1  =  4

LSOLVE instance with n variables

corresponding LP instance with n variables and 2n inequalities
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3-SAT Reduces to ILP

SAT.  Given a boolean equation Φ, find a satisfying truth assignment.

ILP.  Given a system of linear inequalities, find a 0-1 solution.

€ 

C1 ≥ 1 −  x1

C1 ≥ x2

C1 ≥ x3

C1 ≤ (1 −  x1)  +  x2  +  x3

€ 

Φ ≤ C1

Φ ≤ C2

Φ ≤ C3

Φ ≤ C4

Φ ≥ C1  +  C2  +  C3  +  C4  −  3

Φ = 1 iff C1 = C2 = C3 = C4 = 1
C1 = 1 iff clause 1 is satisfied

corresponding ILP instance with n + k + 1 variables and 4k + k + 1 inequalities
solution to this ILP instance gives solution to 3-SAT instance

SAT instance with n variables, k clauses

€ 

Φ  =  ʹ′ x 1 or x2 or x3( )  and  x1 or ʹ′ x 2 or x3( )  and  ʹ′ x 1 or ʹ′ x 2 or ʹ′ x 3( )  and  ʹ′ x 1 or ʹ′ x 2 or x4( )
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More Reductions From SAT

Dick Karp
'85 Turing award

Conjecture:  SAT is intractable.
Implication: all of these problems are intractable.

SAT

 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-SAT reduces to 3-COLOR

TSP

BIN-PACKING

 ILP 
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Still More Reductions from SAT

Aerospace engineering.  Optimal mesh partitioning for finite elements.

Biology.  Phylogeny reconstruction.

Chemical engineering.  Heat exchanger network synthesis.

Chemistry.  Protein folding.

Civil engineering.  Equilibrium of urban traffic flow.

Economics.  Computation of arbitrage in financial markets with friction.

Electrical engineering.  VLSI layout. 

Environmental engineering.  Optimal placement of contaminant sensors.

Financial engineering.  Minimum risk portfolio of given return.

Game theory.  Nash equilibrium that maximizes social welfare.

Mathematics.  Given integer a1, …, an, compute

Mechanical engineering.  Structure of turbulence in sheared flows.

Medicine.  Reconstructing 3d shape from biplane angiocardiogram.

Operations research.  Traveling salesperson problem, integer programming.

Physics.  Partition function of 3d Ising model.

Politics.  Shapley-Shubik voting power.

Pop culture.  Versions of Sudoko, Checkers, Minesweeper, Tetris.

Statistics.  Optimal experimental design.

6,000+ scientific papers per year.

Conjecture:  no poly-time algorithm for SAT.
Implication: all of these problems are intractable.
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NP-completeness
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NP-Completeness

Q.  Why do we believe SAT has no poly-time algorithm?

Def. An NP problem is NP-complete if all problems in NP reduce to it.

Theorem.  [Cook 1971]  SAT is NP-complete.
Extremely brief Proof Sketch: 
• convert non-deterministic TM notation to SAT notation
• if you can solve 3-SAT, you can solve any problem in NP

Corollary.   Poly-time algorithm for SAT  ⇒  P = NP.

every NP problem is a 3-SAT problem in disguise

SAT instancenondeterministic TM
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 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

TSP

BIN-PACKING

 ILP 

Cook's Theorem

SAT

3-COLOR reduces to 3-SAT

All NP problems reduce to 3-SAT.

Stephen Cook
'82 Turing award

FACTOR
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SAT

 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

TSP

BIN-PACKING

 ILP 

Cook + Karp

3-COLOR reduces to SAT

SAT reduces to 3-COLOR

All Karp problems are different manifestations
of one "really hard" universal problem.
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Two possible universes

P ≠ NP .  
• Intractable search problems exist.
•Nondeterminism makes machines more efficient.
• Can prove that a problem is intractable by 

reduction from an NP-complete problem.
•Some search problems are neither NP-complete or in P.
• Some search problems are still not classified.

P = NP. 
•No intractable search problems exist.
•Nondeterminism is no help.
• Poly-time solutions exist for NP-complete problems

 

[Third possibility: Extended Church-Turing thesis is wrong.]

P ≠ NP

P = NP

P = NP

NP

P NPC
no other way is known!

we don’t know any useful ones

examples: factoring, graph isomorphism

and all other search problems, 
such as factoring and graph isomorphism
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Implications of NP-completeness

Implication.  [SAT captures difficulty of whole class NP.]
• Poly-time algorithm for SAT iff P = NP (no intractable search problems exist).
• If some search problem is intractable, then so is SAT.

Remark.  Can replace SAT above with any NP-complete problem.

Example: Proving a problem NP-complete guides scientific inquiry.
• 1926:  Ising introduces simple model for phase transitions.
• 1944:  Onsager finds closed form solution to 2D version in tour de force.
• 19xx:  Feynman and other top minds seek 3D solution.
• 2000:  SAT reduces to 3D-ISING.

a holy grail of statistical mechanics

search for closed formula appears doomed
since 3D-ISING is intractable if   P ≠ NP 
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Summary

P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems, some of which seem wickedly hard.
NP-complete.  Hardest problems in NP.
Intractable.  Search problems not in P (if P ≠ NP).

Many fundamental problems are NP-complete
• TSP, SAT, 3-COLOR, ILP, (and thousands of others)
• 3D-ISING.

Use theory as a guide.  
• An efficient algorithm for an NP-complete problem

would be a stunning scientific breakthrough (a proof that P = NP)
• You will confront NP-complete problems in your career.
• It is safe to assume that P ≠ NP and that such problems are intractable.
• Identify these situations and proceed accordingly.



42

CS Building, West Wall
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Princeton CS Building, West Wall, 1990

char

P

=

ASCII

80

61

binary

1010000

0111101

N

P

78

80

1001110

1010000

? 63 0111111

0
1

1
0

0

0

0



44

Coping With Intractability
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Coping With Intractability

You have an NP-complete problem.
• It’s safe to assume that it is intractable.
•What to do?

Relax one of desired features.
• Solve the problem in poly-time.
• Solve the problem to optimality.
• Solve arbitrary instances of the problem.

Complexity theory deals with worst case behavior.
• Instance(s) you want to solve may have easy-to-find answer.
• Chaff solves real-world SAT instances with ~ 10k variables.

[Matthew Moskewicz '00, Conor Madigan '00,  Sharad Malik]

PU senior independent work (!)
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Coping With Intractability

You have an NP-complete problem.
• It’s safe to assume that it is intractable.
•What to do?

Relax one of desired features.
• Solve the problem in poly-time.
• Solve the problem to optimality.
• Solve arbitrary instances of the problem.

Develop a heuristic, and hope it produces a good solution.
•No guarantees on quality of solution.
• Ex. TSP assignment heuristics.
• Ex.  Metropolis algorithm, simulating annealing, genetic algorithms.

Approximation algorithm.  Find solution of provably good quality.
• Ex.  MAX-3SAT:  provably satisfy 87.5% as many clauses as possible.

but if you can guarantee to satisfy 87.51% as many clauses
as possible in poly-time, then P = NP !
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Coping With Intractability

You have an NP-complete problem.
• It’s safe to assume that it is intractable.
•What to do?

Relax one of desired features.
• Solve the problem in poly-time.
• Solve the problem to optimality.
• Solve arbitrary instances of the problem.

Special cases may be tractable.
• Ex:  Linear time algorithm for 2-SAT.
• Ex:  Linear time algorithm for Horn-SAT.

each clause has at most one un-negated literal
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Exploiting Intractability:  Cryptography

Modern cryptography.
• Ex.  Send your credit card to Amazon.
• Ex.  Digitally sign an e-document.
• Enables freedom of privacy, speech, press, political association. 

RSA cryptosystem.
• To use:  multiply two n-bit integers.  [poly-time]
•To break:  factor a 2n-bit integer.    [unlikely poly-time]

23 × 67 1,541

Multiply = EASY

Factor = HARD
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Exploiting Intractability:  Cryptography

FACTOR.  Given an n-bit integer x, find a nontrivial factor.

Q.  What is complexity of FACTOR?
A.  In NP, but not known (or believed) to be in P or NP-complete.

Q.  Is it safe to assume that FACTOR is intractable?
A.  Maybe, but not as safe an assumption as for an NP-complete problem.

not 1 or x

740375634795617128280467960974295731425931888892312890849362
326389727650340282662768919964196251178439958943305021275853
701189680982867331732731089309005525051168770632990723963807
86710086096962537934650563796359



Fame and Fortune through CS (revisited)

Factor this number:

Can’t do it? Create a company based on the difficulty of factoring.

50

740375634795617128280467960974295731425931888892312890849362
326389727650340282662768919964196251178439958943305021275853
701189680982867331732731089309005525051168770632990723963807
86710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)

RSA sold to EMC for
$2.1 billion

RSA algorithm

or, sell T-shirts



Fame and Fortune through CS (revisited)

Factor this number:

Too late? Try resolving P = NP? question (might need a few math courses).

51

Clay Institute ($1 million prize)

740375634795617128280467960974295731425931888892312890849362
326389727650340282662768919964196251178439958943305021275853
701189680982867331732731089309005525051168770632990723963807
86710086096962537934650563796359

plus untold riches for breaking e-commerce
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A Final Thought

FACTOR.  Given an n-bit integer x, find a nontrivial factor.

Q.  What is complexity of FACTOR?
A.  In NP, but not known (or believed) to be in P or NP-complete.

Q.  What if P = NP?
A.  Poly-time algorithm for factoring; modern e-conomy collapses.

Quantum.  [Shor 1994]
      Can factor an n-bit integer in n3 steps on a "quantum computer."

Do we still believe the extended Church-Turing thesis?

not 1 or x

740375634795617128280467960974295731425931888892312890849362
326389727650340282662768919964196251178439958943305021275853
701189680982867331732731089309005525051168770632990723963807
86710086096962537934650563796359


