
1

2

Debugging [continued]

Admiral Grace Murray Hopper

http://www.history.navy.mil/photos/images/h96000/h96566kc.htm

3

Debugging Your Program

Debugging Your Program. [summary]

1. Edit the program (type in code).

2. Compile it.
Compiler says: That’s not a legal program.
Back to step 1 to fix your syntax errors.

3. Run it.
Result is bizarrely (or subtly) wrong.
Back to step 1 to fix your runtime (semantic) errors.

4. Enjoy the satisfaction of a working program!
[but stay tuned for more debugging]

Edit

Compile

Run

syntax
error

runtime
error

it
works!

4

Debugging: Where we left off

Success? Found the last bugs (“corner cases”)?

•Need newline.

•Need to print largest factor.

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0])
 for (int i = 2; i < N; i++)
 {
 while (N % i == 0)
 {
 System.out.println(i + " ");
 N = N / i;
 }
 System.out.println("TRACE " + i + " " + N);
 }
 }
}

println

% javac Factors.java
% java Factors 5
TRACE 2 5
TRACE 3 5
TRACE 4 5
% java Factors 6
2
TRACE 2 3

AHA!
Print out N

after for loop
(if it is not 1)

5

Debugging: Success?

Success?

•Add code for corner case, remove trace, add comments.

• Try larger inputs

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0])
 for (int i = 2; i < N; i++)
 { // Check whether i is a factor.
 while (N % i == 0)
 { // If so, print and divide.
 // System.out.print(i + " ");
 N = N / i;
 }
 }
 if (N > 1) System.out.println(N);
 else System.out.println();
 }
}

% java Factors 5
TRACE 2 5
TRACE 3 5
TRACE 4 5
% javac Factors.java
% java Factors 5
5
% java Factors 6
2 3
% java Factors 98
2 7 7
% java Factors 3757208
2 2 2 7 13 13 397

???
%$%@$#!!

forgot to recompile

Corner case:
print largest factor

(and new line)

Time to document code
(if not earlier).

“Comment out”
trace code

(may need it later)

6

Debugging: Performance Errors

Performance error. Correct program, but too slow.

•Are all iterations of inner loop necessary?

• Improve or change underlying algorithm.

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0])
 for (int i = 2; i < N; i++)
 { // Check whether i is a factor.
 while (N % i == 0)
 { // If so, print and divide.
 System.out.print(i + " ");
 N = N / i;
 }
 }
 if (N > 1) System.out.println(N);
 else System.out.println();
 }
}

% java Factors 11111111
11 73 101 137
% java Factors 11111111111
21649 513239
% java Factors 11111111111111
11 239 4649 909091
% java Factors 11111111111111111
2071723

very long wait

7

Debugging: Performance Errors

Performance error. Correct program, but too slow.

•Are all iterations of inner loop necessary?

• Improve or change underlying algorithm.

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0])
 for (int i = 2; i < N ; i++)
 { // Check whether i is a factor.
 while (N % i == 0)
 { // If so, print and divide.
 System.out.print(i + " ");
 N = N / i;
 }
 }
 if (N > 1) System.out.println(N);
 else System.out.println();
 }
}

% java Factors 11111111
11 73 101 137
% java Factors 11111111111
21649 513239
% java Factors 11111111111111
11 239 4649 909091
% java Factors 11111111111111111
2071723 5363222357
%

i < N/i;

Fixes performance error:
terminate when i*i > N

since no larger factors left

8

Q. How large an integer can I factor?

Note. Can’t break RSA this way (experts are still trying)

Program Development: Analysis

† estimated, using
analytic number theory

 in largest factor

3 instant

digits (i <= N)

6 0.15 seconds

9 77 seconds

12 21 hours †

instant

(i*i <= N)

instant

instant

0.16 seconds

15 2.4 years †

18 2.4 millennia †

2.7 seconds

92 seconds

after a few minutes of computing….

% java Factors 3757208
2 2 2 7 13 13 397

% java Factors 9201111169755555703
9201111169755555703

9

Debugging Your Program

Debugging Your Program. [summary]

1. Edit the program (type in code).

2. Compile it.
Compiler says: That’s not a legal program?
Back to step 1 to fix your syntax errors.

3. Run it.
Result is bizarrely (or subtly) wrong?
Back to step 1 to fix your runtime (semantic) errors.

4. Test it.
Too slow?
Back to step 1 to try a different algorithm.

Edit

Compile

Run

syntax
error

runtime
error

Test performance
error

submit!

1.4 Arrays

11

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

conditionals and loops

any program you might want to write

store and manipulate
huge quantities of dataarrays

Math text I/O

assignment statementsprimitive data types

12

Arrays

This lecture. Store and manipulate huge quantities of data.

Array. Indexed sequence of values of the same type.

Examples.

• 52 playing cards in a deck.

• 5 thousand undergrads at Princeton.

• 1 million characters in a book.

• 10 million audio samples in an MP3 file.

• 4 billion nucleotides in a DNA strand.

• 73 billion Google queries per year.

• 50 trillion cells in the human body.

• 6.02 × 1023 particles in a mole.

wayne0

doug1

rs2

maia3

mona4

cbienia5

wkj6

mkc7

index value

13

Many Variables of the Same Type

Goal. 10 variables of the same type.

// Tedious and error-prone code.
double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
a0 = 0.0;
a1 = 0.0;
a2 = 0.0;
a3 = 0.0;
a4 = 0.0;
a5 = 0.0;
a6 = 0.0;
a7 = 0.0;
a8 = 0.0;
a9 = 0.0;
...
a4 = 3.0;
...
a8 = 8.0;
...
double x = a4 + a8;

14

Many Variables of the Same Type

Goal. 10 variables of the same type.

// Easy alternative.
double[] a = new double[10];
...
a[4] = 3.0;
...
a[8] = 8.0;
...
double x = a[4] + a[8];

declares, creates, and initializes
[stay tuned for details]

15

Many Variables of the Same Type

Goal. 1 million variables of the same type.

// Scales to handle large arrays.
double[] a = new double[1000000];
...
a[234567] = 3.0;
...
a[876543] = 8.0;
...
double x = a[234567] + a[876543];

16

Arrays in Java

Java has special language support for arrays.

• To make an array: declare, create, and initialize it.

• To access element i of array named a, use a[i].

• Array indices start at 0.

int N = 1000;
double[] a; // declare the array
a = new double[N]; // create the array
for (int i = 0; i < N; i++) // initialize the array
 a[i] = 0.0; // all to 0.0

17

Arrays in Java

Java has special language support for arrays.

• To make an array: declare, create, and initialize it.

• To access element i of array named a, use a[i].

• Array indices start at 0.

Compact alternative: Declare, create, and initialize in one statement.

•Default: all entries automatically set to 0.

•Alternative: entries initialized to given literal values.

int N = 1000;
double[] a = new double[N];

double[] x = { 0.3, 0.6, 0.1 };

int N = 1000;
double[] a; // declare the array
a = new double[N]; // create the array
for (int i = 0; i < N; i++) // initialize the array
 a[i] = 0.0; // all to 0.0

18

Sample Array Code: Vector Dot Product

Dot product. Given two vectors x[] and y[] of length N, their dot product is
the sum of the products of their corresponding components.

double[] x = { 0.3, 0.6, 0.1 };
double[] y = { 0.5, 0.1, 0.4 };

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += x[i]*y[i];

i x[i] y[i] x[i]*y[i] sum

0

0 .30 .50 .15 .15

1 .60 .10 .06 .21

2 .10 .40 .04 .25

.25

Array Processing Examples

19

double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = Math.random();

create an array with N random values

double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++)
 if (a[i] > max) max = a[i];

find the maximum of the array values

for (int i = 0; i < N; i++)
 System.out.println(a[i]);

print the array values, one per line

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += a[i];
double average = sum / N;

compute the average of the array values

double[] b = new double[N];
for (int i = 0; i < N; i++)
 b[i] = a[i];

copy to another array

for (int i = 0; i < N/2; i++)
{
 double temp = b[i];
 b[i] = b[N-1-i];
 b[N-i-1] = temp;
}

reverse the elements within the array

Shuffling a Deck

21

Setting Array Values at Compile Time

Ex. Print a random card.

String[] rank =
{
 "2", "3", "4", "5", "6", "7", "8", "9",
 "10", "Jack", "Queen", "King", "Ace"
};

String[] suit =
{
 "Clubs", "Diamonds", "Hearts", "Spades"
};

int i = (int) (Math.random() * 13); // between 0 and 12
int j = (int) (Math.random() * 4); // between 0 and 3

System.out.println(rank[i] + " of " + suit[j]);

TEQ on Arrays 1

The following code sets array values to the 52 card values and prints them.
In which order are they printed?

22

String[] rank = { "2", "3" ..., "King", "Ace" };
String[] suit =
 { "clubs", "diamonds", "hearts", "spades" };

String[] deck = new String[52];
for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[4*i + j] = rank[i] + " of " + suit[j];

for (int i = 0; i < 52; i++)
 System.out.println(deck[i]);

B. 2 of clubs
3 of clubs
4 of clubs
5 of clubs
6 of clubs
...

2 of clubs
2 of diamonds
2 of hearts
2 of spades
3 of clubs
...

A.

typical array
processing code
changes values

at runtime

23

Shuffling

Goal. Given an array, rearrange its elements in random order.

Shuffling algorithm.

• In iteration i, pick random card from deck[i] through deck[N-1], with
each card equally likely.

• Exchange it with deck[i].

int N = deck.length;
for (int i = 0; i < N; i++)
{
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[r];
 deck[r] = deck[i];
 deck[i] = t;
}

between i and N-1swap
idiom

24

Shuffling a Deck of Cards

public class Deck
{
 public static void main(String[] args)
 {
 String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };
 String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9",
 "10", "Jack", "Queen", "King", "Ace" };
 int SUITS = suit.length;
 int RANKS = rank.length;
 int N = SUITS * RANKS;

 String[] deck = new String[N];
 for (int i = 0; i < RANKS; i++)
 for (int j = 0; j < SUITS; j++)
 deck[SUITS*i + j] = rank[i] + " of " + suit[j];

 for (int i = 0; i < N; i++)
 {
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[r];
 deck[r] = deck[i];
 deck[i] = t;
 }

 for (int i = 0; i < N; i++)
 System.out.println(deck[i]);
 }
}

avoid "hardwired" constants like 52, 4, and 13.

build the deck

shuffle

print shuffled deck

25

Shuffling a Deck of Cards

% java Deck
5 of Clubs
Jack of Hearts
9 of Spades
10 of Spades
9 of Clubs
7 of Spades
6 of Diamonds
7 of Hearts
7 of Clubs
4 of Spades
Queen of Diamonds
10 of Hearts
5 of Diamonds
Jack of Clubs
Ace of Hearts
...
5 of Spades

% java Deck
10 of Diamonds
King of Spades
2 of Spades
3 of Clubs
4 of Spades
Queen of Clubs
2 of Hearts
7 of Diamonds
6 of Spades
Queen of Spades
3 of Spades
Jack of Diamonds
6 of Diamonds
8 of Spades
9 of Diamonds
...
10 of Spades

Coupon Collector

27

Coupon Collector Problem

Coupon collector problem. Given N different card types, how many
do you have to collect before you have (at least) one of each type?

Simulation algorithm. Repeatedly choose an integer i between 0 and N-1.
Stop when we have at least one card of every type.

Q. How to check if we've seen a card of type i?
A. Maintain a boolean array so that found[i] is true if we've already
 collected a card of type i.

assuming each possibility is equally
likely for each card that you collect

28

Coupon Collector: Java Implementation

public class CouponCollector
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int cardcnt = 0; // number of cards collected
 int valcnt = 0; // number of distinct cards

 // Do simulation.
 boolean[] found = new boolean[N];
 while (valcnt < N)
 {
 int val = (int) (Math.random() * N);
 cardcnt++;
 if (!found[val])
 {
 valcnt++;
 found[val] = true;
 }
 }

 // all N distinct cards found
 System.out.println(cardcnt);
 }
}

type of next card
(between 0 and N-1)

29

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.

Challenge. Debugging with arrays requires tracing many variables.

val
foundfoundfoundfoundfoundfound

valcnt cardcntval
0 1 2 3 4 5

valcnt cardcnt

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10

30

Coupon Collector: Mathematical Context

Coupon collector problem. Given N different possible cards, how many do
you have to collect before you have (at least) one of each type?

Fact. About N (1 + 1/2 + 1/3 + … + 1/N) ~ N ln N

Ex. N = 30 baseball teams. Expect to wait ≈ 120 years before all teams win
a World Series. under idealized assumptions

see ORF 245 or COS 341

31

Coupon Collector: Scientific Context

Q. Given a sequence from nature, does it have same characteristics
as a random sequence?

A. No easy answer - many tests have been developed.

Coupon collector test. Compare number of elements that need to be
examined before all values are found against the corresponding answer for a
random sequence.

Multidimensional Arrays

33

Two Dimensional Arrays

Two dimensional arrays.

• Table of data for each experiment and outcome.

• Table of grades for each student and assignments.

• Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction. Matrix.
Java abstraction. 2D array.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

34

Two Dimensional Arrays in Java

Declare, create, initialize. Like 1D, but add another pair of brackets.

Array access.
 Use a[i][j] to access entry in row i and column j.
 Indices start at 0.

Initialize.
 This code is implicit (sets all entries to 0).

Warning. This implicit code might slow down your program for big arrays.

for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 a[i][j] = 0.0;

int M = 10;
int N = 3;
double[][] a = new double[M][N]; a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[2][0] a[2][1] a[2][2]

a[3][0] a[3][1] a[3][2]

a[4][0] a[4][1] a[4][2]

a[5][0] a[5][1] a[5][2]

a[6][0] a[6][1] a[6][2]

a[7][0] a[7][1] a[7][2]

a[8][0] a[8][1] a[8][2]

a[9][0] a[9][1] a[9][2]

A 10-by-3 array

a[][]

a[6]

35

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

 double[][] p =
 {
 { .02, .92, .02, .02, .02 },
 { .02, .02, .32, .32, .32 },
 { .02, .02, .02, .92, .02 },
 { .92, .02, .02, .02, .02 },
 { .47, .02, .47, .02, .02 },
 };

36

Matrix Addition

Matrix addition. Given two N-by-N matrices a and b, define c
to be the N-by-N matrix where c[i][j] is the sum a[i][j] + b[i][j].

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 c[i][j] = a[i][j] + b[i][j];

.70 .20 .10

.30 .60 .10

.50 .10 .40

.80 .30 .50

.10 .40 .10

.10 .30 .40

1.5 .50 .60
.40 1.0 .20
.60 .40 .80

a[][]

b[][]

c[][]

a[1][2]

b[1][2]

c[1][2]

c[1][2] = .3*.5

 + .6*.1

 + .1*.4

 = .25

37

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c
to be the N-by-N matrix where c[i][j] is the dot product of
the ith row of a and the jth row of b.

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];

all values initialized to 0

.70 .20 .10

.30 .60 .10

.50 .10 .40

.80 .30 .50

.10 .40 .10

.10 .30 .40

.59 .32 .41

.31 .36 .25

.45 .31 .42

a[][]

b[][]

c[][]

row 1

column 2

 TEQ on Arrays 2

How many multiplications to multiply two N-by-N matrices?

A. N

B. N2

C. N3

D. N4

38

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];

Application: 2D Random Walks

Application: Self-Avoiding Walks

40

41

Self-Avoiding Walk

Model.

•N-by-N lattice.

• Start in the middle.

• Randomly move to a neighboring intersection,
avoiding all previous intersections.

• Two possible outcomes: escape and dead end

Applications. Polymers, statistical mechanics, etc.

Q. What fraction of time will you escape in an 5-by-5 lattice?
Q. In an N-by-N lattice?
Q. In an N-by-N-by-N lattice?

dead end

escape

42

Self-Avoiding Walk: Implementation

public class SelfAvoidingWalk
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]); // lattice size
 int T = Integer.parseInt(args[1]); // number of trials
 int deadEnds = 0; // trials ending at dead end

 for (int t = 0; t < T; t++)
 {
 boolean[][] a = new boolean[N][N]; // intersections visited
 int x = N/2, y = N/2; // current position

 while (x > 0 && x < N-1 && y > 0 && y < N-1)
 {

 if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1])
 { deadEnds++; break; }

 a[x][y] = true; // mark as visited

 double r = Math.random();
 if (r < 0.25) { if (!a[x+1][y]) x++; }
 else if (r < 0.50) { if (!a[x-1][y]) x--; }
 else if (r < 0.75) { if (!a[x][y+1]) y++; }
 else if (r < 1.00) { if (!a[x][y-1]) y--; }
 }
 }
 System.out.println(100*deadEnds/T + "% dead ends");
 }
}

take a random
step to a new
intersection

dead end

43

Self-Avoiding Walks

% java SelfAvoidingWalk 10 100000
5% dead ends
% java SelfAvoidingWalk 20 100000
32% dead ends
% java SelfAvoidingWalk 30 100000
58% dead ends
% java SelfAvoidingWalk 40 100000
77% dead ends
% java SelfAvoidingWalk 50 100000
87% dead ends
% java SelfAvoidingWalk 60 100000
93% dead ends
% java SelfAvoidingWalk 70 100000
96% dead ends
% java SelfAvoidingWalk 80 100000
98% dead ends
% java SelfAvoidingWalk 90 100000
99% dead ends
% java SelfAvoidingWalk 100 100000
99% dead ends

0%

25%

50%

75%

100%

10 20 30 40 50 60 70 80 90 100

44

Summary

Arrays.
• Organized way to store huge quantities of data.
• Almost as easy to use as primitive types.
• Can directly access an element given its index.

Ahead. Reading in large quantities of data from a file into an array.

http://imgs.xkcd.com/comics/donald_knuth.png

