COS 126

General Computer Science

Spring 2011

Programming Exam 2

This test has 1 question. You have 50 minutes. The exam is open book, open note, and open web. You may use code from your programming assignments or the *Introduction to Programming in Java* booksite. No communication with any non-staff members is permitted. Submit your solution via Dropbox. Write out and sign the Honor Code pledge before turning in the test.

"I pledge my honor that I have not violated the Honor Code during this examination."

Name:

NetID:

Total

P01	TTh 1:30	Keith
P01A	TTh 1:30	Doug
P01B	TTh 1:30	Victor
P01C	TTh 1:30	Richard
P01D	TTh 1:30	Gordon
P01E	TTh 1:30	Arman
P02	TTh 2:30	Doug
P03	TTh 3:30	Gordon
P03A	TTh 3:30	Keith
P04	TTh 7:30	Nick
P05	WF 10	Dmitry
P06	WF 1:30	Victor
P06A	WF 1:30	Chris
P06B	WF 1:30	Donna
P07	WF 12:30	Donna

Signature

Do not remove this exam from the room.

Problem. Write a data type LR. java that models a linear relationship between a response variable y and a predictor variable x using simple linear regression. Suppose there are n observation pairs (x_i, y_i) for i = 1 to n. The goal is to find the coefficients a and b of the straight line

$$y = ax + b$$

that "best" fits the observations. We give the formulas for the *least squares* solution below.

• The *means* of the x_i and y_i values are defined as:

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}, \qquad \overline{y} = \frac{y_1 + y_2 + \ldots + y_n}{n}$$

• The intermediate terms S_{xx} and S_{xy} are defined as:

$$S_{xx} = (x_1 - \overline{x})(x_1 - \overline{x}) + (x_2 - \overline{x})(x_2 - \overline{x}) + \dots + (x_n - \overline{x})(x_n - \overline{x})$$
$$S_{xy} = (x_1 - \overline{x})(y_1 - \overline{y}) + (x_2 - \overline{x})(y_2 - \overline{y}) + \dots + (x_n - \overline{x})(y_n - \overline{y})$$

• The *slope a* and *y*-*intercept b* of the best-fit line are:

$$a = S_{xy} / S_{xx}$$
, $b = \overline{y} - a \overline{x}$

Example. For example, suppose that n = 4 and the observation pairs are:

i	x_i	y_i
1	20	91
2	40	83
3	60	68
4	80	50

Then, the best-fit line is y = -0.69x + 107.50. Below are the step-by-step calculations.

$$\overline{x} = \frac{20+40+60+80}{4} = 50, \qquad \overline{y} = \frac{91+83+68+50}{4} = 73$$

$$S_{xx} = (20 - 50)(20 - 50) + (40 - 50)(40 - 50) + (60 - 50)(60 - 50) + (80 - 50)(80 - 50) = 2000$$

$$S_{xy} = (20 - 50)(91 - 73) + (40 - 50)(83 - 73) + (60 - 50)(68 - 73) + (80 - 50)(50 - 73) = -1380$$

$$a = -1380/2000 = -0.69,$$
 $b = 73 - (-0.69)(50) = 107.50$

Predicting. Given a predictor variable x_0 , the model predicts that the corresponding response variable is $\hat{y}_0 = ax_0 + b$. For example, if $x_0 = 50$, we predict $\hat{y}_0 = -0.69(50) + 107.5 = 73.0$. The following table shows the predictor variables, the observed responses, and the responses predicted by the model.

i	x_i	y_i	\hat{y}_i
1	20	91	93.70
2	40	83	79.90
3	60	68	66.10
4	80	50	52.30

API specification. Organize your program LR. java as a data type with the following API:

 ר ד ד	
lass L	۲.

public	<pre>LR(double[] x, double[] y)</pre>	linear regression with (x_i, y_i) throw an exception if lengths are not equal
public	double meanx()	mean of the x_i values
public	double meany()	mean of the y_i values
public	double slope()	slope a of best-fit line
public	<pre>double intercept()</pre>	y-intercept b of best-fit line
public	<pre>double predict(double x0)</pre>	$estimate \ \hat{y}_0 = ax_0 + b$
public	<pre>static void main(String[] args)</pre>	read data from standard input, prints re- sults to standard output, as described below

Input and output specification. The main() function should read in a sequence of observation pairs from standard input, compute the best-fit line, and print out the observation pairs and the predicted values. Your main() must read input and write output as directed below:

- Standard input. An integer N followed by N observation pairs of (x_i, y_i) real values.
- Standard output. The best-fit line, followed by N lines of output, where each line contains x_i, y_i , and \hat{y}_i . Each number should be formatted with two digits after the decimal place.

Assume that $N \ge 2$ and that at least two of the x_i values are distinct to ensure that $S_{xx} \ne 0$.

% more	lr4.txt	% java	LR < 1:	r4.txt
4		y = -0.	69 x +	107.50
20.0	91.0	20.00	91.00	93.70
40.0	83.0	40.00	83.00	79.90
60.0	68.0	60.00	68.00	66.10
80.0	50.0	80.00	50.00	52.30

For convenience, the following test input files are available:

http://introcs.cs.princeton.edu/data/lr4.txt http://introcs.cs.princeton.edu/data/lr10.txt http://introcs.cs.princeton.edu/data/lr1000.txt % more lr10.txt % java LR < lr10.txt 10 y = 2.00 x + 34.5726.32 87.70 26.32 87.70 87.34 14.17 62.71 14.17 62.71 62.98 18.37 73.12 18.37 73.12 71.40 29.76 94.07 29.76 94.07 94.24 15.01 64.99 15.01 64.99 64.67 25.98 85.01 25.98 85.01 86.66 13.04 60.47 13.04 60.47 60.72 14.25 62.04 14.25 62.04 63.14 14.31 63.57 63.26 14.31 63.57 27.98 91.39 27.98 91.39 90.67 % more lr1000.txt % java LR < lr1000.txt 1000 y = -0.50 x + 55.1158.68 24.46 58.68 24.46 25.65 49.80 28.88 49.80 28.88 30.10 39.52 36.08 39.52 36.08 35.27 41.27 34.91 41.27 34.91 34.39 30.22 38.91 30.22 38.91 39.93 54.52 28.96 54.52 28.96 27.73 35.03 38.62 35.03 38.62 37.52

Submission. Submit LR. java via Dropbox at

https://dropbox.cs.princeton.edu/COS126_S2011/Exam2

Be sure to click the *Check All Submitted Files* button to verify your submission.

Grading. Your program will be graded on correctness and clarity (including comments). You will receive partial credit for correctly implementing the following components:

- The meanx() and meany() methods.
- The slope() and intercept() methods.
- The predict() methods.
- Reading the input data, storing it in two parallel arrays, and printing it back out.

You will receive a substantial penalty if your program does not compile or if you do not follow the prescribed API or input/output specifications.