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Last time, we de�ned the (internal) information cost of a protocol and a function.

IC(π, µ) = I(π;X|Y ) + I(π;Y |X)

ICεµ(f) = inf
π

Prµ(π(x,y)6=f(x,y))≤ε
IC(π, µ)

The information cost is an interesting measure to study in itself. But what makes it even more interesting,
is that it is useful in proving direct-sum results. i.e. the question:

Dε
µn(fn)

?

= Ω(nDε
µ(f))

Information cost seems to be the right quantity to study because of the following theorem, proved in
[BR10]:

ICεµ(f) = lim
n→∞

Dε
µn(fn)

n
We start by showing how information theoretic ideas can be useful in proving lower bounds in commu-
nication complexity.

1. Lower bound for Disjointness

Theorem 1. The randomized communication complexity of non-disjointness NONDISJn(X,Y ) =
∨ni=1(xi ∧ yi) is Ω(n).

Note that this will also imply that the randomized communication complexity of DISJn is Ω(n).

Proof The theorem is from the 90's [KS92, Raz92] and the proofs were a little complicated, but
information theoretic ideas helped simplify the proofs, at least conceptually [BYJKS04]. The main idea
is that if we solve this problem using o(n) bits of communication, then for some pair of bits, xi, yi,
we convey very little amount of information, and hence we have no idea what xi ∧ yi is. It requires
a remarkably clever argument to formalize this. We prove R1/10(NONDISJn) > n/1000. De�ne the
distribution µ on pair of bits as

µ =


00 w.p. 1/3

01 w.p. 1/3

10 w.p. 1/3

Suppose that πn is a protocol that computes NONDISJn correctly w.p. > 9/10 on all inputs, and
CC(πn) ≤ n/1000. The proof will go in two steps :

(1) Establish a protocol π(x, y) , x, y ∈ {0, 1}, that computes x∧y s.t. IC(π, µ) is small, and ∀(x, y),
π(x, y) = x ∧ y w.p. > 9/10 .

(2) Prove such a protocol cannot exist.

First we describe a protocol π for computing AND, that will convey very little information, but still
compute AND on all inputs with high probability.
π : Input (x, y), output x ∧ y

(1) Alice and Bob publicly sample i ∈ {1, . . . , n} uniformly, and set Xi = x, Yi = y.
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(2) Alice and Bob publicly sample X1, . . . , Xi−1, Yi+1, . . . , Yn, each 0 w.p. 2/3 and 1 w.p. 1/3.
(3) Alice and Bob privately (and conditionally) sample Xi+1, . . . , Xn, Y1, . . . , Yi−1 so that each pair

(Xj , Yj) is distributed according to µ.
(4) Run πn(X1, . . . , Xn, Y1, . . . , Yn) and output the answer.

The sampling procedure might seem weird, but as we will see now, it almost leads to a miracle of
some sort. Clearly this procedure will output x ∧ y if the protocol πn returns a correct answer on
(X1, . . . , Xn, Y1, . . . , Yn). Since πn returns a correct answer on all inputs w.p. > 9/10, hence ∀(x, y), πn
will output x ∧ y w.p. > 9/10.
Now, we will show that IC(π, µ) is small. Suppose that the input to π is distributed according to µ, and
let X ′, Y ′ denote the random variables for the input. Let X = X1, . . . , Xn and Y = Y1, . . . , Yn. Note
that (X,Y ) is distributed according to µn. Also let I be the random variable for the index Alice and
Bob sample in the �rst step. Then

I(π;Y ′|X ′) = I(πn;Y ′|I,X1, . . . , XI−1, X
′, XI+1, . . . , Xn, YI+1, . . . , Yn) (What Alice learns)

=
1

n

n∑
i=1

I(πn;Yi|X,Yi+1, . . . , Yn) (removing the conditioning on I)

=
1

n
I(πn;Y |X) (chain rule)

Similarly I(π;X ′|Y ′) = 1
nI(πn;X|Y ), and hence IC(π, µ) = 1

nIC(πn, µ
n) ≤ 1/1000. We have a long

protocol for computing AND, and yet we transmit very little information. We still have to do some
work to show that such a protocol cannot exist, but that is mostly mechanical. The miraculous sampling
is essentially the heart of the proof.

Note that this sampling procedure can be generalized to prove that IC(f, µ, ε) ≤ IC(fn,µn,ε)
n . And, if it

is required that the error for each copy individually is ≤ ε, then equality holds, because the trivial proto-
col that runs the "single-copy-protocol" for each copy of fn indivdually has information cost nIC(f, µ, ε).

We now show that there cannot exist a protocol π s.t. IC(π, µ) ≤ 1/1000 and ∀(x, y), π(x, y) = x ∧ y
w.p. > 9/10. Hellinger distance can be used to make this part simpler, but to emphasize that this
part is just mechanical, we prove this by elementary means. Recall that for two distributions P,Q, the
divergence is de�ned as

D(P ||Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
The information between two random variables is de�ned as

I(X;Y ) = ExD[Y |x||Y ]

Consider the random variables π00, π01, π10, π11, where πxy denotes the transcript of π on (x, y) as input.
Also let π0? = π00+π01

2 . Similarly de�ne π?0. Let (X,Y ) be distributed according to µ. Now

1

1000
≥ I(π;X|Y )

=
2

3
I(π;X|Y = 0) +

1

3
I(π;X|Y = 1)

=
2

3
I(π;X|Y = 0) (if Y = 1, then X is �xed)

=
2

3
(
1

2
D(π00||π?0) +

1

2
D(π10||π?0))
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Hence D(π00||π?0) ≤ 3
1000 and D(π10||π?0) ≤ 3

1000 . Now, recall that for distributions P,Q, ||P −Q||1 ≤√
2 ln 2D(P ||Q). Thus ||π00 − π?0||1 < 0.065 and ||π10 − π?0||1 < 0.065. Thus ||π00 − π10||1 < 0.13.

Also ||πxy − π11||1 ≥ 1.6, if one of x, y is 0. This is because, if the protocol is not wrong on both (x, y)
and (1, 1), then the outputs are di�erent, and since it is not wrong on both w.p. ≥ 0.8. Therefore the
statistical distance is atleast 0.8, and thus ||πxy − π11||1 ≥ 1.6.
Now denote by πxy(z), the probability that given x, y, the protocol has transcript z. We can write
πxy(z) = Px(z)Qy(z), where Px(z) is de�ned as follows (let Z denote the path from the root to the leaf
consistent with z)

Px(z) =
∏
v∈Z

Alice owns v

Pr[Alice's move at v consistent with z| reaching v]

Qy(z) is de�ned similarly. Note that here we have crucially used that π is a protocol. This implies

π11(z) ≥ min(π01(z) + π10(z)− π00(z), π01(z), π10(z))

Indeed, this is true if P1(z) ≥ P0(z) or Q1(z) ≥ Q0(z). So, we can assume that P1(z) ≤ P0(z) and
Q1(z) ≤ Q0(z). Then

(P0(z)− P1(z))(Q0(z)−Q1(z)) ≥ 0 =⇒ π11(z) ≥ π01(z) + π10(z)− π00(z)

Now it is easy to check this in turn implies that if π00(z) ≥ π11(z), then

π00(z)− π11(z) ≤ |π10(z)− π00(z)|+ |π01(z)− π00(z)|
Thus ∑

z:π00(z)≥π11(z)

π00(z)− π11(z) ≤
∑
z

|π10(z)− π00(z)|+
∑
z

|π01(z)− π10(z)| ≤ 0.26

Thus ||π00 − π11||1 ≤ 0.52, which is a contradiction.

2. A Direct Sum result

As we mentioned, the sampling procedure can be generalized to prove that IC(f, µ, ε) ≤ IC(fn,µn,ε)
n , and

since IC(fn, µn, ε) ≤ Dε
µn(f), to prove direct sum results, we just need to prove Dε

µ(f) = O(IC(f, µ, ε)).
This would prove Dε

µn(fn) = Ω(nDε
µ(f)). This is not known. We prove a weaker result.

We prove the weak direct sum result by proving a theorem about compression of protocols, that is, we
study the question, whether a low information protocol for a problem implies the existence of a protocol
with low communication.

2.1. Compression.

Theorem 2. [BBCR10, Bra11] Given a protocol with internal information cost, IC(π, µ) = I, external
information cost,I(Π, XY ) = Iext, and |π| = C, we can simulate π using protocols π′(adding a small
amount of error) s.t.

(1) |π′| ≤ O(
√
CIpolylog(C))

(2) |π′| ≤ O(Iextpolylog(C))
(3) |π′| ≤ 2O(I)

Note that the protocols in parts 1,2 and 3 are di�erent.

This gives us the following theorem :

Theorem 3. For every α > 0, Dµn

ρ (fn).polylog(Dµn

ρ (fn)/α) ≥ Ω(α
√
nDµ

ρ+α(f))
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Proof We will not worry about the technicalities regarding the error α we introduce. Let π be a
protocol that computes fn with error ε(for each copy individually) w.r.t. µn, and let |π| = Cn. Then by
the embedding argument used before, we get a protocol π′ computing f s.t. |π′| ≤ Cn and IC(π′, µ) ≤
Cn/n. Now we can compress this to get a protocol π′′ for f with |π′′| ≤ O(

√
C2
n/n polylog(Cn)), thus

the theorem. The error α is because we introduce some extra error while compressing.

Note that we will always add some error while compressing because information is an average case quan-
titity, while communication is worst case. For some, pairs (x, y), we might run into a long branch in the
protocol tree, and we might have to cut that branch in order to keep the protocol cost small.

We now prove part (1) of Theorem 3. We omit some technical details. The reader is referred to [3] for
the full proof.
Proof Compressing each message separately is not a good idea, because it might be that the protocol
releases information at a very low and uniform rate. So somehow, we have to simulate many rounds
with small amount of communication.

IC(π, µ) = I(π;X|Y ) + I(π;Y |X) = ExyD(πxy||πy) + ExyD(πxy||πx)

πxy denotes the random variable for the transcript of the protocol π if Alice's input is x and Bob's input
is y. πx denotes the random variable for the transcript if Alice's input is x and y is distributed according
to µ conditioned on Alice's input being x. Similarly de�ne πy.
Now consider the case when IC(π, µ) = 0. Thus πxy = πx = πy. Then Alice and Bob don't need
to communicate as they can sample a path distributed according to πxy(= πx = πy) using public
randomness. How to sample the same path is explained below (note that if we can sample the same bit
at each node in the protocol tree, then we are �ne).
Suppose 0 ≤ p, q ≤ 1. Alice knows the distribution Bp of a bit, and Bob has an estimate Bq. Then
they can sample the same bit (with Alice's bit's distribution Bp, and Bob's Bq) with error |p− q| using
shared randomness. Using shared randomness, they sample a uniformly random number u between 0
and 1. Then Alice selects 1 if u < p, otherwise 0. Bob selects 1 if u < q, else 0. This trick is known as
Holenstein's Lemma [Hol07].
This is crucial, since if Bob has a good estimate of the bit to be transmitted by Alice at some node,
then Alice doesn't need to transmit that bit and they can sample it using public randomness. Of course,
Alice and Bob don't know when their estimates are close. So we still need to do some more work.

Now we describe the protocol :

(1) Using their estimates πx and πy, Alice and Bob sample a path (by applying the sampling trick
at each node).

(2) Using hashing, they check if they reach the same leaf, if not, then obtain the �rst disagreement,
�x it (listen to the owner of the node), and continue the sampling from there.

We �nd the �rst disagreement using binary search and use log(CC(π)) hash samples at each step,
so we take O(log2(CC(π))) communication to �nd and �x one mistake (this step can be improved
to O(logCC(π)) communication using a more careful construction). So the expected communication
complexity is O(log2(CC(π))) ∗Eπ(X,Y )[#mistakes on π(X,Y )](because �nally we are sampling a path
according to π(X,Y )). Now the expected number of mistakes is in some sort, proportional to the internal
information cost, as whenever there is a mistake, say on Alice's node, then Bob's estimate is way o�,
hence Bob will learn a lot of information when the bit is transmited on this node. To bound the expected
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number of Bob's mistakes on Alice's nodes,

#Bob's mistakes = Exy||π1|xy − π1|y||1 + Exy||π3|xy − π3|y||3 + . . .

≤ O(Exy
√
D(π1|xy||π1|y) + Exy

√
D(π3|xy||π3|y) + . . .) (||p− q||1 ≤ O(

√
D(p||q)))

≤ O(
√
ExyD(π1|xy||π1|y) +

√
ExyD(π3|xy||π3|y) + . . .) (concavity of

√
z)

≤ O(
√
CC(π)(ExyD(π1|xy||π1|y) + ExyD(π3|xy||π3|y) + . . .)) (Cauchy Schwarz inequality)

Now

I(π;X|Y ) = I(π1π2 . . . πC ;X|Y )

= I(π1;X|Y ) + I(π2;X|Y π1) + . . .+ I(πC ;X|Y π1 . . . πC−1)

= I(π1;X|Y ) + I(π3;X|Y π1π2) + . . . (I(π2r;X|Y π1 . . . π2r−1) = 0)

= ExyD(π1|xy||π1|y) + ExyD(π3|xy||π3|y) + . . .

Thus expected # Bob's mistakes ≤ O(
√
CI) and similarly expected # Alice's mistakes ≤ O(

√
CI).

Hence we can compress to O(
√
CIpolylog(C))

It might be tempting to apply this compression recursively, but Alice and Bob are conveying a lot more
information to each other in the new protocol (they are conveying where their estimates di�er), and it
is not clear how to bound the information cost of this new protocol.
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