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1. Discrepancy

Our goal is to provide tools for proving lower bounds about the distributional communication complexity
of a function f . One such tool will be the discrepancy of the function with respect to a distribution µ.
Recall that for deterministic communication complexity, we used the idea of monochromatic rectangles
to prove lower bounds. These rectangles corresponded to leaves in a binary tree representing the com-
munication protocol, and thus we found that a communication protocol which used c bits would have
at most 2c rectangles.
If we allow some mistakes, the rectangles need not be monochromatic. Our goal is to come up with a

partition which features large, unbalanced rectangles so that we may bound the error rate with respect
to µ, but reduce the depth of the tree. In other words, we want to get some sort of communication
advantage from these leaves.

De�nition 1. Let f : X×Y 7→ {0, 1} be a function, R be any rectangle, and µ be probability distribution
over X × Y . Then,

Discµ (R, f) =

∣∣∣∣Pr
µ

[f(x, y) = 0 and (x, y) ∈ R]− Pr
µ

[f(x, y) = 1 and (x, y) ∈ R]

∣∣∣∣
Equivalently,

Discµ (R, f) = Pr
µ

[(x, y) ∈ R] ·
∣∣∣∣Pr
µ

[f(x, y) = 0|(x, y) ∈ R]− Pr
µ

[f(x, y) = 1|(x, y) ∈ R]

∣∣∣∣
Furthermore we denote the discrepancy of f with respect to µ as follows:

Discµ (f) = max
R

Discµ (R, f)

Observation 2. The advantage we get from a leaf is at most the discrepancy of the corresponding
rectangle.

Theorem 3. For every function f : X × Y 7→ {0, 1}, every distribution µ on X × Y , and all ε > 0,

Dµ1/2+ε (f) ≥ log2

2ε

Discµ (f)
.

Proof Let Π be a protocol that uses c bits of communication, attempting to compute f , which is
correct a fraction 1/2 + ε of the time. Then we have a bound on the probability that Π and f disagree.
We can then express these probabilities as a sum over all leaves l of Π.

2ε ≤ Pr
µ

[Π(x, y) = f(x, y)]− Pr
µ

[Π(x, y) 6= f(x, y)]

=
∑

leaves l

[
Pr
µ

[Π(x, y) = f(x, y) ∧ (x, y) ∈ l]− Pr
µ

[Π(x, y) 6= f(x, y) ∧ (x, y) ∈ l]
]
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Since Discµ (f) is de�ned as the maximum over all leaves of this inner expression, trivially each term
in this sum is at most Discµ (f). Furthermore there are 2c leaves, so the above expression is at most
2cDiscµ (f).

2c ≥ 2ε

Discµ (f)
⇒ c ≥ log2

2ε

Discµ (f)

As an aside, suppose that we have a function f and distribution µ such that Discµ (f) = 2−k for some
k. Can we get a randomized protocol with ε ≈ 2−k which uses O(1) bits? Yes. Take R to be some
rectangle such that Discµ (R, f) = 2−k. Such an R must exist or Discµ (f) would be less than 2−k. We
can use a constant number of bits of communication to determine if the given point is in R. If it is,
then output the bit that is the more likely value of f on R, otherwise output a bit according to a B1/2

distribution.

Let U be the uniform distribution, and let IP(x, y) = 〈x, y〉 be the inner product of x and y over Z2.

Theorem 4. Suppose f is a random function. Then DU2/3 (f) ≥ Ω(n).

Proof Idea If you �ll the function table of f at random, then any large rectangles you consider are
likely to be very balanced. Thus by the discrepancy bound the communication complexity of f would
be linear.

Theorem 5. DiscU (IP) ≤ 2−n/2 ⇒ DU1/2−ε (IP) = Ω(n)

Proof Let H be the Hadamard matrix of size 2n × 2n. H(x, y) = 1 if 〈x, y〉 = 0, and H(x, y) = −1
otherwise.

Claim 6. HHT = 2nI

Proof

HHT (x, y) =
∑

z∈{0,1}n
H(x, z) ·H(z, y)

Then consider the diagonal, all pairs (x, y) such that x = y. Clearly the product will be 1 for all z, and
all the diagonal entries will indeed be 2n. The o�-diagonal entries then, will correspond to pairs such
that x 6= y. For each such pair, consider one index i such that xi 6= yi. Then partition the z vectors such
that each pair (z, z) di�er only in coordinate i. Then H(x, z) ·H(z, y) + H(x, z) ·H(z, y) = 0 for any
such pair. Therefore the o�-diagonal entries all bene�t from gratuitous cancellation and are identically
0 as claimed.

Now consider each S × T ⊆ {0, 1}n × {0, 1}n:

Discµ (S × T, IP) =

∣∣∣∑x∈S,y∈T H(x, y)
∣∣∣

22n =

∣∣1TSH1T
∣∣

22n ≤

∣∣∣√|S| · 2n/2 ·√|T |∣∣∣
22n ≤

∣∣2n/2 · 2n/2 · 2n/2∣∣
22n = 2−

n/2
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2. Direct Sums

It is an interesting question to consider not just solving one instance of a problem, but several in-
stances simultaneously. Can we potentially save some communication costs if we solve these in parallel
rather than serially? Clearly we cannot �lose� anything, but can we make the inequality strict for some
functions?

cost(f(x), f(y))
?
< cost(f(x)) + cost(f(y))

This question is inspired by such savings in circuit computation. For example, multiplying a �xed n×n
matrix A by a vector v will typically require a circuit of size & n2. At the same time, multiplying A
by n input vectors vi can be performed in less than the naïve n3 time [Strassen, 1969]. We will discuss
protocols for the easier variant of solving each copy with error ε rather than simultaneously solving all
copies with error ε.

Let us consider then EQ, the problem of deciding if a pair of strings are equal. We saw previously that
Rpubε (EQ) = log 1/ε. Intuitively, the complexity of checking equality of k pairs of strings, EQk, is at most
k times the complexity of checking for a single pair. We can actually do much better.

Theorem 7. Rpubε

(
EQk
)

= O(k + log 1/ε) [Feder, Kushilevitz, Naor, Nisan, 1991]

Proof Idea Recall that the normal randomized protocol for solving a single copy of EQ involved send-
ing hashes of the input. This protocol will be an adaptation which groups the input pairs for hashing.
The protocol will proceed in log k rounds as follows. At round i, split the inputs into blocks of size 2i.
Send O(1) hashes to look for inequality in each block. If a di�erence is found, then search the block to
�nd the o�ending pair and remove it. Continue with the remaining pairs. After all such rounds have
completed, run an extra log 1/ε additional hashes. The main idea is that in each round, in expectation
at least half the errors will be removed. The splitting must occur randomly to separate the errors into
opposite groups. When a block reports an error, the search can be done with cost logarithmic in the
block size. Essentially, there is a very long tail on the expected sum of communication cost, but the tail
is very light, and the sum is essentially constant.

Consider the problem of sending a random message M across a noiseless channel. How many bits on
average does it take to send M? Let e be the encoding of M , and l(e) be the length of the encoding.
Then, by some simple encoding (such as Hu�man), we can achieve

H(M) ≤ E [l(e)] ≤ H(M) + 1

Now, how many bits does it take to send k independent copies?

k ·H(M) ≤ E
[
l(ek)

]
≤ k ·H(M) + 1 lim

k→∞

E
[
l(ek)

]
k

= H(M)

By combining inequalities, we also see that

E
[
l(ek)

]
≥ k (E [l(e)]− 1)

which is the best that we can hope for.
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3. Information Cost

De�nition 8. The information cost of a protocol over a distribution µ of inputs is

IC (Π, µ) = Iµ (Π;Y |X) + Iµ (Π;X|Y )

This can be thought of informally as the total of what Alice, who knows X, and Bob, who knows Y ,
learn from the interaction. We can also de�ne the information cost of a function.

De�nition 9.

IC (f,Π, ε) = inf
Π:Prµ[Π(x,y) 6=f(x,y)]<ε

IC (Π, µ)

Claim 10. IC (π, µ) ≤ E [|ΠA|] + E [|ΠB |] = E [|Π|] ≤ |Π|

The �nal term is just notation for the communication cost of Π. It is clear that you cannot learn more
bits of information from the interaction than the number of bits exchanged.

Recall the following formulae, as they will be of use during the proof of the next claim.

I (B;D|AC) = 0⇒ I (A;B|C) ≥ I (A;B|CD) I (B;D|C) = 0⇒ I (A;B|C) ≤ I (A;B|CD)

Claim 11. Private randomness doesn't matter, i.e. I (Π;X|Y ) = I (Π;X|Y PB).

Proof Suppose that the interaction consists of 2l rounds, such that Alice sends bits in the odd rounds,
and Bob the even. We will prove the above by induction on l.

Π = Π1Π2 . . .Π2l−1Π2l

The base case of l = 0 is trivial since obviously there is no information at all on either side of the
equation. So suppose we know the following.

I (Π1 . . .Π2l−2;X|Y ) = I (Π1 . . .Π2l−2;X|Y PB)

By applying the chain rule, we �nd

I (Π1 . . .Π2l;X|Y ) = I (Π1 . . .Π2l−2;X|Y ) + I (Π2l−1;X|YΠ1 . . .Π2l−2) +

I (Π2l;X|YΠ1 . . .Π2l−1)

The last term we can think of as the shared information between Alice's input and what Bob says
conditioned on his prior knowledge. The only dependence on X is based on what he already knows, so
this is 0.

I (Π1 . . .Π2l;X|Y PB) = I (Π1 . . .Π2l−2;X|Y PB) + I (Π2l−1;X|Y PBΠ1 . . .Π2l−2) +

I (Π2l;X|Y PBΠ1 . . .Π2l−1)

By similar reasoning, the last term is again 0. So we are left with the following:

I (Π1 . . .Π2l;X|Y ) = I (Π1 . . .Π2l−2;X|Y ) + I (Π2l−1;X|YΠ1 . . .Π2l−2)

I (Π1 . . .Π2l;X|Y PB) = I (Π1 . . .Π2l−2;X|Y PB) + I (Π2l−1;X|Y PBΠ1 . . .Π2l−2)

Since, by our inductive argument we know

I (Π1 . . .Π2l−2;X|Y ) = I (Π1 . . .Π2l−2;X|Y PB)

It thus su�ces to show that

I (Π2l−1;X|YΠ1 . . .Π2l−2) = I (Π2l−1;X|Y PBΠ1 . . .Π2l−2)
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Consider the following substitutions:

A = X B = Π2l−1 C = YΠ1 . . .Π2l−2 D = PB I (A;B|C)
?
= I (A;B|CD)

By the formulae referenced prior to this proof, we need only show

I (B;D|AC) = I (Π2l−1;PB |Π1 . . .Π2l−1Y X) = 0 I (B;D|C) = I (Π2l−1;PB |Π1 . . .Π2l−1Y ) = 0

Both statements are about the shared information between Bob's random string and what Alice says.
Everything Alice knows about PB is included in the previous interaction. Since in both cases we condi-
tion on the interaction, there will be no extra shared information.

The de�nition of information cost presented here is relatively recent. More traditionally, there was a
notion of what we will call external information, ICext = I (Π;XY ), which corresponds to what an
outside observer learns from the communication.

Claim 12. ICext(Π, µ) ≥ IC (Π, µ)

This relation is easy to get wrong at �rst, and typically is the opposite of what a cryptographer would
want. In an information theoretical sense, someone listening learns more than those talking. For an
intuitive explanation, say that Alice and Bob are an old married couple and know everything about each
other. They don't really say anything new to each other when they talk, so the normal information cost
is close to 0. On the other hand, the outside observer may not know everything about them, so they
can still stand to learn something.
Proof

Π = Π1Π2 . . .Π2l−1Π2l

Let us assume as our inductive hypothesis that

I (Π1 . . .Π2l−1;XY ) ≥ I (X; Π1 . . .Π2l−1|Y ) + I (Y ; Π1 . . .Π2l−1|X)

Then we proceed to prove the claim for 2l. Assume w.l.o.g. that Alice speaks in the 2l-th round.

I (Π1 . . .Π2l;XY ) = I (Π1 . . .Π2l−1;XY ) + I (Π2l;XY |Π1 . . .Π2l−1)

≥ I (Π1 . . .Π2l−1;X|Y ) + I (Π1 . . .Π2l−1;Y |X) +

I (Π2l;X|Π1 . . .Π2l−1) + I (Π2l;Y |Π1 . . .Π2l−1X)

= I (Π1 . . .Π2l;Y |X) + I (Π1 . . .Π2l−1;X|Y ) + I (Π2l;X|Π1 . . .Π2l−1)

≥ I (Π;Y |X) + I (Π1 . . .Π2l−1;X|Y ) + I (Π2l;X|Π1 . . .Π2l−1Y )

= I (Π;Y |X) + I (Π;X|Y )

The last inequality follows from substituting

A = X B = Π2l C = Π1 . . .Π2l−1 D = Y,

and observing that the since Π2l is a message sent by Alice,

I (Π2l;Y |Π1 . . .Π2l−1X) = 0.

We note that Claim 12 becomes an equality if µ is a product distribution, i.e. if it can be written as
µ(x, y) = µX(x) · µY (y). In this case the inputs to Alice and Bob are independent, and there is no
di�erence between what an observer learns and what the participants learn.


