
COS597D: Information Theory in Computer Science October 24 and 26, 2011

Lecture 11-12

Lecturer: Mark Braverman Scribe: Max Rabinovich

1. Tournaments

De�nition. A tournament on n vertices is a directed graph such that for each pair of vertices u 6= v,
exactly one of the edges u → v and v → u is present. A graph of this form is said to be a transitive

tournament if for every triple of vertices u, v, w such that u → v and v → w are edges in the graph,
u→ w is also an edge.

The idea is that such a graph represents a competition in which every player plays every other. The
presence of the edge u → v indicates that u defeated v. If the tournament is transitive, it can be
completely speci�ed by giving its vertices in topological order: intuitively, this corresponds to listing the
players in rank from highest to lowest. Note that in this case, there is a unique such ordering.

We will use Kolmogorov complexity to prove that not every tournament contains a large transitive
tournament as a subgraph. More precisely, de�ne

v(N) = max{v : any tournament on n vertices contains a transitive tournament on v vertices}.

We then have the following

Theorem 1. If N = 2n, then v(N) ≤ 2n+ 1.

Proof First note that there are exactly 2(N
2) tournaments on N vertices and that these tournaments

can be speci�ed as bitstrings by giving the direction of each of the arrows. Now consider the following
encoding scheme P for tournaments T :

Encoding: Find a transitive tournament S ⊆ T of size v (N) and specify the topological order of
S. Then for each pair of vertices u, v with at least one outside of S specify the direction of the
arrow between them.

Decoding: For vertices u, v in S, the arrow between them is u → v if u comes before v in the
encoded list and v → u otherwise. For other pairs, the direction is explicitly speci�ed, so the
tournament can simply be read o�.

This gives an alternate encoding of tournaments as bitstrings. We now write K (T | P, N) for the
Kolmogorov complexity of T given N and a program (which we also call P) that performs the above
encoding and decoding. As we would have with ordinary Kolmogorov complexity, we have

K(T0 | P, N) ≥
(
N

2

)
.

Since T0 can be output given its P -encoding E(T0), this implies

|E(T0)| = v(N) lgN +

(
N

2

)
−
(
v(N)

2

)
≥
(
N

2

)
.

Rewriting lgN = n and rearranging, we deduce

1

2
v(N)(v(N)− 1) ≤ v(N)n.

11-12-1

11-12-2

This gives

v(N) ≤ 2n+ 1.

2. Sorting Complexity

2.1. Complexity of Heapsort. Heapsort is a well-known O(n lg n) sorting algorithm which uses re-
peated removal and insertion into a shrinking binary heap to sort a given array. In this section, we
present a precise estimate of its expected running time. Before we begin, we recall the de�nition of a
binary heap.

De�nition. A binary heap is a binary tree each of whose nodes x stores an integer n(x) and such that
if y is a child of x, then n(y) ≤ n(x). (This de�nition can be extended to include any totally ordered
set of values.)
By convention, a binary heap is represented as an array A such that the children of node i (which stores
the value A[i]) are 2i and 2i+ 1.
The algorithm takes an array A as input and proceeds in two stages:

(1) Heapify. Rearrange the input array so that it forms a binary heap. This can be accomplished
e�ciently using recursion: scan the array from right to left, moving each entry down to its
proper place as it is scanned. The cost of this operation is O(n).

(2) Sort by repeated reheapi�cation. On a high level, this part of the sort proceeds as follows:
for i = n→ 1

switch A[i] with A[1]
rearrange A[1 · · · (i− 1)] into a binary heap
end for

The rearrangement step is responsible for most of the cost, and the key issue in it is to reinsert A[1]
(formerly stored at index i) into the heap. There are two principal methods of accomplishing this:

Williams' method: insert from the top down, maintaining a pointer to the node currently being
examined. First check if either of the children at the root is larger than the value to be inserted.
If not, store the new value at the root. Otherwise, update the pointer to point to the child node
holding the larger value and use the same insertion procedure into the binary tree rooted at that
child. Repeat until neither of the child values is larger than the new value. At the end, move
each of the values along the insertion path up into its parent node and store the new value in
the end node.

Floyd's method: insert from the bottom up, maintaing a pointer to the node currently being
examined. First move down the heap from the root, always following the link to the child with
the larger value among the two. Upon reaching a leaf, move back up this path until the parent
of the current node stores a value larger than the new value. Then move all the values along the
path from the root to this �nal node up into their parents (as in Williams' method) and store
the new value at the current node.

A more detailed description of both methods, including Java code for each, can be found in Sedgewick
and Wayne, Algorithms.

If the new value is ultimately stored at depth d, Williams' method requires 2d comparisons, while Floyd's
method requires 2 lg n−d. Both methods make 2d data movements. On average, we expect d to be close

11-12-3

to lg n, simply because most of a binary tree is near the bottom, so Floyd's method should, in principle,
be more e�cient. This is indeed the case, as the following theorem shows.

Theorem 2. With probability pn → 1 and also on average, heapsort makes n lg n+O(1) data movements

using either Williams' or Floyd's method and makes 2n lg n−O(n) comparisons using Williams' method

and n lg n+O(1) comparisons using Floyd's method.

Proof (Sketch.) We can completely ignore the initial heapi�cation step, as it is O(n). Now let di be the
depth of ithinsertion. By what we have already said above, heapsort makes

∑
di data movements using

either insertion method. On the other hand, using Williams' method,
∑

(2di) = 2
∑
di comparisons

are made, while 2n lg n −
∑
di are made using Floyd's method. It therefore su�ces to show

∑
di ≥

n lg n−O(n).

For this, as a matter of notation, let δi = lg n − di. Since there are n! permutations on n elements, all
but an exponentially small proportion of them satisfy

K(π | n, A, P) ≥ n lg n− 2n,

where P denotes a decoding program which takes as input the new location of A[i] after reinsertion and
outputs the initial heap and A is the sorted array. Now, since the initial heapi�cation procedure can be
speci�ed in O(n) bits, if h denotes the initial heap, we must have

K(h | n, A, P) ≥ n lg n−O(n).

On the other hand, the input to P for the ith step can be given by writing down the path from the root
to the storage node, using say 0 to denote a left move and 1 to denote a right one, and terminating that
piece of the input by writing a pre�x-free binary represenation of δi. This can be done in di + 2 lg δi =
lg n− δi + 2 lg δi bits. Since this input is su�cient to obtain h from n, A, P , we must have

n lg n−O(n) < n lg n−
∑

(δi − 2 lg δi)

so that
∑
δi − 2 lg δi = O(n). A simple calculation implies the same for

∑
δi, which shows

∑
di =

n lg n−O(n), as required.

A detailed proof of Theorem 2 can be found in (Li, Vitányi, �An introduction to Kolmogorov complexity",
3rd ed., Section 6.6).

2.2. Complexity of Shellsort. Shellsort is another well-known sorting method, which is, however, less
e�cient than heapsort. We begin by recalling its de�nition.

De�nition. An h-chain in an array A is the subarray of all entries at indices i = qh + r where q is
allowed to vary and 0 ≤ r < h is �xed.

Shellsort with p passes using gaps (h1, . . . , hp) proceeds by iteratively sorting each of the hj-chains for
each 1 ≤ j ≤ p, using any sorting method (say insertion sort). We require hp = 1 so that the �nal
pass completely sorts the array. (A fairly detailed discussion can be found in Sedgewick and Wayne,
Algorithms.) The idea is that each pass makes the array more sorted so that the next pass takes less
time than it would in the worst case. Although the worst case running time is still O(n2), we have the
following facts.

Fact ([Pratt]). If each gap hj is of the form 2a3b, Shellsort has time complexity O(n lg2 n).

And in the other direction:

Fact ([Knuth]). If p = 2, the optimal choice of gaps gives an average running time of Θ(n5/3).

11-12-4

As with heapsort, Kolmogorov complexity provides a way to obtain a general estimate on the average
running time of Shellsort.

Theorem 3 ([Li, Vitányi]). With probability pn → 1 and also on average, any p-pass Shellsort takes

Ω(pn1+
1
p) steps.

Proof If p = Ω(lg n), the bound reduces to Ω(n lg n), so we may take p = o(lg n). Now, all but an
exponentially small set of permutations π on n letters satisfy

K(π |n, A, P) ≥ n lg n− 2n,

where A is the sorted array and P is the decoding program we describe below.

For each 1 ≤ i ≤ n, 1 ≤ k ≤ p, let mi,k denote the signed distance the key at position i moves in the
hk-chain containing i. Then de�ne,

M :=
∑
i,k

|mi,k|

and note that this is exactly the number of data movements made by the sort. Observe further that
there is a program P reconstructing the original permuted array from the sorted array and the sequence
of mi,k in lexicographical order (by indices). A few minutes' thought is su�cient to see that the number
of possible signed sequences of length pn with sum (in absolute value) bounded by M is

D(M) =

(
M + pn− 1

pn− 1

)
· 2pn.

We use the asymptotic estimate
(
a
b

)
< ab

b! . (a
b)beb to �nd

lgD(M) . pn lg(1 +
M

pn− 1
) +O(pn).

Since all the information in the sequence can be speci�ed using lgD(M) bits, we deduce �nally that
if M is large enough that more than an exponentially small fraction of permutations can be sorted in
fewer than M steps, we must have

lg(1 +
M

pn− 1
) &

n lg n− 2n−O(pn)

pn
=

lg n

p
−O(1).

Unraveling this gives

M & pn1+
1
p −O(pn),

which proves the claim.

3. Remark: Prime Number Theorem via Kolmogorov Complexity

For n ≥ 1, let π(n) denote the number of positive primes ≤ n. The following asymptotic characterization
of this function is a celebrated result of analytic number theory.

Theorem 4 (Prime Number Theorem). π(n) ∼ n
lnn .

This result is usually proven by involved analytic arguments. However, we can get quite close to it by
fairly elementary Kolmogorov complexity considerations. More precisely, consider a recursive encoding
E of integers n de�ned by

E(n) = (m,E(
n

pm
))

11-12-5

where m is the index of the largest prime dividing n. Roughly speaking, the idea is that we should not
be able to save much this way, and with this sort of argument we can �nd

π(n) &
n

lnn · L(n)

where L is (log log n)2 (and can be further reduced slightly). This is quite close to the actual Prime
Number Theorem and signi�cantly easier to prove.

