1 Shearer’s Lemma

Today we shall learn about Shearer’s Lemma, which is a generalization of the subadditivity of entropy.

Lemma 1 (Shearer’s Lemma). Let $X = X_1, \ldots, X_n$ be any random variables. If S is any distribution on subsets of $\{1 \ldots n\}$, such for every i, $\Pr[i \in S] \geq \mu$, then $\mathbb{E}[H(X_S)] \geq \mu \cdot H(X)$.

(As an aside, we give a simple proof due to Jaikumar Radhakrishnan.)

Proof For $T = \{i_1, \ldots, i_k\}$ with $i_1 < i_2 < \cdots < i_k$, observe that

$$H(X_T) = H(X_{i_1}) + H(X_{i_2} | X_{i_1}) + \cdots + H(X_{i_k} | X_{i_{k-1}}, \ldots, X_{i_1})$$

$$\geq H(X_{i_1} | X_{<i_1}) + H(X_{i_2} | X_{<i_2}) + \cdots + H(X_{i_k} | X_{<i_k}),$$

where we used chain rule in the equality, and used the fact that entropy is only smaller if we condition on more variables, for the inequality.

Thus, we get that

$$\mathbb{E}_S[H(X_S)] \geq \mathbb{E}_S \left[\sum_{i \in S} H(X_i | X_{<i}) \right]$$

$$= \sum_{i \in [n]} \Pr[i \in S] \cdot H(X_i | X_{<i}) \quad \text{whenever } i \text{ is not in } S, \text{ this term contributes 0}$$

$$\geq \mu \sum_{i \in [n]} H(X_i | X_{<i})$$

$$= \mu \cdot H(X)$$

2 Applications

Now, let’s start counting the number of cliques within a graph. We start with a simple example. Suppose $G = (V,E)$ is an undirected graph, t is the number of triangles and ℓ is the number of edges.

Proposition 2. $t \leq (2\ell)^{3/2}/6$

Proof The proof is very similar to that of the triangles and vee problem we have seen. Let X_1, X_2, X_3 be uniformly random vertices forming a triangle. Then $H(X_1, X_2, X_3) = \log(6t)$, since each triangle can be written in 6 ways.

Let S be a uniformly random subset of coordinates $\{1, 2, 3\}$ of size 2. Then for all i, $\Pr[i \in S] = 2/3$. By Shearer’s Lemma,

$$\mathbb{E}_S[H(X_S)] \geq \frac{2}{3} \log(6t),$$

Based in part on lecture notes by Anup Rao and Jijiang Yan.
so there exists $T \subset [1,2,3], |T| = 2$, for which $H(X_T) \geq \frac{2}{3} \log(6t)$. On the other hand X_T is supported on edges of the graph, so $\log(2\ell) \geq H(X_T)$. This gives $2\ell \geq (6t)^{2/3}$, proving the bound.

It is easy to see using a similar proof that if $a < b$ and n_a is the number of cliques of size a and n_b is the number of cliques of size b, then $(b! \cdot n_b)^a \leq (a! \cdot n_a)^b$. Can we say something about arbitrary subgraphs (besides cliques)? It turns out that we can completely characterize the relationship between the number of subgraphs to the number of edges!

2.1 Counting Embeddings of Graphs

$N(T, \ell)$ is the maximum number of homomorphisms a graph T can have in a graph with ℓ edges.

Look at $N(K_k, \ell)$.

$$(bln_b)^2 \leq (2\ell)^b$$

$$n_b \leq (2\ell)^{\frac{b}{2}}/bl!$$

$$N(K_k, \ell) \leq (2\ell)^{\frac{k}{2}}$$

The last equation is tight for a complete graph. But what is $N(T, \ell)$ in general?

Look at T, a 5-star (one node with edges to 5 nodes around it). For this T, ℓ-star leads to at most ℓ^5 embeddings and $\sqrt{2\ell}$ clique leads to $\sqrt{2\ell}$ embeddings. The number has to do with the structure of T.

2.1.1 Fractional Independent Set

To understand $N(T, \ell)$ for an arbitrary graph T, we need to define two numbers associated with the graph T. The first is the fractional independent set number. A fractional independent set of T is a function $\psi : V(T) \to [0,1]$ such that for every edge, $e = \{u,v\}, \psi(u) + \psi(v) \leq 1$. The size of the fractional independent set is $\alpha(\psi) = \sum_{v \in V} \psi(v)$. We write $\alpha^*(T)$ to denote the size of the biggest fractional independent set. Note that $\alpha^*(T)$ can be computed by a linear program, and the integer version of this program simply computes the size of the largest independent set.

This is a generalization of independent set. This continuous optimization is easier to solve than the discrete case.

The dual of this linear program measures a different quantity associated with T, namely the fractional cover number. Say that a mapping of the edges $\phi : E(G) \to [0,1]$ is a fractional cover if for every vertex v, $\sum_{e \in v} \phi(e) \geq 1$, where the sum is taken over all edges e that contain v. The size of the fractional cover is $\gamma(\phi) = \sum_{e} \phi(e)$, and we denote by $\gamma^*(T)$ the size of the smallest fractional cover. Then the linear programming duality theorem proves that $\alpha^*(T) = \gamma^*(T)$.

If T is a triangle, we have that $\alpha^*(T) = 3/2$, corresponding to the fractional independent set that weights every vertex with 1/2. Similarly, if K is a k-clique, $\alpha^*(K) = k/2$. Indeed, the examples above are special cases of the following theorem, proved by Freidgut and Kahn (based on an earlier work of Alon).

Theorem 3 ([1, 3]). If T has m edges, $(\ell/m)\alpha^*(T) \leq N(T, \ell) \leq (2\ell)^{\alpha^*(T)}$.

Proof First we prove the upper bound. Let σ be a uniformly random embedding from $T \to G$, where G is a fixed graph with l edges. We shall use σ to define a distribution on the edges of T with high entropy. Let ϕ be the fractional cover of size $\alpha^*(T)$, and let S be a random edge of T, such that for every edge e, $\Pr[S = e] = \phi(e)/\alpha^*(T)$. Namely, we use the distribution given by ϕ (after normalization). Now think of σ
as being specified by the values of \(\sigma(v)\) for all vertices \(v\) of \(T\). Then, since \(\phi\) is a fractional cover, we have that for every vertex \(v\), \(\Pr[v \in S] \geq \sum_{e \in \phi(v)} \phi(e)/\alpha^*(T) \geq 1/\alpha^*(T)\).

By Shearer’s Lemma, \(E_S[H(\sigma_S)] \geq H(\sigma)/\alpha^*(T)\). On the other hand, for each edge \(e\), \(\sigma_e\) is supported on edges of \(G\), so \(H(\sigma_e) \leq \log(2\ell)\). Thus \((2\ell)^{\alpha^*(T)} \geq N(T, \ell)\).

Next we prove the lower bound (modulo rounding arguments). Let us construct \(G\) for which there are many embeddings of \(T\) into \(G\). Let \(\psi\) be a fractional independent set that achieves \(\alpha^*(G)\). We obtain \(G\) by replacing every vertex in \(T\) with an independent set of \((\ell/m)^{\psi(v)}\) vertices, and connecting every vertex in the independent set for \(u\) to every vertex in the independent set for \(v\) if and only if \(\{u, v\}\) is an edge of \(T\). Every edge of \(T\) thus contributes \((\ell/m)^{\psi(u)}\psi(v) \leq \ell/m\) edges to \(G\), and so \(G\) has at most \(\ell\) edges. You can get a homomorphism from \(T\) to \(G\) by mapping any vertex \(v\) to a vertex in the independent set corresponding to \(v\), so there are at least \((\ell/m)^{\psi(v)} = (\ell/m)^{\alpha^*(T)}\) such homomorphisms. ■

2.2 Intersecting Families of Graphs

Suppose \(\mathcal{F}\) is a family of subsets of \([n]\). We say that \(\mathcal{F}\) is intersecting if for every \(A, B \in \mathcal{F}\), \(|A \cap B| > 0\).

One example of a large intersecting family is the family of sets that contain 1. This family has size \(2^n/2\), and this is as large as you can make such a family (because only one of \(A, A^c\) may belong to \(\mathcal{F}\)).

Claim 4. If \(\mathcal{F}\) is intersecting, then \(|\mathcal{F}| \leq 2^n/2\).

The proof is very simple: for every set \(A, \mathcal{F}\) can contain either \(A\) or its complement, but not both.

Next, let us call a family \(\mathcal{F}\) \(k\)-intersecting if for every \(A, B \in \mathcal{F}\), \(|A \cap B| \geq k\). An obvious example of such a family is the family of sets that all contain \(\{1, \ldots, k\}\), which has size \(2^n/2^k\). Can one do better?

Let \(\mathcal{F} = \{A \subseteq [n] : |A| \geq n/2 + k/2\}\). Then every two sets of \(\mathcal{F}\) intersect in at least \(k\) elements, but the size of \(\mathcal{F}\) is \(\sum_{i=n/2+k/2}^{n} \binom{n}{i} \geq (2^n/2)(1 - O(k/\sqrt{n}))\).

Next, let us try to place some structure on the intersections. Let \(\mathcal{G}\) be a family of graphs on the vertex set \([n]\). We say \(\mathcal{G}\) is intersecting if for any two graphs \(T, K \in \mathcal{G}\), \(T \cap K\) has an edge. Then as before, \(\mathcal{G}\) is of size at most \(2^{\binom{n}{2}/2}\), which can be achieved with the family of all graphs that contain a designated edge.

Things get interesting if we ask for the intersections to have some structure. Say that \(\mathcal{G}\) is \(\triangledown\)-intersecting if for every \(T, K \in \mathcal{G}\), \(T \cap K\) contains a triangle. The trivial example gives a family of size \(2^{\binom{n}{2}/8}\), but perhaps there is some clever way to get a \(\triangledown\)-intersecting family that has size close to \(2^{\binom{n}{2}/2}\), as in the examples above?

Chung, Frankl, Graham and Shearer showed that no such example exists:

Theorem 5 ([2]). If \(\mathcal{G}\) is \(\triangledown\)-intersecting, then \(|\mathcal{G}| \leq 2^{\binom{n}{2}/4}\).

Proof For any subset \(R \subseteq [n]\), let \(G_R\) be the graph consisting of two disconnected cliques, one on \(R\) and the other on the complement of \(R\). Write \(\lvert G_R \rvert\) for the number of edges in \(G_R\). Then observe that since for every \(T, K \in \mathcal{G}\), \(T \cap K\) contains a triangle, it must be the case that \(T \cap K \cap G_R\) contains an edge. Thus, the family of graphs \(\{T \cup G_R : T \in \mathcal{G}\}\) is intersecting, and so has size at most \(2^{\lvert G_R \rvert}/2\).

Let us define \(S\) to be a uniformly random graph \(G_R\) obtained by picking a random subset \(R\) of size \(n/2\). Observe that for any edge, by symmetry, the probability that the edge is included in \(G_R\) is \(|G_R|/\binom{n}{2}\).

Let \(G\) be a uniformly random graph from \(\mathcal{G}\). Consider what happens when we restrict \(G\) to the information about the edges in \(S\). By Shearer’s Lemma and the fact that \(G_S\) is supported on an intersecting family, \(\lvert G_R \rvert - 1 \geq \mathbb{E}_S[H(G_S)] \geq \frac{|G_R|}{\binom{n}{2}} \log |\mathcal{G}|\). Thus,
\[\log |G| \leq \binom{n}{2} - \frac{\binom{n}{2}}{|G_R|} \]

\[= \binom{n}{2} - \frac{\binom{n}{2}}{2^{\binom{n}{2}}} \]

\[= \binom{n}{2} - \frac{n(n-1)}{2^{(n/2)(n/2-1)}} \]

\[= \binom{n}{2} - \frac{n-1}{n/2-1} \]

\[\leq \binom{n}{2} - 2 \]

References

