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1 Shearer’s Lemma

Today we shall learn about Shearer’s Lemma, which is a generalization of the subadditivity of entropy.

Lemma 1 (Shearer’s Lemma). Let X = X1, . . . , Xn be any random variables. If S is any distribution on
subsets of {1 . . . n}, such for every i, Pr[i ∈ S] ≥ µ, then E [H(XS)] ≥ µ ·H(X).

(As an aside, we give a simple proof due to Jaikumar Radhakrishnan.)
Proof For T = {i1, · · · , ik} with i1 < i2 < · · · < ik, observe that

H(XT ) = H(Xi1) +H(Xi2 |Xi1) + · · ·+H(Xik |Xik−1
, · · · , Xi1)

≥ H(Xi1 |X<i1) +H(Xi2 |X<i2) + · · ·+H(Xik |X<ik),

where we used chain rule in the equality, and used the fact that entropy is only smaller if we condition on
more variables, for the inequality.

Thus, we get that

E
S

[H(XS)] ≥ E
S

[∑
i∈S

H(Xi|X<i)

]
=
∑
i∈[n]

Pr[i ∈ S] ·H(Xi|X<i) whenever i is not in S, this term contributes 0

≥ µ
∑
i∈[n]

H(Xi|X<i)

= µ ·H(X)

2 Applications

Now, let’s start counting the number of cliques within a graph. We start with a simple example. Suppose
G = (V,E) is an undirected graph, t is the number of triangles and ` is the number of edges.

Proposition 2. t ≤ (2`)3/2/6

Proof The proof is very similar to that of the triangles and vee problem we have seen. Let X1, X2, X3

be uniformly random vertices forming a triangle. Then H(X1, X2, X3) = log(6t), since each triangle can be
written in 6 ways.

Let S be a uniformly random subset of coordinates {1, 2, 3} of size 2. Then for all i, Pr[i ∈ S] = 2/3. By
Shearer’s Lemma,

E
S

[H(XS)] ≥ 2

3
log(6t),

∗Based in part on lecture notes by Anup Rao and Jijiang Yan.
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so there exists T ⊂ [1, 2, 3], |T | = 2, for which H(XT ) ≥ 2
3 log(6t). On the other hand XT is supported on

edges of the graph, so log(2`) ≥ H(XT ). This gives 2` ≥ (6t)2/3, proving the bound.

It is easy to see using a similar proof that if a < b and na is the number of cliques of size a and nb is
the number of cliques of size b, then (b! · nb)a ≤ (a! · na)b. Can we say something about arbitrary subgraphs
(besides cliques)? It turns out that we can completely characterize the relationship between the number of
subgraphs to the number of edges!

2.1 Counting Embeddings of Graphs

N(T, l) is the maximum number of homomorphisms a graph T can have in a graph with ` edges.
Look at N(Kk, `).

(b!nb)
2 ≤ (2`)b

nb ≤ (2`)
b
2 /b!

N(Kk, `) ≤ (2l)
b
2

The last equation is tight for a complete graph. But what is N(T, `) in general?
Look at T , a 5-star (one node with edges to 5 nodes around it). For this T , `-star leads to at most `5

embeddings and
√

2` clique leads to
√

2`
5

embeddings. The number has to do with the structure of T .

2.1.1 Fractional Independent Set

To understand N(T, `) for an arbitrary graph T , we need to define two numbers associated with the graph
T . The first is the fractional independent set number. A fractional independent set of T is a function
ψ : V (T )→ [0, 1] such that for every edge, e = {u, v}, ψ(u)+ψ(v) ≤ 1. The size of the fractional independent
set is α(ψ) =

∑
v∈V ψ(v). We write α∗(T ) to denote the size of the biggest fractional independent set. Note

that α∗(T ) can be computed by a linear program, and the integer version of this program simply computes
the size of the largest independent set.

This is a generalization of independent set. This continuous optimization is easier to solve than the
discrete case.

The dual of this linear program measures a different quantity associated with T , namely the fractional
cover number. Say that a mapping of the edges φ : E(G) → [0, 1] is a fractional cover if for every vertex
v,
∑
v∈e φ(e) ≥ 1, where the sum is taken over all edges e that contain v. The size of the fractional cover

is γ(φ) =
∑
e φ(e), and we denote by γ∗(T ) the size of the smallest fractional cover. Then the linear

programming duality theorem proves that α∗(T ) = γ∗(T ).
If T is a triangle, we have that α∗(T ) = 3/2, corresponding to the fractional independent set that weights

every vertex with 1/2. Similarly, if K is a k-clique, α∗(K) = k/2. Indeed, the examples above are special
cases of the following theorem, proved by Freidgut and Kahn (based on an earlier work of Alon).

Theorem 3 ([1, 3]). If T has m edges, (`/m)α
∗(T ) ≤ N(T, `) ≤ (2`)α

∗(T ).

Proof First we prove the upper bound. Let σ be a uniformly random embedding from T → G, where G
is a fixed graph with l edges. We shall use σ to define a distribution on the edges of T with high entropy.
Let φ be the fractional cover of size α∗(T ), and let S be a random edge of T , such that for every edge e,
Pr[S = e] = φ(e)/α∗(T ). Namely, we use the distribution given by φ (after normalization). Now think of σ
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as being specified by the values of σ(v) for all vertices v of T . Then, since φ is a fractional cover, we have
that for every vertex v, Pr[v ∈ S] ≥

∑
v∈e φ(e)/α∗(T ) ≥ 1/α∗(T ).

By Shearer’s Lemma, ES [H(σS)] ≥ H(σ)/α∗(T ). On the other hand, for each edge e, σe is supported
on edges of G, so H(σe) ≤ log(2`). Thus (2`)α

∗(T ) ≥ N(T, `).
Next we prove the lower bound (modulo rounding arguments). Let us construct G for which there are

many embeddings of T into G. Let ψ be a fractional independent set that achieves α∗(G). We obtain G by

replacing every vertex in T with an independent set of
(
`
m

)ψ(v)
vertices, and connecting every vertex in the

independent set for u to every vertex in the independent set for v if and only if {u, v} is an edge of T . Every

edge of T thus contributes
(
`
m

)ψ(u)+ψ(v) ≤ `/m edges to G, and so G has at most ` edges. You can get a
homomorphism from T to G by mapping any vertex v to a vertex in the independent set corresponding to
v, so there are at least (`/m)

∑
v ψ(v) = (`/m)α

∗(T ) such homomorphisms.

2.2 Intersecting Families of Graphs

Suppose F is a family of subsets of [n]. We say that F is intersecting if for every A,B ∈ F , |A ∩B| > 0.
One example of a large intersecting family is the family of sets that contain 1. This family has size 2n/2,

and this is as large as you can make such a family (because only one of A, Ac may belong to F):

Claim 4. If F is intersecting, then |F| ≤ 2n/2.

The proof is very simple: for every set A, F can contain either A or its complement, but not both.
Next, let us a call a family F k-intersecting if for every A,B ∈ F , |A ∩ B| ≥ k. An obvious example of

such a family is the family of sets that all contain {1, . . . , k}, which has size 2n/2k. Can one do better?
Let F = {A ⊆ [n] : |A| ≥ n/2 + k/2}. Then every two sets of F intersect in at least k elements, but the

size of F is
∑n
i=dn/2+k/2e

(
n
i

)
≥ (2n/2)(1−O(k/

√
n)).

Next, let us try to place some structure on the intersections. Let G be a family of graphs on the vertex
set [n]. We say G is intersecting if for any two graphs T,K ∈ G, T ∩K has an edge. Then as before, G is of

size at most 2(n
2)/2, which can be achieved with the family of all graphs that contain a designated edge.

Things get interesting if we ask for the intersections to have some structure. Say that G is 5-intersecting

if for every T,K ∈ G. T ∩ K contains a triangle. The trivial example gives a family of size 2(n
2)/8, but

perhaps there is some clever way to get a 5-intersecting family that has size close to 2(n
2)/2, as in the

examples above?
Chung, Frankl, Graham and Shearer showed that no such example exists:

Theorem 5 ([2]). If G is 5-intersecting, then |G| ≤ 2(n
2)/4.

Proof For any subset R ⊆ [n], let GR be the graph consisting of two disconnected cliques, one on R and
the other on the complement of R. Write |GR| for the number of edges in GR. Then observe that since for
every T,K ∈ G, T ∩K contains a triangle, it must be the case that T ∩K ∩GR contains an edge. Thus, the
family of graphs {T ∪GR : T ∈ G} is intersecting, and so has size at most 2|GR|/2.

Let us define S to be a uniformly random graph GR obtained by picking a random subset R of size n/2.
Observe that for any edge, by symmetry, the probability that the edge is include in GR is |GR|/

(
n
2

)
.

Let G be a uniformly random graph from G. Consider what happens when we restrict G to the information
about the edges in S. By Shearer’s Lemma and the fact that GS is supported on an intersecting family,

|GR| − 1 ≥ E
S

[H(GS)] ≥ |GR|(
n
2

) log |G|. Thus,
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log |G| ≤
(
n

2

)
−
(
n

2

)
/|GR|

=

(
n

2

)
−

(
n
2

)
2
(
n/2
2

)
=

(
n

2

)
− n(n− 1)

2(n/2)(n/2− 1)

=

(
n

2

)
− n− 1

n/2− 1

≤
(
n

2

)
− 2
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