
COS597D: Information Theory in Computer Science October 10, 2011

Lecture 7

Lecturer: Mark Braverman Scribe: Ajay Roopakalu∗

1 Monotone Formula Size

In the last lecture, we saw that a monotone circuit is the smallest circuit that uses only OR and AND gates.
Further, we also saw that the second threshold function is de�ned as follows.

De�nition 1. [Second Threshold Function] Thn2 (x1, . . . , xn) =
∨

1≤i 6=j≤n(xi ∧ xj) = 1 if and only if at least
two of the bits are set to one.

The following powerful theorem allows us to obtain a tight lower bound on the size of the circuit that
evaluates the above function.

Theorem 2. [Krichevsky '64] [Newman, Ragde, Widgerson '90] sizem(Thn2) ≥ 2dn log ne − 1.

But before we can prove this theorem, we introduce some helpful notation and de�nitions.

De�nition 3. Let f : 2[n] → {0, 1} be any monotone function. Then, we say that (f)i = {S ⊆ [n], |S| =
i | f(S) = 1 and ∀T (S, f(T) = 0}.

Example 4.

(Thn2)i =

{
∅ , i 6= 2

{j, k} , j 6= k

De�nition 5. Given a graph G = (V,E), such that |V | = n, we de�ne

CONN(E) =

{
1 , (V,E) is connected

0 , otherwise

Example 6.

(CONN(E))i =

{
∅ , i 6= n− 1

all trees , otherwise

Proof (of Theorem 2) We will perform the analysis on the circuit by designing an �energy function� µ(·)
with the following properties:

• µ(gate) ≤ µ(input1) + µ(input2)

• µ(x1) =
1
n

• µ(Thn2) = log(n)

For a monotone, boolean function f , denote by Gf the graph whose edge set is (f)2. We immediately note
that GThn

2
= Kn and Gxi

= empty graph on n vertices. There are two types of gates (since the formula is
monotone) and we handle them case by case:

∗Based in part on lecture notes by Anup Rao, Punyashloka Biswal and Lukas Svec.

1

Case 1: OR Gates
We will now handle gates of the form f = g ∨ h.

We construct the graph Gf ⊆ Gg ∪ Gh. The graph of f is a subset of the union of the graphs of its
inputs because for a each {i, j} in (f)2:

• f({i, j}) = 1 implies that either g({i, j}) = 1 or h({i, j}) = 1.

• f({i}) = 0 implies that g({i}) = h({i}) = 0

• f({j}) = 0 means that g({j}) = h({j}) = 0.

Taken together, this means that {i, j} ∈ (g)2 or {i, j} ∈ (h)2. Thus, each edge in the graph of f is an edge
of either the graph of g or the graph of h. But what does this tell us about graph entropy? We realize the
following:

H(Gf) ≤ H(Gg ∪Gh) ≤ H(Gg) +H(Gh)

where the �rst inequality comes from the monotonicity of graph entropy and the second inequality comes
from the subadditivitity of graph entropy.

Case 2: AND Gates
We will now handle gates of the form f = g ∧ h.

Here, it is not the case that Gf ⊆ Gg ∪ Gh. (For a simple counterexample, suppose that f = x1 ∧ x2,
g = x1, and h = x2. Then {1, 2} ∈ Gf but that {1, 2} 6∈ Gg ∪ Gh). But this can only happen if the gate
brings together a literal from each side.

Precisely, suppose we had an edge e = {i, j} ∈ Gf\(Gg ∪ Gh). Consider that we restrict f, g, h to only
{i, j} (just set all other coordinates to 0). Then, it follows necessarily that f(xi, xj) = xi ∧ xj . (Further, we
know that g(xi, xj) 6= xi ∧ xj and h(xi, xj) 6= xi ∧ xj since otherwise the edge e would be in the respective
graphs. This also means that we cannot have that either g or h are equal to constants only. Finally, we
cannot have OR gates in either of the inputs.). Two options therefore remain:

g(xi, xj) = xi =⇒ h(xi, xj) = xj
g(xi, xj) = xj =⇒ h(xi, xj) = xi

Therefore, this means that e ∈ ((g)1 − (h)1)× ((h)1 − (g)1). Call the induced subgraph of these edges Tg,h.
What can we say about H(Tg,h)? With some observation, we see that Tg,h is bipartite! From this, we are
able to observe that, using the properties of graph entropy and the fact that the graph entropy is bounded
above by 1, we simplify:

H(Gf) ≤ H(Gg ∪Gh ∪ Tg,h) ≤ H(Gg) +H(Gh) +H(Tg,h) ≤ H(Gg) +H(Gh) + 1

As a side note, we also see that this is the only way that we are increasing the potential function. Thus, we
have the following theorem as a direct consequence of the argument above:

Theorem 7. Any monotone formula for Thn2 must have at least dlog(n)e AND gates.

We can however make the bound for H(Tg,h) tighter with the observation that there are many singleton
components that we haven't taken into account. Using the disjoint decomposition of graph components for

entropy, we can derive the tighter bound H(Tg,h) ≤ |(g)1∪(h)1−(g)1∩(h)1|
n . This is the weighted average.

From this, we are able to derive the actual energy function as

µ(f) = H(Gf) +
|(f)1|
n

We can again observe that µ(xi) =
1
n and µ(Thn2) = log(n) + 0

n = log(n), as desired. We now need to go
back to the cases and ensure that the �rst property (µ(f) ≤ µ(g) + µ(h)) still holds.

2

Case 1 (Revisited): OR Gates
This is the easy case. As noted before, we have the useful property that Gf ⊆ Gg ∪ Gh, so that H(Gf) ≤
H(Gg) +H(Gh). Further, we also know that (f)1 ⊆ (g)1 ∪ (h)1 by the argumentation above. Further, we
also note that f cannot be a constant. This is simply because we have assumed that our formula is minimal;
a constant in a formula can simply be omitted to yield a smaller formula, which is a contradiction. Thus,

µ(f) = H(Gf) +
|(f)1|
n
≤ H(Gg) +H(Gh) +

|(g)1|
n

+
|(h)1|
n

= µ(g) + µ(h)

Case 2 (Revisted): AND Gates
We can now compute the energy function for this type of gate:

µ(f) = H(Gf) +
|(f)1|
n

≤ H(Gg) +H(Gh) +
|((g)1 ∪ (h)1 − (g)1 ∩ (h)1)|

n
+
|((g)1 ∩ (h)1)|

n

≤ H(Gg) +H(Gh) +
|(g)1 ∪ (h)1|

n

≤ H(Gg) +H(Gh) +
|(g)1|
n

+
|(h)1|
n

µ(f) ≤ µ(g) + µ(h)

Thus, we conclude that we have successfully shown that this energy formula works in all cases. Therefore,
we note that we need at least dn log(n)e leaves and therefore at least dn log(n)e − 1 gates to a total size of
at least 2dn log(n)e − 1.

De�nition 8. [Hamming Cube] The graph Hn with vertex set V = {0, 1}n and edges between vertices that
di�er in exactly one binary location is called the Hamming Cube.

Example 9. The following are examples of canonical Hamming Cubes:

• H1 consists of the graph of a single line between a vertex labeled 0 and a vertex labeled 1.

• H2 is the graph of a square of vertices labeled {00, 01, 11, 10} in clockwise order.

• H3 is a cube vertices labeled 000 through 111.

Through a simple counting argument, we can see that the number of edges in Hn is 2nn
2 = 2n−1n.

Claim 10. For each subset of vertices in Hn, the number of edges in S ⊆ {0, 1}n is at most |S| log(|S|)
2 .

Proof We start by letting X1X2 · · ·Xn be a random element in S. Then we observe that

H(X1|X2 = x2, X3 = x3, . . . , Xn = xn) =

{
1 ,∃ edge in direction 1 at x2, . . . , xn

0 , otherwise

Further, we can generalize this to any edge i in a natural way:

H(Xi|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn)

It then follows that the total number of edges in direction i is given by |S|2 H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn),
since each edge has a 2

|S| chance of being picked (there are two directions along which we can count). There-

fore, we can also compute the total number of edges by:

T =
|S|
2

n∑
i=1

H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn)

≤ |S|
2

n∑
i=1

H(Xi|X1, . . . , Xi−1)

=
|S|
2
H(X1, X2, . . . , Xn) =

|S| log(|S|)
2

3

where we used the fact that the entropy of a uniform element of S is log |S|.

2 Locally Decodable Codes

In this formulation, we want to store an n-bit string X so that each Xi can be decoded using as few queries
as possible.

Example 11. The Hadamard Code is an example of such an encoding. Here the scheme used is that for
∀x ∈ Fn

2 , we store 〈a, x〉 for each a ∈ Fn
2 , where Fn

2 denotes a �eld of two values and vectors of length n and
〈·, ·〉 is the inner product.

To decode xi: Pick a random y ∈ Fn
2 . Query 〈y, x〉 and 〈y + ei, x〉, where ei is the vector of zeros and

only a 1 in the ith place. We then return the di�erences of these two values. This is su�cient because
〈y + ei, x〉 − 〈y, x〉 = 〈y, x〉+ 〈ei, x〉 − 〈y, x〉 = 〈ei, x〉 = xi.

The values are correlated, but each is random. That is, if <1% of the storage is corrupted, then we can
still return the correct value of xi with probability >98% (this can be shown via union bound argument).

Theorem 12. [Samorodnitsky] Every linear 2-query locally decodable code must store > 2Ω(n) bits.

Proof Without loss of generality, to recover Xi, we must query aj and ak such that aj + ak = ei. To
tolerate 1% error, at least m

200 queries can be made with aj + ak = ei. Let S = {a1, a2, . . . , am} ⊆ {0, 1}n.
This means that S contains ≥ m

200 edges in direction i. Therefore, the total number of edges is ≥ m·n
200 . But

by the properties of the Hamming Cube, we must have that the total number of edges is ≤ m log(m)
2 . It

therefore follows that log(m) ≥ n
100 =⇒ m ≥ 2

n
100 , as required.

4

