
COS597D: Information Theory in Computer Science October 5, 2011

Lecture 6
Lecturer: Mark Braverman Scribe: Yonatan Naamad∗

1 A lower bound for perfect hash families.

In the previous lecture, we saw that the cardinality t of a k-perfect hash family H = {[N]→ [b]} must satisfy
the inequality

t ≥ logN

log b
(1)

Heuristically, this makes sense: as we increase b, we’re only relaxing the problem by increasing the number
of values to which we can map the keys, so t can only decrease. Conversely, increasing N only increases the
difficulty of finding an appropriate family of hash functions, so t must increase accordingly. What equation
1 doesn’t capture, however, is that an increase in k should also result in an increase in t, with a particularly
notable increase as k approaches b (the problem being infeasible for k > b). This relationship is captured in
the following theorem

Theorem 1. Any k-perfect hash family H = {[N]→ [b]} of cardinality t must satisfy

t ≥ bk−1

b(b− 1) · · · (b− k + 2)
· log(N − k + 2)

log(b− k + 2)
(2)

Proof

This theorem was first proven by Fredman and Komlós in ’84. This information theoretic proof is by Körner,
from ’86.

For simplification, assume b|N . Let G denote the following graph:

• Vertices of G: {(D,x) : D ⊆ [N], |D| = k − 2, x ∈ [N]−D}

• Edges of G: {{(D,x1), (D,x2)} : x1 6= x2}

From the definition, we see that G has one connected component for each of the
(

N
k−2
)

possible values of D,
with each such component being a clique of size N − k + 2. For each h ∈ H, define the following subgraph
Gh ⊂ G

• Vertices of Gh: {v : v is a vertex of G}

• Edges of Gh: {{(D,x1), (D,x2)} : x1 6= x2, h is injective on D ∪ {x1, x2}}

Each edge corresponds to k points, and the subgraph Gh contains the collection of edges on which h is
injective on all k of their points. This, in conjunction with the fact that H is k-perfect, implies that

G =
⋃
h∈H

Gh

Because each component of G is a clique of size N − k + 2, the entropy of each connected component of G
is log(N − k + 2), so the entropy of G itself is also log(N − k + 2).

∗Based on lecture notes by Anup Rao and Lukas Svec

1

Independent set when
h is not injective on D1

(b-k+2)-partite graph
when h is injective on D2

D1 D2

Figure 1: Types of components forming the structure of Gh

To bound t, we will find an L such that H(Gh) ≤ L, which in turn implies that t ≥ log(N−k+2)
L by subaddi-

tivity of graph entropy.

Consider the various connected components of Gh for any fixed h. Each such component corresponds to a
subset D ⊆ N of size k − 2. If h is not injective on D, then the connected component is empty. If h is
injective, then for each i 6∈ h(D), define Ai = {(D,x) : h(x) = i}. The component corresponding to D only
has edges going between Ai and Aj when i 6= j, so it is a (b− k + 2)-partite graph. Thus,

H(each connected component) ≤ log(b− k + 2)

so H(Gh) ≤ log(b− k + 2), implying that

t ≥ log(N−k+2)
log(b−k+2) . (3)

This is already a much better bound than that given by equation 1, but it can be further improved by more
closely examining the structure of each Gh, shown in figure 1. Specifically, we will exploit the fact that Gh

has a large number of isolated vertices to improve our upper bound on its entropy, and thereby tighten our
lower bound on t.

Ideally, we’d want to figure out how many isolated vertices (D,x) are there in Gh. Note that (D,x) is
isolated iff h is not injective on D∪{x}. Since each set S of size k− 1 such that h is not injective on S gives
rise to k − 1 isolated vertices, the fraction of isolated vertices in G is equal to the probability of having h
not be injective on S for some randomly chosen S of size k − 1.

By simple combinatorics, the total number of vertices in Gh is given by(
N

k − 2

)
· (N − k + 1) =

(
N

k − 1

)
· (k − 1)

To calculate the probability that h is injective on S, we use the following fact

Claim 2. Pr|S|=k−1 [h is injective on S] is maximized when h partitions [N] evenly.

Sketch of proof:
The given statement is equivalent to stating that the probability is maximized when

|h−1(1)| = |h−1(2)| = · · · = |h−1(b)|.

Assume to the contrary that (without loss of generality) there is a higher probability of h being injective S
for some h with |h−1(1)| > |h−1(2)|. Let x be an arbitrary element in h−1(1), and let’s see what happens to

2

Pr|S|=k−1 [h is injective on S] if we were to change h(x) from 1 to 2. We can write

Pr [h is injective on S] = Pr[x ∈ S] · Pr [h is injective on S|x ∈ S] + Pr[x 6∈ S] · Pr [h is injective on S|x 6∈ S]

As the first term in the summation can only increase with the change and the second term is independent
of changes in h(x), the probability of h being injective was increased by this change. Thus, our original h
could not have been the probability maximizing partition, so we conclude that claim 2 must hold. �

Thus, the probability that h is indeed injective is equal to the probability that k − 1 elements, each placed
independently and uniformly at random in to one of b buckets, all fall in different buckets. This probability
is given by

p = Pr [h is injective on S] = 1 · b− 1

b
· b− 2

b
· · · b− k + 2

b
(4)

Thus, each Gh consists of two parts

1. A disjoint union of (b− k + 2)-partite graphs, each of which has at most log(b− k + 2) entropy.

2. p isolated vertices, each of which has 0 entropy.

Therefore, the entropy of Gh, which is the weighted average of the entropy of its components, is given by

H(Gh) ≤ log(b− k + 2) · Pr[uniformly chosen vertex is not isolated]

≤ log(b− k + 2) · b(b− 1) · · · (b− k + 2)

bk−1

The originally sought inequality follows from t ≥ log(N − k + 2)

H(Gh)
.

2 Circuit/Formula Complexity

2.1 Monotone boolean formulas and functions

Definition 3 (Boolean formula). A boolean formula on inputs x1, · · ·xn is a rooted tree with each leaf being
an element of {x1, · · · , xn, 0, 1} and each internal node corresponding to one of the boolean functions AND,
OR, or NOT.

Example 4 (Boolean formula for XOR). The boolean formula for XOR is given by figure 2.

f = ((x1 ∧ ¬x2) v (¬x1 ∧ x2))

NOT NOT

ANDAND

OR

Figure 2: Sample boolean circuit for computing XOR

3

We say that the size of a boolean formula is the total number of vertices (including leaves) in the corre-
sponding tree.

Definition 5 (Size of a function). The size of a function f : {0, 1}n → {0, 1} is the size of the smallest
boolean formula computing f .

A simple counting argument shows that most functions have large sizes, but in general it is very difficult to
prove any explicit lower bounds.

Definition 6 (Monotone formula). A formula is called monotone if it only uses AND and OR gates.

Alternatively, a formula f is monotone if for all x1, · · · , xn and for all i ∈ {1, · · · , n}

f(x1, · · · , xi−1, 0, xi+1, · · · , xn) ≤ f(x1, · · · , xi−1, 1, xi+1, · · · , xn)

For example XOR is not monotone, because there are instances in which flipping a bit from 0 to 1 changes
the truth value of the formula from 1 to 0.

To allow us to think of boolean formulas in terms of operations on sets, identify S ⊆ {1, · · · , n} with binary
vectors such that xi = 1↔ i ∈ S.

Claim 7. f is monotone iff f(S) ≤ f(T) whenever S ⊆ T .

Proof This follows from the fact that

f(x1, · · · , xn) =
∨

{S|f(S)=1}

(∧
i∈S

xi

)
.

This can be shown as follows: let T = {i|xi = 1}. If f(T) = 1, then
∧

i∈T xi = 1 because T is one of the
clauses in the DNF formula. However, if the formula returns a 1, then there exists a set S ⊆ T such that
f(S) = 1, which by monotonicity implies f(T) = 1.

For any monotone function f , define sizem(f) to be the smallest monotone formula computing f . Clearly,
sizem(f) ≥ size(f), as the latter is simply a relaxation of the former.

2.2 Threshold function

Definition 8 (Threshold functions). The threshold function is defined as Thn
k (S) =

{
1 if |S| ≥ k,

0 otherwise.

Example 9 (Simple examples of threshold functions).

Thn
1 (S) = x1 ∨ · · · ∨ xn size(Thn

1) = 2n− 1

Thn
n(S) = x1 ∧ · · · ∧ xn size(Thn

n) = 2n− 1

It turns out that the threshold function of largest size is the majority function Thn
n/2, which is of size O(n5.3)

(Valiant, ’84). Instead of computing this, however, we begin by trying to calculate the size of Thn
2 .

The most intuitive formula for computing this function is simply
∨

i 6=j(xi ∧ xj), which is of size O(n2).
However, we can employ a divide-and-conquer approach to reduce the size to O(n log n). This can be done
as follows:

1. Divide the input X into two parts Y ,Z each of size n/2.

2. Recursively compute Thn
2 (Y,Z) = Thn

2 (Y) ∨ Thn
2 (Z) ∨ (Thn

1 (Y) ∧ Thn
1 (Z))

4

Intuitively, the last formula states that at least two bits are set exactly when either Y contains at least 2 set
bits, Z contains at least 2 set bits, or each of Y and Z contain at least 1 set bit. Because the last term in
the above formula is of size O(n), the size of this formula, size∗m(Thn

2) satisfies the recurrence relation

size∗m(Thn
2) = 2 · size∗m(Th

n/2
2) +O(n)

which, by the same analysis as that of mergesort gives that size∗m(Thn
2) = O(n log n), giving us the sought

upper bound on sizem(Thn
2). As shown by Krichevski in ’64, sizem(Thn

2) ≥ 2dn lg ne − 1, which was later
shown to hold at equality Newman, Ragde, and Widgerson in ’90, to be presented next class.

5

