1 More Useful Properties of Graph Entropy

In the previous lecture, we saw that graph entropy is subadditive. More useful properties follow.

Lemma 1 (Monotonicity). If $G = (V,E)$ and $F = (V,E')$ are graphs on the same vertex set such that $E \subseteq E'$, then $H(G) \leq H(F)$.

Proof Let (X,Y) be random variables achieving $H(F)$. This implies that Y is an independent set in F and in G. Therefore $H(G) \leq I(X;Y) = H(F)$. \blacksquare

Next, we consider what happens to the graph entropy when taking disjoint unions of graphs. The following fact is useful for the next proof.

Fact 2. For all random variables X,Y and functions f, $I(X,f(X);Y) = I(X;Y)$.

Proof This follows from the chain rule: $I(X,f(X);Y) = I(X;Y) + I(f(X);Y|X) = I(X;Y) + H(f(X)|X) - H(f(X)|X,Y) = I(X;Y)$. \blacksquare

Lemma 3 (Disjoint union). If G_1, \ldots, G_k are the connected components of G, and for each i, $\rho_i := |V(G_i)|/|V(G)|$ is the fraction of vertices in G_i, then

$$H(G) = \sum_{i=1}^{k} \rho_i H(G_i).$$

Proof First, we shall show that $H(G) \geq \sum \rho_i H(G_i)$. Let X,Y be the random variables achieving $H(G)$. We can write $Y = Y_1, \ldots, Y_k$, where each Y_i is the intersection Y with the vertices of G_i. Define the function $l(x)$, where $l(x) = i$ if $x \in V(G_i)$. Then

$$H(G) = I(X;Y) = I(X;Y_1,\ldots,Y_k)$$
$$= I(X,l(x);Y_1,\ldots,Y_k)$$
$$= I(l(x);Y_1,\ldots,Y_k) + I(X;Y_1,\ldots,Y_k|l(x))$$
$$\geq I(X;Y_1,\ldots,Y_k|l(x))$$
$$= \sum_i \Pr(l(x) = i) I(X;Y_1,\ldots,Y_k|l(x) = i)$$
$$= \sum_i \rho_i (I(X;Y_i|l(x) = i) + I(X;Y_1,\ldots,Y_i-1,Y_{i+1},\ldots,Y_k|l(x) = i, Y_i))$$
$$\geq \sum_i \rho_i I(X;Y_i|l(x) = i)$$
$$\geq \sum_i \rho_i H(G_i).$$

where the last inequality follows from the fact that in $(X,Y_i)|l(x) = i$, X is a uniform vertex of $V(G_i)$, and Y_i is an independent set containing X.
Now we proceed to the upper bound. For \(i = 1, \ldots, k \), let \(p_i(x, y_i) \) be the minimizing distribution in the definition of \(H(G_i) \). Then we can define the following joint distribution on \(X, Y_1, \ldots, Y_k \):

\[
P(x, y_1, \ldots, y_k) = p_1(y_1)p_2(y_2) \cdots p_k(y_k) \sum_{t} p_t(x|y_i).
\]

We choose \(Y_1, \ldots, Y_k \) independently according to the marginal distributions of \(p_1, \ldots, p_k \), then pick a component \(i \) according to the distribution \(p_1, p_2, \ldots, p_k \) and finally sample \(X \) from that component with conditional distribution \(p_i(x|y_i) \). We can see that \(X \) is selected from component \(i \) with probability \(\rho_i = |V(G_i)|/|V(G)| \), and that conditioned on it being selected from component \(i \), the distribution on \((X, Y_i) \) is \(p_i \). Thus \(X \) is distributed uniformly on \(V(G) \). We can verify that for this choice, all the inequalities above hold with equality:

1. We choose the component in which to put \(X \) according to the weights \(\rho_i \), and independently choose the independent sets \(Y_1, \ldots, Y_k \). Thus \(I(l(X); Y_1, \ldots, Y_k) = 0 \).

2. Conditioned on \(l(X) = i \), the subsets \(Y_1, \ldots, Y_{i-1}, Y_{i+1}, \ldots, Y_k \) are independent of \(X, Y_i \). Thus, \(I(X; Y_1, \ldots, Y_{i-1}, Y_{i+1}, \ldots, Y_k | l(X) = i, Y_i) = 0 \).

3. The last inequality is tight since conditioned on \(l(X) = i \), the joint distribution \(X, Y_i | l(X) = i \) is the minimizing distribution for the graph entropy.

2. **A lower bound for perfect hash functions**

Graph entropy can be used to improve the obvious lower bound on good hash functions.

Definition 4 (k-perfect hash functions). Given a family of functions \(\mathcal{H} = \{ h : [N] \rightarrow [b] \} \), we say that \(\mathcal{H} \) is a \(k \)-perfect hash family, if \(\forall S \subseteq [N], |S| = k \), where \(|S| = k \), there exists \(h \in \mathcal{H} \) such that \(h \) is injective on \(S \).

Any \(k \)-tuple can be distinguished by at least one hash function. Let \(t = |\mathcal{H}| \) be the size of the \(k \)-perfect family. How small can \(t \) be?

Claim 5. \(t \geq \log N/\log b \).

Proof

For any two \(x_1, x_2 \in [N] \) we must have \((h_1(x_1), \ldots, h_t(x_1)) \neq (h_1(x_2), \ldots, h_t(x_2))\). By the pigeonhole principle it follows that

\[
N \leq b^t \quad \Rightarrow \quad t \geq \frac{\log N}{\log b}.
\]

Claim 6. Suppose \(b \geq 100k^2 \), then there is a \(k \)-perfect hash function family of size \(t = \mathcal{O}(k \log N) \).

Sketch of Proof Pick \(t \) random functions and let them be in the family. Then for any fixed set \(S \) of \(k \) elements, the probability that a random hash function \(h \) is injective on \(S \) is

\[
\frac{b^k - b^{k-1}}{b} \cdots \frac{b^k - b}{b} \geq \left(1 - \frac{k}{b} \right)^k \geq \frac{9}{10} \text{ (constant)}.
\]
The probability, that all t hash functions are non-injective then is $(\frac{1}{10})^t$. The total number of such sets S is at most N^k, and by the union bound

$$P(A_1 \cup \cdots \cup A_T) \leq \sum_{i=1}^{T} P(A_i),$$

the probability that some S is not mapped injectively by all h is

$$\sum_{S \subseteq [N]} \left(\frac{1}{10}\right)^t \leq N^k \left(\frac{1}{10}\right)^t = 2^{k \log N} \left(\frac{1}{10}\right)^t \ll 1,$$

which leads to $t = O(k \log N)$. ■