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1 Convexity/Concavity of Mutual Information

In the previous lecture, we saw that mutual information is concave in p. To be more precise, let (X,Y) have
a joint probability distribution p(x, y) = p(x)p(y|x). Write α = α(x) = p(x) and π = π(x, y) = p(y|x). Then
the pair (α, π) specifies the distribution p(x, y).

Lemma 1 (Mutual information is concave in p).
Let I1 be I(X;Y ) where (X,Y ) ∼ (α1, π),
let I2 be I(X;Y ) where (X,Y ) ∼ (α2, π),
let I be I(X;Y ) where (X,Y ) ∼ (λα1 + (1− λ)α2, π), for some 0 ≤ λ ≤ 1.
then I ≥ λI1 + (1− λ)I2.

Now, we prove that mutual information is convex in p(y|x). More formally, we have the following. Let
(X,Y ) have a joint probability distribution p(x, y) = p(x)p(y|x). Write α = α(x) = p(x) and π = π(x, y) =
p(y|x). Then the pair (α, π) specifies the distribution p(x, y).

Lemma 2 (Mutual information is convex in π). Let I1 be I(X;Y ) where (X,Y ) ∼ (α, π1),
let I2 be I(X;Y ) where (X,Y ) ∼ (α, π2),
let I be I(X;Y ) where (X,Y ) ∼ (α, λπ1 + (1− λ)π2), for some 0 ≤ λ ≤ 1.
then I ≤ λI1 + (1− λ)I2.

Proof Let us draw X first according to α. Let S be a Bλ random variable such that S is 1 with probability
λ and 0 with probability 1 − λ. If S = 1 we select Y using π1, and otherwise we select Y using π2. Note
that I(X;Y ) = I.

I(SY ;X) = I(Y ;X) + I(S;X|Y ) ≥ I(Y ;X) = I

Also, we have

I(SY ;X)

= I(S;X) + I(Y ;X|S)

= 0 + I(Y ;X|S)

= λI(Y ;X|S = 1) + (1− λ)I(Y ;X|S = 0)

= λI1 + (1− λ)I2

Thus, we have I ≤ λI1 + (1− λ)I2.

2 Some more inequalities involving mutual information

Lemma 3. If I(B;D|A,C) = 0, then I(A;B|C) ≥ I(A;B|C,D).

∗Based on lecture notes by Anup Rao and Punyashloka Biswal
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Proof We write I(A,D;B|C) in two different ways.

I(A,D;B|C) = I(A;B|C) + I(D;B|A,C) = I(A;B|C)

Also,
I(A,D;B|C) = I(D;B|C) + I(A;B|D,C) ≥ I(A;B|C,D)

Therefore, I(A;B|C) ≥ I(A;B|C,D)

Lemma 4. If I(B;D|C) = 0, then I(A;B|C) ≤ I(A;B|C,D).

Proof We write I(A,D;B|C) in two different ways.

I(A,D;B|C) = I(A;B|C) + I(D;B|A,C) ≥ I(A;B|C)

Also,
I(A,D;B|C) = I(D;B|C) + I(A;B|D,C) = I(A;B|C,D)

Therefore, I(A;B|C) ≤ I(A;B|C,D)

Lemma 5. If X → Y → Z form a Markov chain, then I(X,Z) ≤ I(X,Y ).

Proof We write I(X;Y Z) in two different ways.

I(X;Y Z) = I(X;Y ) + I(X;Z|Y ) = I(X;Y ),

since Z is independent of X given Y by the Markov chain property. Also,

I(X;Y Z) = I(X;Z) + I(X;Y |Z) ≥ I(X;Z)

Thus, I(X;Z) ≤ I(X,Y ).

3 Graph Entropy

Now, we shall study a quantity called graph entropy. The original motivation for this quantity was to
characterize how much information can be communicated in a setting where pairs of symbols may be confused,
though we shall see that it is very useful in a variety of settings.

A subset S of the vertices V of an undirected graph G = (V,E) is independent if no edge in the graph
has both endpoints in S. Given a graph G, define the graph entropy of G

H(G) = min
X,Y

I(X;Y ),

where the minimum is taken over all pairs of random variables X,Y such that

• X is a uniformly random vertex in G.

• Y is an independent set containing X.

Let us consider some examples:

1. Suppose G has no edges. Then if X is a uniformly random vertex and Y is fixed to be the vertex set
V , we get H(G) ≤ I(X;Y ) = 0. But H(G) ≥ 0, so H(G) must be 0 in this case.
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2. Let G be the complete graph on n vertices. Then the only independent set containing a given vertex
u is the singleton set {u}. Thus there is only one available choice for the distribution of X,Y , namely
Pr[Y = {X}] = 1. H(G) = H(X) − H(X | Y ) = log n − 0, because X is completely determined by
Y = {X}.

3. Let G be the complete bipartite graph Kn,n. Call the two parts of the graph A and B. One possible
choice of joint distribution for X and Y is to first pick X uniformly at random, and then to choose

Y =

{
A if X ∈ A
B otherwise.

This gives us the upper bound

H(G) ≤ I(X;Y ) = H(X)−H(X | Y ) = log(2n)− log n = 1.

On the other hand, we claim that any valid joint distribution must satisfy H(X | Y ) ≤ log n. For if
Y is an independent set, then it must be a subset of either A or B. Thus, H(X|Y ) ≤ log |Y | ≤ log n.
This implies that H(G) ≥ log(2n)− log n = 1.

4. Let G be a complete r-partite graph, i.e., V = [n] × [r] and E = {
(
(i, j), (k, l)

)
| j 6= l}. Then we

can adapt the proofs from the last two examples to show that H(G) = log r. In fact, we can show
further that if G is r-partite with parts S1, . . . , Sr, the graph entropy of G is the same as H(Z), where
Pr[Z = i] = Pr[X ∈ Si] for uniform vertex X. In particular, H(G) ≤ log r in this case.

5. Let G be the unbalanced complete bipartite graph Km,n. We choose X and Y exactly as before and
get the bound

H(G) ≤ log(m+ n)− m

m+ n
logm− n

m+ n
log n = H

(
n

m+ n

)
,

where H(·) denotes the binary entropy function, or the entropy of a biased coin. As in the previous
case, we have that H(X|Y ) ≤ m

m+n logm+ n
m+n log n, proving that H(G) = H( n

m+n ).

4 Useful Properties of Graph Entropy

The power of graph entropy comes from the fact that it can be easily controlled even when the underlying
graph is manipulated in natural ways.

Proposition 6 (Subadditivity). Let G1 = (V,E1) and G2 = (V,E2) be graphs on the same vertex set. Then
their union G = (V,E1 ∪ E2) has entropy H(G) ≤ H(G1) +H(G2).

Proof Let p1(x, y) and p2(x, y) be the distributions that minimize I(X;Y ) for G1 and G2, respectively,
and let us consider the distribution

p(x, y1, y2) = p(x) · p1(y1 | x) · p2(y2 | x).

In other words, we pick X uniformly at random, and conditioned on this choice of X we pick Y1 and Y2
independently according to each of the conditional distributions. For a given choice of X, observe that
Y1 ∩ Y2 contains X and is an independent set in G. Therefore,
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H(G)

≤ I(X; (Y1 ∩ Y2))

≤ I(X;Y1, Y2)

= H(Y1, Y2)−H(Y1, Y2 | X)

= H(Y1, Y2)−H(Y1 | X)−H(Y2 | X) (since Y1, Y2 are independent conditioned on any fixing of X)

≤ H(Y1)−H(Y1 | X) +H(Y2)−H(Y2 | X) (by subadditivity of entropy)

= H(G1) +H(G2).

To give an interesting example where Proposition 6 is tight, consider the representation of the complete
graph G := K2n as a graph on strings V = {0, 1}n. We’ve seen that H(K2n) = n. Let

Ei := {(u,w) : ui 6= wi},

i.e. all pairs of strings that differ in the i-th coordinate. Then Gi = (V,Ei) is a complete balanced bipartite
graph, and thus H(Gi) = 1. We see that the inequality H(G) ≤

∑n
i=1H(Gi) is tight in this case.
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