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Lecture 3
Lecturer: Mark Braverman Scribe: Pawel Przytycki∗

Theorem 1 (Fano’s Inequality). Let X̂ be an estimator for X such that Pe = Pr(X = X̂) then
H(Pe) + Pelog|χ| ≥ H(X|X̂) ≥ H(X|Y ).

Proof [of the first part of the inequality]

Define E =

{
1 if X̂ 6= X

0 if X̂ = X

H(EX|X̂) = H(X|X̂) +H(E|XX̂) = H(X|X̂), since E is completely determined by XX̂,
H(EX|X̂) = H(E|X̂)+H(X|EX̂) ≤ H(E)+(1−Pe)H(X|X̂, E = 0)+PeH(X|X̂, E = 1) ≤ H(Pe)+Pelog|X |.

1 Relative Entropy

The relative entropy, also known as the Kullback-Leibler divergence, between two probability distributions on
a random variable is a measure of the distance between them. Formally, given two probability distributions
p(x) and q(x) over a discrete random variable X, the relative entropy given by D(p||q) is defined as follows:

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

In the definition above 0 log 0
0 = 0, log 0

q = 0, and p log 1
0 =∞.

Example 2. D(p||p) = 0.

Example 3. Consider a random variable X with the law q(x). We assume nothing about q(x). Now consider
a set E ⊆ X and define p(x) to be the law of X|X∈E. The divergence between p and q:

Solution

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

=
∑
x∈E

p(x) log
q(x|x ∈ E)

q(x|x ∈ E)Prq[X ∈ E]

=
∑
x∈E

p(x) log
1

Prq[X ∈ E]

= log
1

Pr[E]
.

In the extreme case with E = X , the two laws p and q are identical with a divergence of 0.

We will henceforth refer to relative entropy or Kullback-Leibler divergence as divergence.

∗Based on lecture notes by Anup Rao and Prasang Upadhyaya
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1.1 Properties of Divergence

1. Divergence is not symmetric. That is, D(p||q) = D(q||p) is not necessarily true. For example, unlike
D(p||q), D(q||p) =∞ in the example mentioned in the previous section, if ∃x ∈ X \ E : q(x) > 0.

2. Divergence is always non-negative. This is because of the following:

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

= −
∑
x∈X

p(x) log
q(x)

p(x)

= −E
[
log

q

p

]
≥ − log

(
E
[
q

p

])
= − log

(∑
x∈X

p(x)
q(x)

p(x)

)
= 0,

where the inequality follows by the convexity of − log x.

3. Divergence is a convex function on the domain of probability distributions.

Theorem 4 (Log-sum Inequality). If a1, . . . , an, b1, . . . , bn are non-negative numbers, then∑n
i=1 ai log ai

bi
≥ (
∑n
i=1 ai) log

∑n
i=1 ai∑n
i=1 bi

Lemma 5 (Convexity of divergence). Let p1, q1 and p2, q2 be probability distributions over a random
variable X and ∀λ ∈ (0, 1) define

p = λp1 + (1− λ)p2

q = λq1 + (1− λ)q2

Then, D(p||q) ≤ λD(p1||q1) + (1− λ)D(p2||q2).

1.2 Relationship of Divergence with Entropy

Intuitively, the entropy of a random variable X with a probability distribution p(x) is related to how much
p(x) diverges from the uniform distribution on the support of X. The more p(x) diverges the lesser its
entropy and vice versa. Formally,

H(X) =
∑
x∈X

p(x) log
1

p(x)

= log |X | −
∑
x∈X

p(x) log
p(x)

1
|X |

= log |X | −D(p||uniform)
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1.3 Conditional Divergence

Given the joint probability distributions p(x, y) and q(x, y)of two discrete random variables X and Y , the
conditional divergence between two conditional probability distributions p(y|x) and q(y|x) is obtained by
computing the divergence between p and q for all possible values of x ∈ X and then averaging over these
values of x. Formally,

D(p(y|x)||q(y|x)) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(y|x)

q(y|x)

Given the above definition we can prove the following chain rule about divergence of joint probability
distribution functions.

Lemma 6 (Chain Rule).

D (p(x, y)||q(x, y)) = D (p(x)||q(x)) +D (p(y|x)||q(y|x))

Proof

D (p(x, y)||q(x, y)) =
∑
x

∑
y

p(x, y) log
p(x, y)

q(x, y)

=
∑
x

∑
y

p(x, y) log
p(x)p(y|x)

q(x)q(y|x)

=
∑
x

∑
y

p(x, y) log
p(x)

q(x)
+
∑
x

∑
y

p(x, y) log
p(y|x)

q(y|x)

= D(p(x)||q(x)) +
∑
x

p(x)
∑
y

p(y|x) log
p(y|x)

q(y|x)

= D (p(x)||q(x)) +D (p(y|x)||q(y|x))

2 Mutual Information

Mutual information is a measure of how correlated two random variables X and Y are such that the more
independent the variables are the lesser is their mutual information. Formally,

I(X;Y ) = D(p(x, y)||p(x)p(y))

=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log p(x, y)−
∑
x,y

p(x, y) log p(x)−
∑
x,y

p(x, y) log p(y)

= −H(X,Y ) +H(X) +H(Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

2.1 Conditional Mutual Information

We define the conditional mutual information when conditioned upon a third random variable Z to be

I(X;Y |Z) = Ez[I(X;Y |Z = z)]

= H(X|Z)−H(X|Y Z)
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I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
=
∑
y

p(y)
∑
x

p(x|y) log
p(x, y)/p(y)

p(x)
= EyD(p(x|y)||p(x))

Example 7. X,Y,Z uniform, conditioned on X+Y+Z = 0 mod 2
I(X;Y ) = H(X)−H(X|Y ) = 0;
I(X;Y Z) = H(X)−H(X|Y Z) = 1;
I(X;Y |Z) = H(X|Z)−H(X|Y Z) = 1.

Conditioning can decrease (or eliminate) or increase mutual information:

Example 8. X = x1x2, Y = y1y2, random bits s.t. x1 ⊕ x2 = y1 ⊕ y2. Let Z := x1 ⊕ x2 = y1 ⊕ y2, then
I(X;Y ) = H(X)−H(X|Y ) = 2− 1 = 1;
I(X;Y |Z) = H(X|Z)−H(X|Y Z) = 1− 1 = 0.

Lemma 9 (Chain Rule). I(XY ;Z) = I(X;Z) + I(Y ;Z|X)

Proof

I(XY ;Z) = H(XY )−H(XY |Z)

= H(X) +H(Y |X)−H(X|Z)−H(Y |XZ)

= I(X;Z) + I(Y ;Z|X)

2.2 Convexity/Concavity of Mutual Information

Let (X,Y) have a joint probability distribution p(x, y) = p(x)p(y|x). Write α = α(x) = p(x) and π =
π(x, y) = p(y|x). Then the pair (α, π) specifies the distribution p(x, y).

Lemma 10 (Mutual information is concave in p).
Let I1 be I(X;Y ) where (X,Y ) ∼ (α1, π),
let I2 be I(X;Y ) where (X,Y ) ∼ (α2, π),
let I be I(X;Y ) where (X,Y ) ∼ (λα1 + (1− λ)α2, π), for some 0 ≤ λ ≤ 1.
then I ≥ λI1 + (1− λ)I2.

Proof Let S be a Bλ random variable such that S is 1 with probability λ and and 0 with probability 1−λ.
If S = 1 we select X using α1, and otherwise we select X using α2. In both cases, we select Y conditioned
on X using π. Note that I(X;Y ) = I, and that conditioned on X, Y and S are independent.
I(SX;Y ) = I(X;Y ) + I(S;Y |X) = I;
I(SX;Y ) = I(S;Y ) + I(X;Y |S) ≥ I(X;Y |S) = λI(X;Y |S = 1) + (1− λ)I(X;Y |S = 0) = λI1 + (1− λ)I2.
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