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1 Introduction

Information theory is the study of a broad variety of topics having to do with quantifying the amount
of information carried by a random variable or collection of random variables, and reasoning about this
information. It gives us tools to define and reason about fundamental quantities in a broad spectrum
of disciplines. Information has been traditionally studied in the context of communication theory and in
physics (statistical mechanics, quantum information). However, has many important applications in other
fields, such as economics, mathematics, statistics, and, as we shall see in this course, in theoretical computer
science.

In this course, we shall see a quick primer on basic concepts in information theory, before switching gears
and getting a taste for a few domains in discrete mathematics and computer science where these concepts
have been used to prove beautiful results.

2 How to measure information?
There are several ways in which one might try to measure the information of a variable X.

e We could measure how much space it takes to store X. Note that this definition only makes sense if
X is a random variable. If X is a random variable, it has some distribution, and we can calculate the
amount of memory it takes to store X on average.

For example, if X; is a uniformly random n-bit string, it takes n-bits of storage to write down the
value of X;. If Xo is such that there is a string a such that Pr[Xy = a] = 1/2, we can save on the
space by encoding Xs so that 0 represents a and all other strings are encoded with a leading 1. With
this encoding, the expected amount of space we need to store X5 is at most
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amount of memory if a is selected amount of memory otherwise
This notion corresponds to Shannon’s entropy, which we will define soon.

e We could measure how unpredictable X is in terms of what the probability of success is for an algorithm
that tries to guess the value of X before it is sampled. If X; is a uniformly random string, the best
probability is 27™. On the other hand, for X5 is as in the second example, this probability is 1/2.
This corresponds to the notion of “min-entropy”. A simple example where it may be important is in
assessing the strength of a cryptographic key generation scheme (want the min-entropy to be high).

e We could measure the expected length of the shortest computer program that prints out X (namely
the expected Kolmogorov complexity of X). This definition has the advantage of being applicable not
only to random variables, but also to individual random strings. For example, it explains why the
string “29035472908579286345...” is more random than “4444444444444...” or “31415926535897...” —
the former requires a much longer program.
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There are just some of the options we have for measuring the information in X. Each of them sounds
reasonable, and there are many other reasonable measures that make sense. Research in pseudorandomness
has made gains by asking for analogous measures to those suggested above, under computational restrictions
— i.e. what is the shortest encoding of X with an efficient encoding algorithm, or the best probability of
predicting X using an efficient predictor algorithm. In this course, we shall focus on a few such measures,
and explore applications of these ideas to problems in computer science.

3 Notation

Capital letters like X,Y,Z will be used to denote random variables, letters like S,T,U will denote sets.
Calligraphic letters like X', Y, Z will be used to denote the supports of random variables (X,Y, Z). Small
letters like x, y, z will be used to denote instantiations of random variables, and also elements of sets (s, ,u).
We shall use the shorthand p(z) to denote the probability Pr[X = z], and p(x,y) to denote Pr[X =
x,Y = y]. For conditional probability, we shall often use the notation p(x|y) to denote Pr[X = z|Y = y].

4 The Entropy Function

The measure of information we shall focus on to start is the entropy function, defined as follows:
H(X) = p(x)log(1/p(x)),
x

where here we adopt the convention that 0log 1/0 = 0 (which is justified by the fact that lim,_, 2 log(1/x) =
0). Another way to interpret H(X) is as the expected log of the probability of a sample from X,

H(X) = E [log(1/p(X))]

The log function here (and throughout most of the course) is the base-2 log, function.

For ¢ € [0,1], we shall write H(q) to denote the entropy of the Bernoulli random variable B, for which
Pr[B,=1]=qand Pr[B,=0]=1—g¢.

Some facts are immediate from the definition:

o H(X
a) =

) > 0 (since each term in the sum is non-negative). Moreover, H(X) = 0 if and only if Pr[X =
1

or some a, since otherwise, one of the terms in the sum will be strictly positive.
o H(q)=H(1—q).

e H(1/2)=1.

e H(0)=H(1)=0.

5 Some Examples

e For X, as above — a uniformly random n-bit string - H(X1) = ) p(z)log(1/p(z)) = >, 2 " log(2") =
n.

e If X is a uniformly random element of a set S, H(X) = > _«(1/|S])log(|S|) = log(|S]).

e For X5 as above, assuming a is not an n-bit string,

+ 1.
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z is an n-bit string



e Let X3,Y5, Z3 be uniformly random bits conditioned on their majority being 1, then H(X3Y37Z3) = 2,
since there are 8 3-bit strings, of which exactly 4 have majority 1. Each of the bits X3, Y3, Z3 is 1 with
probability 3/4 and 0 with probability 1/4. Hence

H(Xs) = H(Y3) = H(Zs) = H(3/4) ~ 0.81.

If we look at the pair of bits X3Y3 then their distribution is given by p(01) = p(10) = 1/4, p(11) = 1/2,
and thus by symmetry

1 1 1

e Let X4,Yy, Z4 be uniformly random bits conditioned on their parity being 0 (i.e. X4 + Yy + Z4 =0
mod 2), then H(X,Y1Z,) = 2, since again, the fraction of such strings is 1/2. H(X4) = 1, and
H(X,Yy) = 2. In this case, we see that H(X,Yy) = H(X4Y41Z,), indicating that the first two bits
already contain all information about the entire string. Indeed this is the case since Z4 = X, @Y. We
shall formalize a way to measure how much information is left over in the last bit soon.

6 Conditional Entropy

Let X,Y be two random variables. Then, expanding H(X,Y") gives
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We denote the second term above H(Y|X). It is the expected entropy that is left in YV after fixing X.
In this notation, we have just showed the chain rule:

Lemma 1 (Chain Rule). H(XY) = H(X)+ H(Y|X).
Repeated applications of this two variable chain rule give:
Lemma 2 (Chaln Rule). H(XlXQ ‘e Xn) = H(Xl)+H(X2|X1)+H(X3|X2X1)+ . +H(Xn|Xn_1 .. Xl)

Revisiting our examples, we see that in the case when X,Y;Z, are three random bits conditioned on
the event that their parity is 0, we have that H(X4) = 1, H(Y4|X4) = 1 and H(Z4|X4Ys) = 0, where
the last equation states that for every fixing of Xy, Yy, the value of Z4 is determined. On the other hand,
when X3Y373 are random bits whose majority is 1, observe that when X3 = 1, Y3 = 1, the last bit has some
entropy. Therefore H(Z3|X3Y3) > 0. Indeed, we can calculate that H(Z5|X3Y3) = H(X3Y37Z5)— H(X3Y3) =
2 — 1.5 = 0.5 bits.



7 Jensen’s Inequality and Subadditivity
Definition 3. We say that a function f : (a,b) = R is convex if for every x,y € (a,b) and every A € (0,1),
fOz+ (1= Ny) < Af(x)+ 1 =N f(y).

Examples of convex functions include z,e®, 22 and log(1/x). If —f is convex, we shall say that f is
concave.
The following is a useful inequality for dealing with the entropy function and its derivatives:

Lemma 4 (Jensen’s Inequality). If f is a convex function on (a,b) and X is a random variable taking values
n (a,b), then
FEX]) <E[f(X)]

Proof We prove the case when X takes on finitely many values. The general case follows by continuity
arguments.

We prove the statement by induction on the number of elements in the support of X. If X is supported
on 2 elements, the lemma immediately follows from the definition of convexity. In the general case, let us
assume X is supported on x1,...,x,. Then,

< p(en)f(x1) + (1= p(21)) f( p(zi)zi/(1 - p(z )))

§f< (z1)x1 + (1 = p(z1)) ( p(x i)xi/(lp(xl))>>
= f(E[X]),

where the first inequality follows by applying the lemma for the case when there are n — 1 elements in the
support, and the second inequality is a direct consequence of the definition of convexity. ll

As a first application of this inequality, we show the following lemma:
Lemma 5 (Subadditivity of Entropy). H(X,Y) < H(X) + H(Y)
Proof

H(X,Y)-H(X)-H(Y prylog 1/p(x,y)) Zp ) log(1/p(x)) Z (y) log(1/p(y))

= Zp z,y) log(1/p(z, y)) Zp x,y)log(1/p(x Zp z,y)log(1/p(y))
= Zp(% y)log(p(x)p(y)/p(z, y))

< log (Zp a,y)p(x)p(y) /p(z, y))
=logl =0,

where the inequality follows from Jensen’s inequality applied to the convex function log(1/z). B



Note that the above lemma implies in particular that H(X) + H(Y|X) < H(X) + H(Y), which means
that H(Y|X) < H(Y). In other words, conditioning can only reduce the entropy in a random variable on
average.

Lemma 6. H(Y|X) < H(Y)

It is NOT true that H(Y|X = z) is always smaller than H(Y"). Indeed, in the example where X3Y373
are three uniform bits conditioned on the majority being 1, we see that H(X3) = H(3/4) ~ 0.81 < 1, yet

H(X|Y =1,Z =1) = 1. However, the lemma shows that average fixings of Y375 do reduce the entropy in
X3. And indeed H(X3|Y3Z3) =05< H(X3)



