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SUMMARY

We present an efficient procedure for estimating the marginal likelihood of probabilistic models
with latent variables or incomplete data. This method constructs and optimises a lower bound
on the marginal likelihood using variational calculus, resulting in an iterative algorithm which
generalises the EM algorithm by maintaining posterior distributions over both latent variables
and parameters. We define the family of conjugate-exponential models—which includes finite
mixtures of exponential family models, factor analysis, hidden Markov models, linear state-space
models, and other models of interest—for which this bound on the marginal likelihood can be
computed very simply through a modification of the standard EM algorithm. In particular,
we focus on applying these bounds to the problem of scoring discrete directed graphical model
structures (Bayesian networks). Extensive simulations comparing the variational bounds to the
usual approach based on the Bayesian Information Criterion (BIC) and to a sampling-based
gold standard method known as Annealed Importance Sampling (AIS) show that variational
bounds substantially outperform BIC in finding the correct model structure at relatively little
computational cost, while approaching the performance of the much more costly AIS procedure.
Using AIS allows us to provide the first serious case study of the tightness of variational bounds.
We also analyse the perfomance of AIS through a variety of criteria, and outline directions in
which this work can be extended.
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1. INTRODUCTION

Statistical modelling problems often involve a large number of random variables and
it is often convenient to express the conditional independence relations between these
variables graphically. Such graphical models are an intuitive tool for visualising depen-
dencies between the variables. Moreover, by exploiting the conditional independence
relationships, they provide a backbone upon which it has been possible to derive ef-
ficient message-propagating algorithms for conditioning and marginalising variables in
the model given new evidence (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Hecker-
man, 1996; Cowell et al. , 1999). Many standard statistical models, especially Bayesian
models with hierarchical priors, can be expressed naturally using probabilistic graphi-
cal models. This representation can be helpful developing both sampling methods (e.g.
Gibbs sampling) and exact inference methods (e.g. junction-tree algorithm) for these
models.
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An important and difficult problem in Bayesian inference is computing the marginal
likelihood of a model. This problem appears under several guises: as computing the
Bayes factor (the ratio of two marginal likelihoods; Kass and Raftery, 1995), or com-
puting the normalising constant of a posterior distribution (known in statistical physics
as the “partition function” and in machine learning as the “evidence”). The marginal
likelihood is an important quantity because it allows us to select between several model
structures. It is a difficult quantity to compute because it involves integrating over all
parameters and latent variables, which is usually such a high dimensional and compli-
cated integral that most simple approximations fail catastrophically.

In this paper we describe the use of variational methods to approximate the marginal
likelihood and posterior distributions of complex models. Variational methods, which
have been used extensively in Bayesian machine learning for several years, provide a
lower bound on the marginal likelihood which can be computed efficiently. In the next
subsections we review Bayesian approaches to learning model structure. In section 2 we
turn to describing variational methods applied to Bayesian learning, deriving the vari-
ational Bayesian EM algorithm and comparing it to the EM algorithm for maximum
a posteriori (MAP) estimation. In section 3, we focus on models in the conjugate-
exponential family and derive the basic results. Section 4 introduces the specific prob-
lem of learning the conditional independence structure of directed acyclic graphical
models with latent variables. We compare variational methods to BIC and annealed
importance sampling (AIS). We conclude with a discussion of other variational methods
in section 5, and areas for future work in the general area of learning model structure.

1.1. Bayesian Learning of Model Structure

We use the term “model structure” to denote a variety of things. (1) In probabilistic
graphical models, each graph implies a set of conditional independence statements be-
tween the variables in the graph. For example, in directed acyclic graphs (DAGs) if
two variables X and Y are d-separated by a third Z (see Pearl, 1988, for a definition),
then X and Y are conditionally independent given Z. The model structure learning
problem is inferring the conditional independence relationships that hold given a set of
(complete or incomplete) observations of the variables. (2) A special case of this prob-
lem is input variable selection in regression. Selecting which input (i.e. explanatory)
variables are needed to predict the output (i.e. response) variable in the regression
can be equivalently cast as deciding whether each input variable is a parent of the
output variable in the corresponding directed graph. (3) Many statistical models of
interest contain discrete nominal latent variables. A model structure learning problem
of interest is choosing the cardinality of the discrete latent variable. Examples of this
problem include deciding how many mixture components in a finite mixture model or
how many hidden states in a hidden Markov model. (4) Other statistical models con-
tain real-valued vectors of latent variables, making it necessary to do inference on the
dimensionality of the latent vector. Examples of this include choosing the instrinsic di-
mensionality in a probabilistic principal components analysis (PCA) or factor analysis
(FA) model or in a linear-Gaussian state-space model.

An obvious problem with maximum likelihood methods is that the likelihood func-
tion will generally be higher for more complex model structures, leading to overfitting.
Bayesian approaches overcome overfitting by treating the parameters θi from a model
mi (out of a set of models) as unknown random variables and averaging over the like-
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lihood one would obtain from different settings of θi:

p(y |mi) =

∫

p(y | θi, mi)p(θi |mi) dθi . (1)

p(y |mi) is the marginal likelihood1 for a data set y assuming model mi, where p(θ |mi)
is the prior distribution over parameters. Integrating out parameters penalises models
with more degrees of freedom since these models can a priori model a larger range of
data sets. This property of Bayesian integration has been called Ockham’s razor, since
it favors simpler explanations (models) for the data over complex ones (Jefferys and
Berger, 1992; MacKay, 1995).2 The overfitting problem is avoided simply because no
parameter in the pure Bayesian approach is actually fit to the data.

Given a prior distribution over model structures p(mi) and a prior distribution
over parameters for each model structure p(θ |mi), observing the data set y induces a
posterior distribution over models given by Bayes rule:

p(mi |y) =
p(mi)p(y |mi)

p(y)
, p(θ |y, mi) =

p(y | θ, mi)p(θ |mi)

p(y |mi)
. (2)

Our uncertainty over parameters is quantified by the posterior p(θ |y, mi). The density
at a new data point y is obtained by averaging over both the uncertainty in the model
structure and in the parameters, p(y |y) =

∑

mi

∫

p(y | θ, mi,y)p(θ |mi,y)p(mi |y) dθ,
which is the predictive distribution. Although in theory we should average over all
possible structures, in practice, constraints on storage and computation or ease of
interpretability may lead us to select a most probable model structure by maximising
p(mi |y). We focus on methods for computing probabilities over structures.

1.2. Practical Bayesian Approaches

For most models of interest it is computationally and analytically intractable to per-
form the integrals required for (1) and (2) exactly. Not only do these involve very
high dimensional integrals but for models with parameter symmetries (such as mixture
models) the integrand can have exponentially many well-separated modes. Focusing on
(1), we briefly outline several methods that have been used to approximate this integral
before turning to variational methods.

In the Bayesian statistics community Markov chain Monte Carlo (MCMC) is the
method of choice for approximating difficult high dimensional expectations and inte-
grals. While there are many MCMC methods which result asymptotically in samples
from the posterior distribution over parameters, for models with symmetries it is hard
to get mixing between modes, which can be crucial in obtaining valid estimates of the
marginal likelihood. Several methods that have been proposed for estimating marginal
likelihoods are the candidate method (Chib, 1995; and see Neal, 1998), bridge sam-
pling and path sampling (Gelman and Meng, 1998) and the closely related Annealed
Importance Sampling (Neal, 2001). For large-scale problems, sampling methods are
often not the method of choice because they can be slow and the posterior distribution

1In the machine learning community this is sometimes referred to as the evidence for model mi.
2However, it is important to keep in mind that a realistic model of the data might need to be complex.

It is therefore often advisable to use the most “complex” model for which it is possible to do inference,
ideally setting up priors that allow the limit of infinitely many parameters to be taken, rather than to
artificially limit the number of parameters in the model (Neal, 1996; Rasmussen and Ghahramani, 2001).
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over parameters is stored as a set of samples, which can be inefficient from a memory
standpoint. In this paper we chose Annealed Importance Sampling (AIS) as the gold
standard with respect to which we compare faster non-sampling based approximations.

Another approach to Bayesian integration is the Laplace approximation which makes
a local Gaussian approximation around a maximum a posteriori (MAP) parameter
estimate (Kass and Raftery, 1995; MacKay, 1995). This is based on the fact that in the
large data limit, given some regularity conditions, the posterior approaches a Gaussian
around the MAP estimate. However, for models with symmetries these regularity
conditions do not hold and the posterior can approach a mixture of exponentially
many Gaussians. The Gaussianity assumption can be inaccurate for small data sets (for
which, in principle, the advantages of Bayesian integration over MAP are largest). Local
Gaussian approximations are also poorly suited to bounded, constrained or positive
parameters such as the mixing proportions of a mixture model, so it is often advisable to
reparameterise to make Gaussianity reasonable. Finally, the Gaussian approximation
requires computing or approximating the determinant of the Hessian matrix at the
MAP estimate, which can be computationally costly, i.e. O(d3) for d parameters.

An even more drastic but much less costly approximation to the marginal likelihood
is given by the Bayesian Information Criterion (BIC; Schwarz, 1978) which can be
derived from the Laplace approximation by dropping all terms that do not scale with
the number of data points, n. For a model with d well-determined parameters, using
the MAP parameter estimate θ̂ the BIC approximation to the log marginal likelihood
is: ln p(y |mi) ≈ ln p(y | θ̂, mi) −

d
2
lnn.

2. MARGINAL LIKELIHOOD VIA A VARIATIONAL PRINCIPLE

We review how variational methods can be used to approximate the integrals required
for Bayesian learning. While examples of these methods have been used for several
years in the machine learning community they are less known to the Bayesian statistics
community. Moreover, here we present the general framework for a large family of
models, we investigate a novel application of the framework to scoring the structures
of discrete graphical models, and provide the first serious assessments of how tight the
variational bounds are and how well they compare to sampling methods. We focus on
models with latent or hidden variables, considering a general incomplete data setting.

2.1 Lower Bounding the Marginal Likelihood

Let y denote the observed variables, x denote the latent variables, and θ denote the
parameters. The log marginal likelihood of a data set y can be lower bounded by
introducing any distribution over both latent variables and parameters which has sup-
port where p(x, θ |y, m) does, and then appealing to Jensen’s inequality (due to the
concavity of the logarithm function):

ln p(y |m) = ln

∫

p(y,x, θ |m) dx dθ = ln

∫

q(x, θ)
p(y,x, θ |m)

q(x, θ)
dx dθ (3)

≥

∫

q(x, θ) ln
p(y,x, θ |m)

q(x, θ)
dx dθ. (4)

Maximising this lower bound with respect to the free distribution q(x, θ) results in
q(x, θ) = p(x, θ |y, m) which when substituted above turns the inequality into an equal-
ity. This does not simplify the problem since evaluating the true posterior distribution
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p(x, θ |y, m) requires knowing its normalising constant, the marginal likelihood. In-
stead we use a simpler, factorised approximation to q(x, θ) ≈ q

x
(x)qθ(θ):

ln p(y |m) ≥

∫

q
x
(x)qθ(θ) ln

p(y,x, θ |m)

q
x
(x)qθ(θ)

dx dθ = Fm(q
x
(x), qθ(θ),y). (5)

The quantity F is a functional of the free distributions q
x
(x) and qθ(θ).

2.2. Variational Bayesian EM

The variational Bayesian algorithm iteratively maximises F in equation (5) with respect
to the free distributions, q

x
(x) and qθ(θ). We use elementary calculus of variations to

take functional derivatives of the lower bound with respect q
x
(x) and qθ(θ), each while

holding the other fixed. This results in the following update equations where the
superscript (t) denotes the iteration number.

q(t+1)
x

(x) ∝ exp

[
∫

ln p(x,y | θ, m) q
(t)
θ

(θ) dθ

]

(6)

q
(t+1)
θ

(θ) ∝ p(θ |m) exp

[
∫

ln p(x,y | θ, m) q(t+1)
x

(x) dx

]

. (7)

Clearly qθ(θ) and q
xi

(xi) are coupled, so we iterate these equations until convergence.
Readers familiar with the EM algorithm (Dempster et al. , 1977) may note the simi-
larity between this iterative algorithm and EM. We call this procedure the Variational
Bayesian EM Algorithm for reasons which will become clearer in the following sections;
see also Attias (2000) and Ghahramani and Beal (2001).

Re-writing (5), it is easy to see that maximising F is equivalent to minimising the
KL divergence between q

x
(x) qθ(θ) and the joint posterior p(x, θ |y, m):

ln p(y |m)−Fm(q
x
(x), qθ(θ),y) =

∫

q
x
(x) qθ(θ) ln

q
x
(x) qθ(θ)

p(θ,x |y, m)
dx dθ = KL(q‖p) . (8)

Note that whilst this factorisation of the posterior distribution over latent variables
and parameters may seem drastic, one can think of it as replacing stochastic depen-
dencies between x and θ with deterministic dependencies between relevant moments of
the two sets of variables.

Variational methods for lower bounding probabilities have been explored by several
researchers in the past decade. Hinton and van Camp (1993) proposed an early ap-
proach for Bayesian learning of one-hidden layer neural networks using the restriction
that qθ(θ) is Gaussian. Neal and Hinton (1998) presented a generalisation of EM which
made use of Jensen’s inequality to allow partial E-steps. Jordan et al. (1998) review
variational methods in a general context. Variational Bayesian methods have been ap-
plied to various models with latent variables (Waterhouse et al. , 1995; MacKay, 1997;
Bishop, 1999; Attias, 2000; Ghahramani and Beal, 2000). The structural EM algo-
rithm for scoring discrete graphical models (Friedman, 1998) is closely related to the
variational method described here except that in (6) the distribution over θ is replaced
by the MAP estimate.
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3. CONJUGATE-EXPONENTIAL MODELS

We consider a particular class of graphical models with latent variables, which we call
conjugate-exponential (CE) models. We explicitly apply the variational method to these
parametric families, resulting in a simple generalisation of EM3. Conjugate-exponential
models satisfy two conditions:

Condition (1). The complete data likelihood is that of an exponential family:
p(x,y | θ) = f(x,y) g(θ) exp

{

φ(θ)T
u(x,y)

}

, where φ(θ) is the vector of natural pa-
rameters, and u and f and g are the functions that define the exponential family.

Condition (2). The parameter prior is conjugate to the complete data likelihood:
p(θ | η, ν) = h(η, ν) g(θ)η exp

{

φ(θ)T ν
}

, where η and ν are hyperparameters.

Theorem. (Conjugate-Exponential Models). Given an iid data set y =
{y1, . . .yn}, if the model satisfies conditions (1) and (2), then at every iteration of
the variational Bayesian EM algorithm and at the maxima of F(q

x
(x), qθ(θ),y):

(a) qθ(θ) is conjugate with parameters η̃ = η + n, ν̃ = ν +
∑n

i=1 u(yi):

qθ(θ) = h(η̃, ν̃)g(θ)η̃ exp
{

φ(θ)T ν̃
}

(9)

where u(yi) = Eqxi
(u(xi,yi)), using Eqxi

to denote expectation under the varia-
tional posterior over the latent variable(s) associated with the ith datum.

(b) q
x
(x) =

∏n

i=1 q
xi

(xi) with

q
xi

(xi) = p(xi |yi, φ) ∝ f(xi,yi) exp
{

φ
T
u(xi,yi)

}

(10)

where φ = Eqθ
(φ(θ)), the expectation of the natural parameter.

Proof. Substitute the parametric forms from the definition of the CE family into the
variational extrema given in (6) and (7), revealing forms for q

x
(x) and qθ(θ) according

to (10) and (9) respectively. For CE models these forms are then closed under itera-
tions of variational Bayesian EM, ensuring the Theorem continues to hold through to
convergence to a local maximum of the lower bound on the marginal likelihood.

3.1. Comparison of Variational Bayesian EM and EM for MAP estimation

It is instructive to compare (6) and (7) with the EM algorithm for MAP estimation.
We use an alternative derivation of EM due to Neal and Hinton (1998):

EM for MAP estimation Variational Bayesian EM

Goal: maximise p(θ |y, m) w.r.t. θ Goal: lower bound p(y |m)

E Step: compute VB-E Step: compute

q
(t+1)
x (x) = p(x |y, θ(t)) q

(t+1)
x (x) = p(x |y, φ

(t)
)

M Step: VB-M Step:

θ(t+1) =arg maxθ

∫

q
(t+1)
x (x) ln p(x,y,θ) dx q

(t+1)
θ

(θ) ∝ exp
[

∫

q
(t+1)
x (x) ln p(x,y,θ) dx

]

The Variational Bayesian EM algorithm reduces to the ordinary EM algorithm
if we restrict the parameter density to a point estimate (i.e. Dirac delta function),

3This section follows the exposition in Ghahramani and Beal (2001), which also includes several
general results for directed and undirected graphs.
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Figure 1. (left) The true structure used to generate the data—one of 136 possible distinct structures
accounting for permutations of latent variables. (right) Marginal likelihood estimates at n = 480 for
all structures using MAP, AIS, VB and BIC scores, plotted against the number of free parameters in the
structure (staggered for each number of parameters for clarity). The true structure has 50 parameters
(vertical line); the highest scoring structure for each method is shown with a bold symbol.

qθ(θ) = δ(θ − θ∗). The VB-E step has about the same time complexity as the E
step, and is in all ways identical except that it is re-written in terms of the expected
natural parameters, φ. In particular, we can make use of all relevant propagation
algorithms such as junction tree, Kalman smoothing, or belief propagation. The VB-M
step computes a distribution over parameters (in the conjugate family) rather than a
point estimate. Both algorithms monotonically increase an objective function.

4. VARIATIONAL SCORING OF MODEL STRUCTURES

We apply the variational method to the non-trivial problem of learning the conditional
independence structure of directed acyclic graphical models with latent variables. We
compare our VB bounds for the marginal likelihood to the standard method of scoring
graphs based on the Bayesian Information Criterion (BIC; Schwarz, 1978), and also to
a sampling-based gold standard: Annealed Importance Sampling (AIS; Neal, 2001).

We consider a small graph consisting of six discrete variables: two binary-valued
latent (hidden) variables and four observed variables each of cardinality five. We restrict
ourselves to all bipartite structures in which latent variables are parents of the observed
variables. We are interested in how successful different scoring methods are at learning
from data the true graph structure (i.e. which latent variables are parents of which
observed variables). Since all variables are discrete, by placing independent Dirichlet
priors on all parameters the model becomes conjugate-exponential.

Data was generated from the graph shown in Figure 1; we call this the “true”
structure. We instantiated a setting of this graph’s parameters under the prior (once
only), and generated incrementally larger data sets from the model.4 We chose this
particular structure because it contains enough links to induce non-trivial correlations
amongst the observed variables, whilst it has few enough nodes that we can exhaustively
evaluate the marginal likelihood of all possible alternative structures.5

4Experiments averaging results over multiple true structures and parameter settings would have been
prohibitive as our sampling runs took over 300 CPU hours.

5Exhaustive enumeration is of academic interest only—in practice one would embed different structure
scoring methods in a greedy model search outer loop (Friedman, 1998) to find probable structures.
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Figure 2. (left) Rank given to the true structure by each scoring method for varying data set sizes
(higher in plot is better). (right) AIS estimates of the marginal likelihood for n = 480, for different
initial conditions of the sampler against different duration annealing schedules (∗ indicates setting initial
parameters to true values). Shown are also the BIC score (dashed) and the VB lower bound (solid).

4.1. Annealed Importance Sampling (AIS)

We estimate Z1 ≡
∫

p(θ |m)p(y | θ, m) dθ by computing Z1

Z0
=

Zτ(1)

Zτ(0)

Zτ(2)

Zτ(1)
. . .

Zτ(T )

Zτ(T−1)
where

0 = τ(0) ≤ τ(1) . . . ≤ τ(T ) = 1, and Zτ ≡
∫

p(θ |m)p(y | θ, m)τdθ. The sequence

τ(0) . . . τ(T ) is an annealing schedule of inverse temperatures. Each ratio
Zτ(t)

Zτ(t−1)
is

estimated by running a Metropolis sampler for θ(i) ∼ p(θ |m)p(y | θ, m)τ(t−1)/Zτ(t−1),

and computing the importance estimate: 1
N

∑

i p(y | θ(i), m)τ(t)−τ(t−1). This estimate of
Zτ(t)

Zτ(t−1)
is unbiased if each step is sampled from equilibrium; we approximate this by

taking one sample at each τ and changing τ very slowly.

4.2. Experiments

Scoring all possible structures with MAP, BIC, VB, and AIS. There are 136
distinct structures with the basic architecture described above. For a large range of
data set sizes, we ran EM on each structure to compute the MAP estimate of the param-
eters, and from it computed the BIC score. We also ran the variational Bayesian EM
algorithm with the same initial conditions to obtain the lower bound on the marginal
likelihood. Finally we estimated the marginal likelihood using AIS, annealing from the
prior to the posterior in 16384 steps, with a nonlinear annealing schedule in τ tuned to
reduce the variance in the estimate, and a Metropolis proposal tuned to give reasonable
acceptance rates. In Figure 1 we have shown the MAP, AIS, VB and BIC scores for
each structure, ordered by number of parameters, for 480 data points. This data set
size was chosen as it was the smallest in which both VB and AIS gave the highest score
to the true structure. We can see the general upward trend for MAP, which prefers
more complex structures and the general downward trend for BIC which (over)penalises
complexity. AIS lies above the VB lower bound for all structures as we would expect.
At 480 data points VB appears to be close to AIS and finds the correct structure.

Rank of the True Model. Figure 2 shows the rank out of 136 given by each scoring
method to the true structure for 20 data set sizes. All methods eventually find the
correct structure, although the AIS rank is noisy, which may be due to annealing too
rapidly (we examine the effect of annealing time on AIS below). BIC finds it at 1120
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data points, while VB does so after 480; moreover the true structure is almost always
ranked better by VB than BIC. Especially for small amounts of data, AIS outperforms
both VB and BIC; nevertheless it finds the true structure only after 480 data points.

Performance of AIS with Sampling Time. We ran AIS on the 480 point data
set for varying duration annealing schedules, ranging from 64 samples to over 260,000.
Figure 2 (right) shows annealing runs starting at 10 random initial parameters sampled
from the prior, and also at one starting from the true parameters that generated the
data (marked with a ∗); also shown are the BIC and VB scores. We see that all runs
converge for sufficiently long annealing schedules. It takes roughly 1000 samples to
approach the BIC score and about 5000 to pass the VB lower bound.

Computation Time. Scoring all 136 structures at 480 data points on a 1GHz Pentium
III processor took: 200 seconds with BIC, 575 seconds with VB, and 55000 seconds (15
hours) with AIS (using 16384 samples as in the main experiments). Referring back to
Figure 2 (left), we can infer that in this example, not only was VB about 100 times
faster than AIS, but it also locked on to the true structure more reliably than AIS.

5. CONCLUSIONS AND EVOLVING DIRECTIONS FOR STRUCTURE SCORING

This paper has presented the variational lower bound method for handling intractable
marginal likelihoods. A promising future direction is to explore the Bethe and Kikuchi
family of variational methods (Yedidia et al. , 2001) which may be more accurate but
do not provide the assurance of being a bound. These re-express the negative log
marginal likelihood as a “free energy” from statistical physics, and then approximate
the entropy of the posterior distribution over latent variables and parameters neglecting
high order terms. There are several procedures for minimising the Bethe free energy
as a functional of the approximate posterior distribution to obtain estimates of the
marginal likelihood. Interestingly, the belief propagation algorithm, even when run on
multiply-connected graphs (i.e. ‘loopy’ graphs), has fixed points at the stationary points
of the Bethe free energy. While belief propagation on loopy graphs is not guaranteed
to converge, it often works well in practice, and has become the standard approach to
decoding state-of-the-art error-correcting codes.

We have also explored approximations to the marginal likelihood based on the
Cheeseman-Stutz score as outlined in Chickering and Heckerman (1996), and correc-
tions to the BIC criterion as outlined in Geiger et al. (1996). Results on these, and
suggestions for how they can be combined with variational methods are reported in
Beal (2003). A reasonable comparison should take into account the tradeoff between
accuracy and computational complexity. We found in this paper that the VB lower
bound on the marginal likelihood is a good criterion for model selection which can be
computed orders of magnitude more quickly than sampling-based criteria. We have
had similar experiences on the usefulness of VB for model selection in a variety of other
models, and we note that the VB framework can be readily applied to all conjugate-
exponential models with incomplete data, including e.g., graphical Gaussian models.
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