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Abstract
The Indian buffet process is a stochastic process defining a probability distribution over equiva-
lence classes of sparse binary matrices with a finite number of rows and an unbounded number of
columns. This distribution is suitable for use as a prior in probabilistic models that represent objects
using a potentially infinite array of features, or that involve bipartite graphs in which the size of at
least one class of nodes is unknown. We give a detailed derivation of this distribution, and illustrate
its use as a prior in an infinite latent feature model. We then review recent applications of the Indian
buffet process in machine learning, discuss its extensions, and summarize its connections to other
stochastic processes.

Keywords: nonparametric Bayes, Markov chain Monte Carlo, latent variable models, Chinese
restaurant processes, beta process, exchangeable distributions, sparse binary matrices

1. Introduction

Unsupervised learning aims to recover the latent structure responsible for generating observed data.
One of the key problems faced by unsupervised learning algorithms is thus determining the amount
of latent structure—the number of clusters, dimensions, or variables—needed to account for the
regularities expressed in the data. Often, this is treated as a model selection problem, choosing
the model with the dimensionality that results in the best performance. This treatment of the prob-
lem assumes that there is a single, finite-dimensional representation that correctly characterizes the
properties of the observed objects. An alternative is to assume that the amount of latent structure is
actually potentially unbounded, and that the observed objects only manifesta sparse subset of those
classes or features (Rasmussen and Ghahramani, 2001).

The assumption that the observed data manifest a subset of an unbounded amount of latent
structure is often used in nonparametric Bayesian statistics, and has recently become increasingly
popular in machine learning. In particular, this assumption is made in Dirichlet process mixture
models, which are used for nonparametric density estimation (Antoniak, 1974; Escobar and West,
1995; Ferguson, 1983; Neal, 2000). Under one interpretation of a Dirichlet process mixture model,
each datapoint is assigned to a latent class, and each class is associated with a distribution over
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observable properties. The prior distribution over assignments of datapoints to classes is specified
in such a way that the number of classes used by the model is bounded only by the number of
objects, making Dirichlet process mixture models “infinite” mixture models (Rasmussen, 2000).

Recent work has extended Dirichlet process mixture models in a number of directions, making
it possible to use nonparametric Bayesian methods to discover the kinds of structure common in
machine learning: hierarchies (Blei et al., 2004; Heller and Ghahramani, 2005; Neal, 2003; Teh
et al., 2008), topics and syntactic classes (Teh et al., 2004) and the objects appearing in images
(Sudderth et al., 2006). However, the fact that all of these models are based upon the Dirichlet
process limits the kinds of latent structure that they can express. In many ofthese models, each
object described in a data set is associated with a latent variable that picks out a single class or
parameter responsible for generating that datapoint. In contrast, many models used in unsupervised
learning represent each object as having multiple features or being produced by multiple causes.
For instance, we could choose to represent each object with a binary vector, with entries indicating
the presence or absence of each feature (e.g., Ueda and Saito, 2003), allow each feature to take on
a continuous value, representing datapoints with locations in a latent space (e.g., Jolliffe, 1986), or
define a factorial model, in which each feature takes on one of a discrete set of values (e.g., Zemel
and Hinton, 1994; Ghahramani, 1995). Infinite versions of these models are difficult to define using
the Dirichlet process.

In this paper, we summarize recent work exploring the extension of this nonparametric approach
to models in which objects are represented using an unknown number of latent features. Following
Griffiths and Ghahramani (2005, 2006), we provide a detailed derivation of a distribution that can be
used to define probabilistic models that represent objects with infinitely many binary features, and
can be combined with priors on feature values to produce factorial and continuous representations.
This distribution can be specified in terms of a simple stochastic process called the Indian buffet
process, by analogy to theChinese restaurant processused in Dirichlet process mixture models. We
illustrate how the Indian buffet process can be used to specify prior distributions in latent feature
models, using a simple linear-Gaussian model to show how such models can be defined and used.

The Indian buffet process can also be used to define a prior distribution inany setting where the
latent structure expressed in data can be expressed in the form of a binary matrix with a finite number
of rows and infinite number of columns, such as the adjacency matrix of a bipartite graph where one
class of nodes is of unknown size, or the adjacency matrix for a Markov process with an unbounded
set of states. As a consequence, this approach has found a number ofrecent applications within
machine learning. We review these applications, summarizing some of the innovations that have
been introduced in order to use the Indian buffet process in differentsettings, as well as extensions
to the basic model and alternative inference algorithms. We also describe some of the interesting
connections to other stochastic processes that have been identified. As for the Chinese restaurant
process, we can arrive at the Indian buffet process in a number of different ways: as the infinite limit
of a finite model, via the constructive specification of an infinite model, or by marginalizing out an
underlying measure. Each perspective provides different intuitions, and suggests different avenues
for designing inference algorithms and generalizations.

The plan of the paper is as follows. Section 2 summarizes the principles behindinfinite mixture
models, focusing on the prior on class assignments assumed in these models, which can be defined in
terms of a simple stochastic process—the Chinese restaurant process. Wethen develop a distribution
on infinite binary matrices by considering how this approach can be extended to the case where
objects are represented with multiple binary features. Section 3 discusses the role of a such a
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distribution in defining infinite latent feature models. Section 4 derives the distribution, making use
of the Indian buffet process. Section 5 illustrates how this distribution can be used as a prior in a
nonparametric Bayesian model, defining an infinite-dimensional linear-Gaussian model, deriving a
sampling algorithm for inference in this model, and applying it to two simple data sets. Section 6
describes further applications of this approach, both in latent feature models and for inferring graph
structures, and Section 7 discusses recent work extending the Indian buffet process and providing
connections to other stochastic processes. Section 8 presents conclusions and directions for future
work.

2. Latent Class Models

Assume we haveN objects, with theith object havingD observable properties represented by a row
vectorxi . In a latent class model, such as a mixture model, each object is assumed to belong to
a single class,ci , and the propertiesxi are generated from a distribution determined by that class.
Using the matrixX =

[

xT
1 xT

2 · · · xT
N

]T
to indicate the properties of allN objects, and the vectorc=

[c1 c2 · · · cN]
T to indicate their class assignments, the model is specified by a prior over assignment

vectorsP(c), and a distribution over property matrices conditioned on those assignments,p(X|c).1

These two distributions can be dealt with separately:P(c) specifies the number of classes and their
relative probability, whilep(X|c) determines how these classes relate to the properties of objects.
In this section, we will focus on the prior over assignment vectors,P(c), showing how such a prior
can be defined without placing an upper bound on the number of classes.

2.1 Finite Mixture Models

Mixture models assume that the assignment of an object to a class is independent of the assignments
of all other objects. If there areK classes, we have

P(c|θ) =
N

∏
i=1

P(ci |θ) =
N

∏
i=1

θci ,

whereθ is a multinomial distribution over those classes, andθk is the probability of classk under
that distribution. Under this assumption, the probability of the properties of allN objectsX can be
written as

p(X|θ) =
N

∏
i=1

K

∑
k=1

p(xi |ci = k)θk. (1)

The distribution from which eachxi is generated is thus amixture of the K class distributions
p(xi |ci = k), with θk determining the weight of classk.

The mixture weightsθ can be treated as a parameter to be estimated. In Bayesian approaches
to mixture modeling,θ is assumed to follow a prior distributionp(θ), with a standard choice being
a symmetric Dirichlet distribution. The Dirichlet distribution on multinomials overK classes has
parametersα1,α2, . . . ,αK , and is conjugate to the multinomial (e.g., Bernardo and Smith, 1994).

1. We will useP(·) to indicate probability mass functions, andp(·) to indicate probability density functions. We will
assume thatxi ∈ R

D, andp(X|c) is thus a density, although variants of the models we discuss also exist for discrete
data.
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The probability density for the parameterθ of a multinomial distribution is given by

p(θ) = ∏K
k=1 θαk−1

k

D(α1,α2, . . . ,αK)
,

in whichD(α1,α2, . . . ,αK) is the Dirichlet normalizing constant

D(α1,α2, . . . ,αK) =
∫

∆K

K

∏
k=1

θαk−1
k dθ

=
∏K

k=1 Γ(αk)

Γ(∑K
k=1 αk)

, (2)

where∆K is the simplex of multinomials overK classes, andΓ(·) is the gamma, or generalized
factorial, function, withΓ(m) = (m−1)! for any non-negative integerm. In asymmetricDirichlet
distribution, allαk are equal. For example, we could takeαk =

α
K for all k. In this case, Equation 2

becomes

D( α
K ,

α
K , . . . ,

α
K ) =

Γ( α
K )

K

Γ(α)
,

and the mean ofθ is the multinomial that is uniform over all classes.
The probability model that we have defined is

θ |α ∼ Dirichlet( α
K ,

α
K , . . . ,

α
K ),

ci |θ ∼ Discrete(θ)

where Discrete(θ) is the multiple-outcome analogue of a Bernoulli event, where the probabilities
of the outcomes are specified byθ (i.e., P(ci = k|θ) = θk). The dependencies among variables in
this model are shown in Figure 1. Having defined a prior onθ, we can simplify this model by
integrating over all values ofθ rather than representing them explicitly. The marginal probability of
an assignment vectorc, integrating over all values ofθ, is

P(c) =
∫

∆K

n

∏
i=1

P(ci |θ) p(θ)dθ

=
∫

∆K

∏K
k=1 θmk+α/K−1

k

D( α
K ,

α
K , . . . ,

α
K )

dθ

=
D(m1+

α
K ,m2+

α
K , . . . ,mk+

α
K )

D( α
K ,

α
K , . . . ,

α
K )

=
∏K

k=1 Γ(mk+
α
K )

Γ( α
K )

K

Γ(α)
Γ(N+α)

, (3)

wheremk = ∑N
i=1 δ(ci = k) is the number of objects assigned to classk. The tractability of this

integral is a result of the fact that the Dirichlet is conjugate to the multinomial.
Equation 3 defines a joint probability distribution for all class assignmentsc in which individual

class assignments are not independent. Rather, they areexchangeable(Bernardo and Smith, 1994),
with the probability of an assignment vector remaining the same when the indices of the objects are
permuted. Exchangeability is a desirable property in a distribution over classassignments, because
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θ ziα
N

Figure 1: Graphical model for the Dirichlet-multinomial model used in defining the Chinese restau-
rant process. Nodes are variables, arrows indicate dependencies,and plates (Buntine,
1994) indicate replicated structures.

we have no special knowledge about the objects that would justify treating them differently from
one another. However, the distribution on assignment vectors defined byEquation 3 assumes an
upper bound on the number of classes of objects, since it only allows assignments of objects to up
to K classes.

2.2 Infinite Mixture Models

Intuitively, defining an infinite mixture model means that we want to specify the probability ofX in
terms of infinitely many classes, modifying Equation 1 to become

p(X|θ) =
N

∏
i=1

∞

∑
k=1

p(xi |ci = k)θk,

whereθ is an infinite-dimensional multinomial distribution. In order to repeat the argument above,
we would need to define a prior,p(θ), on infinite-dimensional multinomials, and compute the prob-
ability of c by integrating overθ. This is essentially the strategy that is taken in deriving infinite
mixture models from the Dirichlet process (Antoniak, 1974; Ferguson, 1983; Ishwaran and James,
2001; Sethuraman, 1994). Instead, we will work directly with the distributionover assignment
vectors given in Equation 3, considering its limit as the number of classes approaches infinity (cf.,
Green and Richardson, 2001; Neal, 1992, 2000).

Expanding the gamma functions in Equation 3 using the recursionΓ(x) = (x−1)Γ(x−1) and
cancelling terms produces the following expression for the probability of anassignment vectorc:

P(c) =
(α

K

)K+

(

K+

∏
k=1

mk−1

∏
j=1

( j + α
K )

)

Γ(α)
Γ(N+α)

, (4)

whereK+ is the number of classes for whichmk > 0, and we have re-ordered the indices such that
mk > 0 for all k ≤ K+. There areKN possible values forc, which diverges asK → ∞. As this
happens, the probability of any single set of class assignments goes to 0. SinceK+ ≤ N andN is
finite, it is clear thatP(c)→ 0 asK → ∞, since 1

K → 0. Consequently, we will define a distribution
over equivalence classes of assignment vectors, rather than the vectors themselves.

Specifically, we will define a distribution onpartitions of objects. In our setting, a partition
is a division of the set ofN objects into subsets, where each object belongs to a single subset
and the ordering of the subsets does not matter. Two assignment vectors that result in the same
division of objects correspond to the same partition. For example, if we had three objects, the class
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assignments{c1,c2,c3}= {1,1,2} would correspond to the same partition as{2,2,1}, since all that
differs between these two cases is the labels of the classes. A partition thus defines an equivalence
class of assignment vectors, which we denote[c], with two assignment vectors belonging to the same
equivalence class if they correspond to the same partition. A distribution over partitions is sufficient
to allow us to define an infinite mixture model, provided the prior distribution on the parameters is
the same for all classes. In this case, these equivalence classes of class assignments are the same as
those induced by identifiability:p(X|c) is the same for all assignment vectorsc that correspond to
the same partition, so we can apply statistical inference at the level of partitions rather than the level
of assignment vectors.

Assume we have a partition ofN objects intoK+ subsets, and we haveK = K0 +K+ class
labels that can be applied to those subsets. Then there areK!

K0! assignment vectorsc that belong to
the equivalence class defined by that partition,[c]. We can define a probability distribution over
partitions by summing over all class assignments that belong to the equivalenceclass defined by
each partition. The probability of each of those class assignments is equal under the distribution
specified by Equation 4, so we obtain

P([c]) = ∑
c∈[c]

P(c)

=
K!
K0!

(α
K

)K+

(

K+

∏
k=1

mk−1

∏
j=1

( j + α
K )

)

Γ(α)
Γ(N+α)

.

Rearranging the first two terms, we can compute the limit of the probability of a partition asK → ∞,
which is

lim
K→∞

αK+ ·
K!

K0! KK+
·

(

K+

∏
k=1

mk−1

∏
j=1

( j + α
K )

)

·
Γ(α)

Γ(N+α)

= αK+ · 1 ·

(

K+

∏
k=1

(mk−1)!

)

·
Γ(α)

Γ(N+α)
. (5)

The details of the steps taken in computing this limit are given in Appendix A. These limiting
probabilities define a valid distribution over partitions, and thus over equivalence classes of class
assignments, providing a prior over class assignments for an infinite mixture model. Objects are
exchangeable under this distribution, just as in the finite case: the probabilityof a partition is not
affected by the ordering of the objects, since it depends only on the counts mk.

As noted above, the distribution over partitions specified by Equation 5 can be derived in a vari-
ety of ways—by taking limits (Green and Richardson, 2001; Neal, 1992, 2000), from the Dirichlet
process (Blackwell and MacQueen, 1973), or from other equivalent stochastic processes (Ishwaran
and James, 2001; Sethuraman, 1994). We will briefly discuss a simple process that produces the
same distribution over partitions: the Chinese restaurant process.

2.3 The Chinese Restaurant Process

The Chinese restaurant process (CRP) was named by Jim Pitman and Lester Dubins, based upon
a metaphor in which the objects are customers in a restaurant, and the classesare the tables at
which they sit (the process first appears in Aldous 1985, where it is attributed to Pitman, although
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Figure 2: A partition induced by the Chinese restaurant process. Numbers indicate customers (ob-
jects), circles indicate tables (classes).

it is identical to the extended Polya urn scheme introduced by Blackwell and MacQueen 1973).
Imagine a restaurant with an infinite number of tables, each with an infinite number of seats.2 The
customers enter the restaurant one after another, and each choose a table at random. In the CRP
with parameterα, each customer chooses an occupied table with probability proportional to the
number of occupants, and chooses the next vacant table with probability proportional toα. For
example, Figure 2 shows the state of a restaurant after 10 customers havechosen tables using this
procedure. The first customer chooses the first table with probabilityα

α = 1. The second customer
chooses the first table with probability11+α , and the second table with probabilityα1+α . After the
second customer chooses the second table, the third customer chooses thefirst table with probability

1
2+α , the second table with probability1

2+α , and the third table with probabilityα
2+α . This process

continues until all customers have seats, defining a distribution over allocations of people to tables,
and, more generally, objects to classes. Extensions of the CRP and connections to other stochastic
processes are pursued in depth by Pitman (2002).

The distribution over partitions induced by the CRP is the same as that given in Equation 5. If
we assume an ordering on ourN objects, then we can assign them to classes sequentially using the
method specified by the CRP, letting objects play the role of customers and classes play the role of
tables. Theith object would be assigned to thekth class with probability

P(ci = k|c1,c2, . . . ,ci−1) =

{ mk
i−1+α k≤ K+

α
i−1+α k= K+1

wheremk is the number of objects currently assigned to classk, andK+ is the number of classes for
which mk > 0. If all N objects are assigned to classes via this process, the probability of a partition
of objectsc is that given in Equation 5. The CRP thus provides an intuitive means of specifying a
prior for infinite mixture models, as well as revealing that there is a simple sequential process by
which exchangeable class assignments can be generated.

2.4 Inference by Gibbs Sampling

Inference in an infinite mixture model is only slightly more complicated than inference in a mixture
model with a finite, fixed number of classes. The standard algorithm used for inference in infinite
mixture models is Gibbs sampling (Bush and MacEachern, 1996; Neal, 2000). Gibbs sampling

2. Pitman and Dubins, both statisticians at the University of California, Berkeley, were inspired by the apparently infinite
capacity of Chinese restaurants in San Francisco when they named the process.
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is a Markov chain Monte Carlo (MCMC) method, in which variables are successively sampled
from their distributions when conditioned on the current values of all othervariables (Geman and
Geman, 1984). This process defines a Markov chain, which ultimately converges to the distribution
of interest (see Gilks et al., 1996). Recent work has also explored variational inference algorithms
for these models (Blei and Jordan, 2006), a topic we will return to later in thepaper.

Implementing a Gibbs sampler requires deriving the full conditional distributionfor all variables
to be sampled. In a mixture model, these variables are the class assignmentsc. The relevant full
conditional distribution isP(ci |c−i ,X), the probability distribution overci conditioned on the class
assignments of all other objects,c−i , and the data,X. By applying Bayes’ rule, this distribution can
be expressed as

P(ci = k|c−i ,X) ∝ p(X|c)P(ci = k|c−i),

where only the second term on the right hand side depends upon the distribution over class assign-
ments,P(c). Here we assume that the parameters associated with each class can be integrated out,
so we that the probability of the data depends only on the class assignment. This is possible when a
conjugate prior is used on these parameters. For details, and alternative algorithms that can be used
when this assumption is violated, see Neal (2000).

In a finite mixture model withP(c) defined as in Equation 3, we can computeP(ci = k|c−i) by
integrating overθ, obtaining

P(ci = k|c−i) =
∫

P(ci = k|θ)p(θ|c−i)dθ

=
m−i,k+

α
K

N−1+α
, (6)

wherem−i,k is the number of objects assigned to classk, not including objecti. This is the posterior
predictive distribution for a multinomial distribution with a Dirichlet prior.

In an infinite mixture model with a distribution over class assignments defined as inEquation 5,
we can use exchangeability to find the full conditional distribution. Since it is exchangeable,P([c])
is unaffected by the ordering of objects. Thus, we can choose an ordering in which theith object
is the last to be assigned to a class. It follows directly from the definition of theChinese restaurant
process that

P(ci = k|c−i) =







m−i,k

N−1+α m−i,k > 0
α

N−1+α k= K−i,++1
0 otherwise

(7)

whereK−i,+ is the number of classes for whichm−i,k > 0. The same result can be found by taking
the limit of the full conditional distribution in the finite model, given by Equation 6 (Neal, 2000).

When combined with some choice ofp(X|c), Equations 6 and 7 are sufficient to define Gibbs
samplers for finite and infinite mixture models respectively. Demonstrations of Gibbs sampling
in infinite mixture models are provided by Neal (2000) and Rasmussen (2000). Similar MCMC
algorithms are presented in Bush and MacEachern (1996), West et al. (1994), Escobar and West
(1995) and Ishwaran and James (2001). Algorithms that go beyond the local changes in class
assignments allowed by a Gibbs sampler are given by Jain and Neal (2004)and Dahl (2003).

2.5 Summary

Our review of infinite mixture models serves three purposes: it shows that infinite statistical models
can be defined by specifying priors over infinite combinatorial objects; it illustrates how these priors
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can be derived by taking the limit of priors for finite models; and it demonstrates that inference in
these models can remain possible, despite the large hypothesis spaces they imply. However, infinite
mixture models are still fundamentally limited in their representation of objects, assuming that each
object can only belong to a single class. In the next two sections, we use theinsights underlying
infinite mixture models to derive methods for representing objects in terms of infinitely many latent
features, leading us to derive a distribution on infinite binary matrices.

3. Latent Feature Models

In a latent feature model, each object is represented by a vector of latentfeature valuesf i , and the
propertiesxi are generated from a distribution determined by those latent feature values. Latent fea-
ture values can be continuous, as in factor analysis (Roweis and Ghahramani, 1999) and probabilis-
tic principal component analysis (PCA; Tipping and Bishop, 1999), or discrete, as in cooperative
vector quantization (CVQ; Zemel and Hinton, 1994; Ghahramani, 1995). In the remainder of this
section, we will assume that feature values are continuous. Using the matrixF =

[

fT
1 fT

2 · · · fT
N

]T
to

indicate the latent feature values for allN objects, the model is specified by a prior over features,
p(F), and a distribution over observed property matrices conditioned on those features,p(X|F). As
with latent class models, these distributions can be dealt with separately:p(F) specifies the number
of features, their probability, and the distribution over values associated with each feature, while
p(X|F) determines how these features relate to the properties of objects. Our focus will be onp(F),
showing how such a prior can be defined without placing an upper boundon the number of features.

We can break the matrixF into two components: a binary matrixZ indicating which features
are possessed by each object, withzik = 1 if object i has featurek and 0 otherwise, and a second
matrixV indicating the value of each feature for each object.F can be expressed as the elementwise
(Hadamard) product ofZ andV, F=Z⊗V, as illustrated in Figure 3. In many latent feature models,
such as PCA and CVQ, objects have non-zero values on every feature, and every entry ofZ is 1. In
sparselatent feature models (e.g., sparse PCA; d’Aspremont et al., 2004; Jolliffe and Uddin, 2003;
Zou et al., 2006) only a subset of features take on non-zero values for each object, andZ picks out
these subsets.

A prior onF can be defined by specifying priors forZ andV separately, withp(F) =P(Z)p(V).
We will focus on defining a prior onZ, since the effective dimensionality of a latent feature model is
determined byZ. Assuming thatZ is sparse, we can define a prior for infinite latent feature models
by defining a distribution over infinite binary matrices. Our analysis of latent class models provides
two desiderata for such a distribution: objects should be exchangeable, and inference should be
tractable. It also suggests a method by which these desiderata can be satisfied: start with a model
that assumes a finite number of features, and consider the limit as the number of features approaches
infinity.

4. A Distribution on Infinite Sparse Binary Matrices

In this section, we derive a distribution on infinite binary matrices by starting witha simple model
that assumesK features, and then taking the limit asK → ∞. The resulting distribution corresponds
to a simple generative process, which we term the Indian buffet process.
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Figure 3: Feature matrices. A binary matrixZ, as shown in (a), can be used as the basis for sparse
infinite latent feature models, indicating which features take non-zero values. Element-
wise multiplication ofZ by a matrixV of continuous values gives a representation like
that shown in (b). IfV contains discrete values, we obtain a representation like that shown
in (c).

4.1 A Finite Feature Model

We haveN objects andK features, and the possession of featurek by object i is indicated by a
binary variablezik. Each object can possess multiple features. Thezik thus form a binaryN×K
feature matrix,Z. We will assume that each object possesses featurek with probabilityπk, and that
the features are generated independently. In contrast to the class modelsdiscussed above, for which
∑k θk = 1, the probabilitiesπk can each take on any value in[0,1]. Under this model, the probability
of a matrixZ givenπ = {π1,π2, . . . ,πK}, is

P(Z|π) =
K

∏
k=1

N

∏
i=1

P(zik|πk) =
K

∏
k=1

πmk
k (1−πk)

N−mk,

wheremk = ∑N
i=1zik is the number of objects possessing featurek.

We can define a prior onπ by assuming that eachπk follows a beta distribution. The beta
distribution has parametersr ands, and is conjugate to the binomial. The probability of anyπk

under the Beta(r,s) distribution is given by

p(πk) =
πr−1

k (1−πk)
s−1

B(r,s)
,

whereB(r,s) is the beta function,

B(r,s) =
∫ 1

0
πr−1

k (1−πk)
s−1dπk

=
Γ(r)Γ(s)
Γ(r +s)

. (8)

We will taker = α
K ands= 1, so Equation 8 becomes

B( α
K ,1) =

Γ( α
K )

Γ(1+ α
K )

= K
α ,
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zikπkα
N

K

Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.

exploiting the recursive definition of the gamma function.3

The probability model we have defined is

πk |α ∼ Beta( α
K ,1),

zik |πk ∼ Bernoulli(πk). (9)

Eachzik is independent of all other assignments, conditioned onπk, and theπk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior onπ, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binarymatrixZ is

P(Z) =
K

∏
k=1

∫ ( N

∏
i=1

P(zik|πk)

)

p(πk)dπk

=
K

∏
k=1

B(mk+
α
K ,N−mk+1)

B( α
K ,1)

=
K

∏
k=1

α
K Γ(mk+

α
K )Γ(N−mk+1)

Γ(N+1+ α
K )

. (10)

Again, the result follows from conjugacy, this time between the binomial and beta distributions.
This distribution is exchangeable, depending only on the countsmk.

This model has the important property that the expectation of the number of non-zero entries
in the matrixZ, E

[

1TZ1
]

= E [∑ik zik], has an upper bound that is independent ofK. Since each
column of Z is independent, the expectation isK times the expectation of the sum of a single
column,E

[

1Tzk
]

. This expectation is easily computed,

E
[

1Tzk
]

=
N

∑
i=1

E(zik) =
N

∑
i=1

∫ 1

0
πkp(πk) dπk = N

α
K

1+ α
K

, (11)

where the result follows from the fact that the expectation of a Beta(r,s) random variable is r
r+s.

Consequently,E
[

1TZ1
]

= KE
[

1Tzk
]

= Nα
1+ α

K
. For finiteK, the expectation of the number of entries

in Z is bounded above byNα.

3. The motivation for choosingr = α
K will be clear when we take the limitK → ∞ in Section 4.3, while the choice of

s= 1 will be relaxed in Section 7.1.
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lof

Figure 5: Binary matrices and the left-ordered form. The binary matrix on theleft is transformed
into the left-ordered binary matrix on the right by the functionlo f (·). This left-ordered
matrix was generated from the exchangeable Indian buffet process withα = 10. Empty
columns are omitted from both matrices.

4.2 Equivalence Classes

In order to find the limit of the distribution specified by Equation 10 asK → ∞, we need to define
equivalence classes of binary matrices—the analogue of partitions for assignment vectors. Identi-
fying these equivalence classes makes it easier to be precise about the objects over which we are
defining probability distributions, but the reader who is satisfied with the intuitive idea of taking the
limit as K → ∞ can safely skip the technical details presented in this section.

Our equivalence classes will be defined with respect to a function on binary matrices,lo f (·).
This function maps binary matrices toleft-orderedbinary matrices.lo f (Z) is obtained by order-
ing the columns of the binary matrixZ from left to right by the magnitude of the binary number
expressed by that column, taking the first row as the most significant bit. The left-ordering of a
binary matrix is shown in Figure 5. In the first row of the left-ordered matrix,the columns for which
z1k = 1 are grouped at the left. In the second row, the columns for whichz2k = 1 are grouped at the
left of the sets for whichz1k = 1. This grouping structure persists throughout the matrix.

Considering the process of placing a binary matrix in left-ordered form motivates the defini-
tion of a further technical term. Thehistoryof featurek at objecti is defined to be(z1k, . . . ,z(i−1)k).
Where no object is specified, we will usehistoryto refer to the full history of featurek, (z1k, . . . ,zNk).
We will individuate the histories of features using the decimal equivalent ofthe binary numbers cor-
responding to the column entries. For example, at object 3, features can have one of four histories:
0, corresponding to a feature with no previous assignments, 1, being a feature for whichz2k = 1
but z1k = 0, 2, being a feature for whichz1k = 1 but z2k = 0, and 3, being a feature possessed by
both previous objects were assigned.Kh will denote the number of features possessing the history
h, with K0 being the number of features for whichmk = 0 andK+ = ∑2N−1

h=1 Kh being the number of
features for whichmk > 0, soK = K0+K+. The functionlo f thus places the columns of a matrix
in ascending order of their histories.

lo f (·) is a many-to-one function: many binary matrices reduce to the same left-ordered form,
and there is a unique left-ordered form for every binary matrix. We can thus uselo f (·) to define a
set of equivalence classes. Any two binary matricesY andZ arelo f -equivalent iflo f (Y) = lo f (Z),
that is, ifY andZ map to the same left-ordered form. Thelo f -equivalence class of a binary matrix
Z, denoted[Z], is the set of binary matrices that arelo f -equivalent toZ. lo f -equivalence classes
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are preserved through permutation of either the rows or the columns of a matrix, provided the same
permutations are applied to the other members of the equivalence class. Performing inference at
the level oflo f -equivalence classes is appropriate in models where feature order is not identifiable,
with p(X|F) being unaffected by the order of the columns ofF. Any model in which the probability
of X is specified in terms of a linear function ofF, such as PCA or CVQ, has this property.

We need to evaluate the cardinality of[Z], being the number of matrices that map to the same
left-ordered form. The columns of a binary matrix are not guaranteed to beunique: since an object
can possess multiple features, it is possible for two features to be possessed by exactly the same set
of objects. The number of matrices in[Z] is reduced ifZ contains identical columns, since some
re-orderings of the columns ofZ result in exactly the same matrix. Taking this into account, the

cardinality of[Z] is
(

K
K0...K2N−1

)

= K!

∏2N−1
h=0 Kh!

, whereKh is the count of the number of columns with

full history h.
lo f -equivalence classes play the same role for binary matrices as partitions dofor assignment

vectors: they collapse together all binary matrices (assignment vectors) that differ only in column
ordering (class labels). This relationship can be made precise by examiningthe lo f -equivalence
classes of binary matrices constructed from assignment vectors. Definetheclass matrixgenerated
by an assignment vectorc to be a binary matrixZ wherezik = 1 if and only if ci = k. It is straight-
forward to show that the class matrices generated by two assignment vectors that correspond to the
same partition belong to the samelo f -equivalence class, and vice versa.

4.3 Taking the Infinite Limit

Under the distribution defined by Equation 10, the probability of a particularlo f -equivalence class
of binary matrices,[Z], is

P([Z]) = ∑
Z∈[Z]

P(Z)

=
K!

∏2N−1
h=0 Kh!

K

∏
k=1

α
K Γ(mk+

α
K )Γ(N−mk+1)

Γ(N+1+ α
K )

. (12)

In order to take the limit of this expression asK → ∞, we will divide the columns ofZ into two
subsets, corresponding to the features for whichmk = 0 and the features for whichmk > 0. Re-
ordering the columns such thatmk > 0 if k ≤ K+, andmk = 0 otherwise, we can break the product
in Equation 12 into two parts, corresponding to these two subsets. The product thus becomes

K

∏
k=1

α
K Γ(mk+

α
K )Γ(N−mk+1)

Γ(N+1+ α
K )

=

( α
K Γ( α

K )Γ(N+1)

Γ(N+1+ α
K )

)K−K+ K+

∏
k=1

α
K Γ(mk+

α
K )Γ(N−mk+1)

Γ(N+1+ α
K )

=

( α
K Γ( α

K )Γ(N+1)

Γ(N+1+ α
K )

)K K+

∏
k=1

Γ(mk+
α
K )Γ(N−mk+1)

Γ( α
K )Γ(N+1)

=

(

N!

∏N
j=1( j + α

K )

)K
(α

K

)K+
K+

∏
k=1

(N−mk)! ∏mk−1
j=1 ( j + α

K )

N!
, (13)
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where we have used the fact thatΓ(x) = (x−1)Γ(x−1) for x > 1. Substituting Equation 13 into
Equation 12 and rearranging terms, we can compute our limit

lim
K→∞

αK+

∏2N−1
h=1 Kh!

·
K!

K0! KK+
·

(

N!

∏N
j=1( j + α

K )

)K

·
K+

∏
k=1

(N−mk)! ∏mk−1
j=1 ( j + α

K )

N!

=
αK+

∏2N−1
h=1 Kh!

· 1 · exp{−αHN} ·
K+

∏
k=1

(N−mk)!(mk−1)!
N!

, (14)

whereHN is theNth harmonic number,HN = ∑N
j=1

1
j . The details of the steps taken in computing

this limit are given in Appendix A. Again, this distribution is exchangeable: neither the number of
identical columns nor the column sums are affected by the ordering on objects.

4.4 The Indian Buffet Process

The probability distribution defined in Equation 14 can be derived from a simple stochastic process.
As with the CRP, this process assumes an ordering on the objects, generating the matrix sequen-
tially using this ordering. We will also use a culinary metaphor in defining our stochastic process,
appropriately adjusted for geography.4 Many Indian restaurants offer lunchtime buffets with an
apparently infinite number of dishes. We can define a distribution over infinitebinary matrices by
specifying a procedure by which customers (objects) choose dishes (features).

In our Indian buffet process (IBP),N customers enter a restaurant one after another. Each cus-
tomer encounters a buffet consisting of infinitely many dishes arranged in aline. The first customer
starts at the left of the buffet and takes a serving from each dish, stopping after a Poisson(α) number
of dishes as his plate becomes overburdened. Theith customer moves along the buffet, sampling
dishes in proportion to their popularity, serving himself with probabilitymk

i , wheremk is the number
of previous customers who have sampled a dish. Having reached the end of all previous sampled
dishes, theith customer then tries a Poisson(α

i ) number of new dishes.
We can indicate which customers chose which dishes using a binary matrixZ with N rows and

infinitely many columns, wherezik = 1 if the ith customer sampled thekth dish. Figure 6 shows
a matrix generated using the IBP withα = 10. The first customer tried 17 dishes. The second
customer tried 7 of those dishes, and then tried 3 new dishes. The third customer tried 3 dishes tried
by both previous customers, 5 dishes tried by only the first customer, and 2new dishes. Vertically
concatenating the choices of the customers produces the binary matrix shown in the figure.

UsingK(i)
1 to indicate the number of new dishes sampled by theith customer, the probability of

any particular matrix being produced by this process is

P(Z) =
αK+

∏N
i=1K(i)

1 !
exp{−αHN}

K+

∏
k=1

(N−mk)!(mk−1)!
N!

. (15)

As can be seen from Figure 6, the matrices produced by this process aregenerally not in left-ordered
form. However, these matrices are also not ordered arbitrarily becausethe Poisson draws always
result in choices of new dishes that are to the right of the previously sampled dishes. Customers
are not exchangeable under this distribution, as the number of dishes counted asK(i)

1 depends upon

4. This work was started when both authors were at the Gatsby Computational Neuroscience Unit in London, where the
Indian buffet is the dominant culinary metaphor.
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Figure 6: A binary matrix generated by the Indian buffet process withα = 10.

the order in which the customers make their choices. However, if we only payattention to the
lo f -equivalence classes of the matrices generated by this process, we obtain the exchangeable dis-

tributionP([Z]) given by Equation 14:∏
N
i=1 K(i)

1 !

∏2N−1
h=1 Kh!

matrices generated via this process map to the same

left-ordered form, andP([Z]) is obtained by multiplyingP(Z) from Equation 15 by this quantity.

It is possible to define a similar sequential process that directly produces adistribution onlo f
equivalence classes in which customers are exchangeable, but this requires more effort on the part
of the customers. In theexchangeableIndian buffet process, the first customer samples a Poisson(α)
number of dishes, moving from left to right. Theith customer moves along the buffet, and makes
a single decision for each set of dishes with the same history. If there areKh dishes with historyh,
under whichmh previous customers have sampled each of those dishes, then the customer samples a
Binomial(mh

i ,Kh) number of those dishes, starting at the left. Having reached the end of all previous
sampled dishes, theith customer then tries a Poisson(α

i ) number of new dishes. Attending to the
history of the dishes and always sampling from the left guarantees that theresulting matrix is in
left-ordered form, and it is easy to show that the matrices produced by this process have the same
probability as the correspondinglo f -equivalence classes under Equation 14.

4.5 A Distribution over Collections of Histories

In Section 4.2, we noted thatlo f -equivalence classes of binary matrices generated from assignment
vectors correspond to partitions. Likewise,lo f -equivalence classes of general binary matrices cor-
respond to simple combinatorial structures: vectors of non-negative integers. Fixing some ordering
of N objects, a collection of feature histories on those objects can be represented by a frequency
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vectorK = (K1, . . . ,K2N−1), indicating the number of times each history appears in the collection.
A collection of feature histories can be translated into a left-ordered binarymatrix by horizontally
concatenating an appropriate number of copies of the binary vector representing each history into
a matrix. A left-ordered binary matrix can be translated into a collection of feature histories by
counting the number of times each history appears in that matrix. Since partitionsare a subset
of all collections of histories—namely those collections in which each object appears in only one
history—this process is strictly more general than the CRP.

This connection betweenlo f -equivalence classes of feature matrices and collections of feature
histories suggests another means of deriving the distribution specified by Equation 14, operating
directly on the frequencies of these histories. We can define a distribution on vectors of non-negative
integersK by assuming that eachKh is generated independently from a Poisson distribution with
parameterαB(mh,N−mh+1) = α (mh−1)!(N−mh)!

N! wheremh is the number of non-zero elements in
the historyh. This gives

P(K) =
2N−1

∏
h=1

(

α (mh−1)!(N−mh)!
N!

)Kh

Kh!
exp

{

−α
(mh−1)!(N−mh)!

N!

}

=
α∑2N−1

h=1 Kh

∏2N−1
h=1 Kh!

exp{−αHN}
2N−1

∏
h=1

(

(mh−1)!(N−mh)!
N!

)Kh

,

which is easily seen to be the same asP([Z]) in Equation 14. The harmonic number in the expo-

nential term is obtained by summing(mh−1)!(N−m)!
N! over all historiesh. There are

(

N
j

)

histories for

whichmh = j, so we have

2N−1

∑
h=1

(mh−1)!(N−mh)!
N!

=
N

∑
j=1

(N
j)
( j −1)!(N− j)!

N!
=

N

∑
j=1

1
j
= HN. (16)

4.6 Properties of this Distribution

These different views of the distribution specified by Equation 14 make it straightforward to derive
some of its properties. First, the effective dimension of the model,K+, follows a Poisson(αHN)
distribution. This is easily shown using the generative process describedin Section 4.5:K+ =

∑2N−1
h=1 Kh, and under this process is thus the sum of a set of Poisson distributions. The sum of a set

of Poisson distributions is a Poisson distribution with parameter equal to the sumof the parameters
of its components. Using Equation 16, this isαHN. Alternatively, we can use the fact that the
number of new columns generated at theith row is Poisson(α

i ), with the total number of columns
being the sum of these quantities.

A second property of this distribution is that the number of features possessed by each object
follows a Poisson(α) distribution. This follows from the definition of the exchangeable IBP. The
first customer chooses a Poisson(α) number of dishes. By exchangeability, all other customers must
also choose a Poisson(α) number of dishes, since we can always specify an ordering on customers
which begins with a particular customer.

Finally, it is possible to show thatZ remains sparse asK → ∞. The simplest way to do this is to
exploit the previous result: if the number of features possessed by eachobject follows a Poisson(α)
distribution, then the expected number of entries inZ is Nα. This is consistent with the quantity
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obtained by taking the limit of this expectation in the finite model, which is given in Equation 11:
limK→∞ E

[

1TZ1
]

= limK→∞
Nα

1+ α
K
= Nα.

4.7 Inference by Gibbs Sampling

We have defined a distribution over infinite binary matrices that satisfies one of our desiderata—
objects (the rows of the matrix) are exchangeable under this distribution. Itremains to be shown
that inference in infinite latent feature models is tractable, as was the case for infinite mixture mod-
els. We will derive a Gibbs sampler for sampling from the distribution defined by the IBP, which
suggests a strategy for inference in latent feature models in which the exchangeable IBP is used as
a prior. We will consider alternative inference algorithms later in the paper.

To sample from the distribution defined by the IBP, we need to compute the conditional distri-
bution P(zik = 1|Z−(ik)), whereZ−(ik) denotes the entries ofZ other thanzik. In the finite model,
whereP(Z) is given by Equation 10, it is straightforward to compute the conditional distribution
for anyzik. Integrating overπk gives

P(zik = 1|z−i,k) =
∫ 1

0
P(zik|πk)p(πk|z−i,k)dπk

=
m−i,k+

α
K

N+ α
K

, (17)

wherez−i,k is the set of assignments of other objects, not includingi, for featurek, andm−i,k is the
number of objects possessing featurek, not includingi. We need only condition onz−i,k rather than
Z−(ik) because the columns of the matrix are generated independently under this prior.

In the infinite case, we can derive the conditional distribution from the exchangeable IBP. Choos-
ing an ordering on objects such that theith object corresponds to the last customer to visit the buffet,
we obtain

P(zik = 1|z−i,k) =
m−i,k

N
, (18)

for anyk such thatm−i,k > 0. The same result can be obtained by taking the limit of Equation 17
asK → ∞. Similarly the number of new features associated with objecti should be drawn from a
Poisson(αN ) distribution. This can also be derived from Equation 17, using the same kind of limiting
argument as that presented above to obtain the terms of the Poisson.

This analysis results in a simple Gibbs sampling algorithm for generating samples from the
distribution defined by the IBP. We start with an arbitrary binary matrix. We then iterate through the
rows of the matrix,i. For each columnk, if m−i,k is greater than 0 we setzik = 1 with probability
given by Equation 18. Otherwise, we delete that column. At the end of the row, we add Poisson(α

N )
new columns that have ones in that row. After sufficiently many passes through the rows, the
resulting matrix will be a draw from the distributionP(Z) given by Equation 15.

This algorithm suggests a heuristic strategy for sampling from the posterior distributionP(Z|X)
in a model that uses the IBP to define a prior onZ. In this case, we need to sample from the full
conditional distribution

P(zik = 1|Z−(ik),X) ∝ p(X|Z)P(zik = 1|Z−(ik))

wherep(X|Z) is the likelihood function for the model, and we assume that parameters of the like-
lihood have been integrated out. We can proceed as in the Gibbs sampler given above, simply
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incorporating the likelihood term when samplingzik for columns for whichm−i,k is greater than 0
and drawing the new columns from a distribution where the prior is Poisson(α

N ) and the likelihood
is given byP(X|Z).5

5. An Example: A Linear-Gaussian Latent Feature Model with Binary Features

We have derived a prior for infinite sparse binary matrices, and indicatedhow statistical inference
can be done in models defined using this prior. In this section, we will show how this prior can be
put to use in models for unsupervised learning, illustrating some of the issuesthat can arise in this
process. We will describe a simple linear-Gaussian latent feature model, in which the features are
binary. As above, we will start with a finite model and then consider the infinitelimit.

5.1 A Finite Linear-Gaussian Model

In our finite model, theD-dimensional vector of properties of an objecti, xi is generated from a
Gaussian distribution with meanziA and covariance matrixΣX = σ2

XI , wherezi is aK-dimensional
binary vector, andA is aK×D matrix of weights. In matrix notation,E [X] = ZA . If Z is a feature
matrix, this is a form of binary factor analysis. The distribution ofX givenZ, A, andσX is matrix
Gaussian:

p(X|Z,A,σX) =
1

(2πσ2
X)

ND/2
exp{−

1

2σ2
X

tr((X−ZA)T(X−ZA))} (19)

where tr(·) is the trace of a matrix. This makes it easy to integrate out the model parametersA. To
do so, we need to define a prior onA, which we also take to be matrix Gaussian:

p(A|σA) =
1

(2πσ2
A)

KD/2
exp{−

1

2σ2
A

tr(ATA)}, (20)

whereσA is a parameter setting the diffuseness of the prior. The dependencies among the variables
in this model are shown in Figure 7.

Combining Equations 19 and 20 results in an exponentiated expression involving the trace of

1

σ2
X

(X−ZA)T(X−ZA)+
1

σ2
A

ATA

=
1

σ2
X

XTX−
1

σ2
X

XTZA −
1

σ2
X

ATZTX+AT(
1

σ2
X

ZTZ+
1

σ2
A

I)A

=
1

σ2
X

(XT(I −ZMZ T)X)+(MZ TX−A)T(σ2
XM)−1(MZ TX−A),

5. As was pointed out by an anonymous reviewer, this is a heuristic strategy rather than a valid algorithm for sampling
from the posterior because it violates one of the assumptions of Markov chain Monte Carlo algorithms, with the order
in which variables are sampled being dependent on the state of the Markovchain. This is not an issue in the algorithm
for sampling fromP(Z), since the columns ofZ are independent, and the kernels corresponding to sampling from
each of the conditional distributions thus act independently of one another.
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Figure 7: Graphical model for the linear-Gaussian model with binary features.

whereI is the identity matrix,M = (ZTZ +
σ2

X
σ2

A
I)−1, and the last line is obtained by completing the

square for the quadratic term inA in the second line. We can then integrate outA to obtain

p(X|Z,σX,σA)

=
∫

p(X|Z,A,σX)p(A|σA)dA

=
1

(2π)(N+K)D/2σND
X σKD

A

exp{−
1

2σ2
X

tr(XT(I −ZMZ T)X)}

∫
exp{−

1
2

tr((MZ TX−A)T(σ2
XM)−1(MZ TX−A))}dA

=
|σ2

XM |D/2

(2π)ND/2σND
X σKD

A

exp{−
1

2σ2
X

tr(XT(I −ZMZ T)X)}

=
1

(2π)ND/2σ(N−K)D
X σKD

A |ZTZ+
σ2

X
σ2

A
I |D/2

exp{−
1

2σ2
X

tr(XT(I −Z(ZTZ+
σ2

X

σ2
A

I)−1ZT)X)}. (21)

This result is intuitive: the exponentiated term is the difference between the inner product matrix
of the raw values ofX and their projections onto the space spanned byZ, regularized to an extent
determined by the ratio of the variance of the noise inX to the variance of the prior onA. This is
simply the marginal likelihood for a Bayesian linear regression model (Minka,2000).

We can use this derivation ofp(X|Z,σX,σA) to infer Z from a set of observationsX, provided
we have a prior onZ. The finite feature model discussed as a prelude to the IBP is such a prior.The
full conditional distribution forzik is given by:

P(zik|X,Z−(i,k),σX,σA) ∝ p(X|Z,σX,σA)P(zik|z−i,k). (22)

While evaluatingp(X|Z,σX,σA) always involves matrix multiplication, it need not always involve
a matrix inverse.ZTZ can be rewritten as∑i z

T
i zi , allowing us to use rank one updates to efficiently
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compute the inverse when only onezi is modified. DefiningM−i = (∑ j 6=i z
T
j z j +

σ2
X

σ2
A
I)−1, we have

M−i = (M−1−zT
i zi)

−1

= M −
MzT

i ziM
ziMzT

i −1
, (23)

M = (M−1
−i +zT

i zi)
−1

= M−i −
M−izT

i ziM−i

ziM−izT
i +1

. (24)

Iteratively applying these updates allowsp(X|Z,σX,σA), to be computed via Equation 21 for dif-
ferent values ofzik without requiring an excessive number of inverses, although a full rank update
should be made occasionally to avoid accumulating numerical errors. The second part of Equation
22,P(zik|z−i,k), can be evaluated using Equation 17.

5.2 Taking the Infinite Limit

To make sure that we can define an infinite version of this model, we need to check thatp(X|Z,σX,σA)
remains well-defined ifZ has an unbounded number of columns.Z appears in two places in Equa-

tion 21: in|ZTZ+
σ2

X
σ2

A
I | and inZ(ZTZ+

σ2
X

σ2
A
I)−1ZT . We will examine how these behave asK → ∞.

If Z is in left-ordered form, we can write it as[Z+ Z0], whereZ+ consists ofK+ columns with
sumsmk > 0, andZ0 consists ofK0 columns with sumsmk = 0. It follows that the first of the two
expressions we are concerned with reduces to

∣

∣

∣

∣

ZTZ+
σ2

X

σ2
A

I

∣

∣

∣

∣

=

∣

∣

∣

∣

[

ZT
+Z+ 0
0 0

]

+
σ2

X

σ2
A

IK

∣

∣

∣

∣

=

(

σ2
X

σ2
A

)K0
∣

∣

∣

∣

ZT
+Z++

σ2
X

σ2
A

IK+

∣

∣

∣

∣

. (25)

The appearance ofK0 in this expression is not a problem, as we will see shortly. The abundance of
zeros inZ leads to a direct reduction of the second expression to

Z(ZTZ+
σ2

X

σ2
A

I)−1ZT = Z+(ZT
+Z++

σ2
X

σ2
A

IK+)
−1ZT

+,

which only uses the finite portion ofZ. Combining these results yields the likelihood for the infinite
model

p(X|Z,σX,σA) =
1

(2π)ND/2σ(N−K+)D
X σK+D

A |ZT
+Z++

σ2
X

σ2
A
IK+ |

D/2

exp{−
1

2σ2
X

tr(XT(I −Z+(ZT
+Z++

σ2
X

σ2
A

IK+)
−1ZT

+)X)}. (26)

TheK+ in the exponents ofσA andσX appears as a result of introducingD/2 multiples of the factor

of
(

σ2
X

σ2
A

)K0
from Equation 25. The likelihood for the infinite model is thus just the likelihood for the

finite model defined on the firstK+ columns ofZ.
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The heuristic Gibbs sampling algorithm defined in Section 4.7 can now be used inthis model.
Assignments to classes for whichm−i,k > 0 are drawn in the same way as for the finite model, via
Equation 22, using Equation 26 to obtainp(X|Z,σX,σA) and Equation 18 forP(zik|z−i,k). As in
the finite case, Equations 23 and 24 can be used to compute inverses efficiently. The distribution
over the number of new features can be approximated by truncation, computing probabilities for
a range of values ofK(i)

1 up to some reasonable upper bound. For each value,p(X|Z,σX,σA) can
be computed from Equation 26, and the prior on the number of new classes isPoisson(αN ). More
elaborate samplers which do not require truncation are presented in Meeds et al. (2007) and in Teh
et al. (2007).

5.3 Demonstrations

As a first demonstration of the ability of this algorithm to recover the latent structure responsible
for having generated observed data, we applied the Gibbs sampler for theinfinite linear-Gaussian
model to a simulated data set consisting of 100 6×6 images, each generated by randomly assigning
a feature to each image to a class with probability 0.5, and taking a linear combination of the
weights associated with features to which the images were assigned (a similar data set was used by
Ghahramani, 1995). Some of these images are shown in Figure 8, together with the weightsA that
were used to generate them. The non-zero elements ofA were all equal to 1.0, andσX was set to
0.5, introducing a large amount of noise.

The algorithm was initialized withK+ = 1, choosing the feature assignments for the first column
by settingzi1 = 1 with probability 0.5. σA was set to 1.0. The Gibbs sampler rapidly discovered
that four classes were sufficient to account for the data, and converged to a distribution focused on
matricesZ that closely matched the true class assignments. The results are shown in Figure 8. Each
of the features is represented by the posterior mean of the feature weights, A, givenX andZ, which
is

E[A|X,Z] = (ZTZ+
σ2

X

σ2
A

I)−1ZTX.

for a single sampleZ. The results shown in the figure are from the 200th sample produced by the
algorithm.

These results indicate that the algorithm can recover the features used to generate simulated
data. In a further test of the algorithm with more realistic data, we applied it to a data set consisting
of 100 240× 320 pixel images. We represented each image,xi , using a 100-dimensional vector
corresponding to the weights of the mean image and the first 99 principal components. Each image
contained up to four everyday objects—a $20 bill, a Klein bottle, a prehistorichandaxe, and a
cellular phone. The objects were placed in fixed locations, but were put into the scenes by hand,
producing some small variation in location. The images were then taken with a low resolution
webcam. Each object constituted a single latent feature responsible for theobserved pixel values.
The images were generated by sampling a feature vector,zi , from a distribution under which each
feature was present with probability 0.5, and then taking a photograph containing the appropriate
objects using a LogiTech digital webcam. Sample images are shown in Figure 9 (a). The only noise
in the images was the noise from the camera.

The Gibbs sampler was initialized withK+ = 1, choosing the feature assignments for the first
column by settingzi1 = 1 with probability 0.5. σA, σX, andα were initially set to 0.5, 1.7, and
1 respectively, and then sampled by adding Metropolis steps to the MCMC algorithm. Figure 9
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Figure 8: Demonstration of the linear-Gaussian model described in the text, using a binary repre-
sentation. (a) 100 images were generated as binary linear combinations of four sets of
class weights, shown in the images on the left. The images on the right are the posterior
mean weightsA for a single sample ofZ after 200 iterations, ordered to match the true
classes. (b) The images on the left show four of the datapoints to which the model was
applied. The numbers above each image indicate the classes responsible for generating
that image, matching the order above. The images on the right show the predictions of
the model for these images, based on the posterior mean weights, together withthe class
assignments from the sampledZ. (c) Trace plot of logP(X,Z) over 200 iterations. (d)
Trace plot ofK+, the number of classes, over 200 iterations. The data were generated
from a model withK+ = 4.
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Figure 9: Data and results for the application of the infinite linear-Gaussian model to photographic
images. (a) Four sample images from the 100 in the data set. Each image had 320×240
pixels, and contained from zero to four everyday objects. (b) The posterior mean of the
weights (A) for the four most frequent binary features from the 1000th sample. Each
image corresponds to a single feature. These features perfectly indicatethe presence or
absence of the four objects. The first feature indicates the presence of the $20 bill, the
other three indicate the absence of the Klein bottle, the handaxe, and the cellphone. (c)
Reconstructions of the images in (a) using the binary codes inferred for those images.
These reconstructions are based upon the posterior mean ofA for the 1000th sample. For
example, the code for the first image indicates that the $20 bill is absent, while the other
three objects are not. The lower panels show trace plots for the dimensionalityof the
representation (K+) and the parametersα, σX, andσA over 1000 iterations of sampling.
The values of all parameters stabilize after approximately 100 iterations.
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shows trace plots for the first 1000 iterations of MCMC for the number of features used by at least
one object,K+, and the model parametersσA, σX, andα. All of these quantities stabilized after
approximately 100 iterations, with the algorithm finding solutions with approximatelyseven latent
features.

Figure 9 (b) shows the posterior mean ofak for the four most frequent features in the 1000th
sample produced by the algorithm. These features perfectly indicated presence and absence of
the four objects. Three less common features coded for slight differences in the locations of those
objects. Figure 9 (c) shows the feature vectorszi from this sample for the four images in Figure 9(b),
together with the posterior means of the reconstructions of these images for this sample,ziE[A|X,Z].
Similar reconstructions are obtained by averaging over all values ofZ produced by the Markov
chain. The reconstructions provided by the model clearly pick out the relevant content of the images,
removing the camera noise in the original images.

These applications of the linear-Gaussian latent feature model are intended primarily to demon-
strate that this nonparametric Bayesian approach can efficiently learn satisfying representations
without requiring the dimensionality of those representations to be fixed a priori. The data set
consisting of images of objects was constructed in a way that removes many ofthe basic challenges
of computer vision, with objects appearing in fixed orientations and locations.Dealing with these
issues requires using a more sophisticated image representation or a more complex likelihood func-
tion than the linear-Gaussian model. Despite its simplicity, the example of identifying the objects in
images illustrates the kind of problems for which the IBP provides an appropriate prior. We describe
a range of other applications of the Indian buffet process in detail in the next section.

6. Further Applications and Alternative Inference Algorit hms

We now outline six applications of the Indian buffet process, each of which uses the same prior
over infinite binary matrices,P(Z), but different choices for the likelihood relating such matrices to
observed data. These applications provide an indication of the potential uses of the IBP in machine
learning, and have also led to a number of alternative inference algorithms,which we will describe
briefly.

6.1 Choice Behavior

Choice behavior refers to our ability to decide between several options. Models of choice behavior
are of interest to psychology, marketing, decision theory, and computer science. Our choices are
often governed by features of the different options. For example, when choosing which car to buy,
one may be influenced by fuel efficiency, cost, size, make, etc. Görür et al. (2006) present a non-
parametric Bayesian model based on the IBP which, given the choice data,infers latent features of
the options and the corresponding weights of these features. The likelihoodfunction is taken from
Tversky’s (1972) classic “elimination by aspects” model of choice, with theprobability of choosing
optionA over optionB being proportional to the sum of the weights of the distinctive features ofA.
The IBP is the prior over these latent features, which are assumed to be either present or absent.

The likelihood function used in this model does not have a natural conjugateprior, meaning that
the approach taken in our Gibbs sampling algorithm—integrating out the parameters associated with
the features—cannot be used. This led Görür et al. to develop a similar Markov chain Monte Carlo
algorithm for use with a non-conjugate prior. The basic idea behind the algorithm is analogous to
Algorithm 8 of Neal (2000) for Dirichlet process mixture models, using a set of auxiliary variables

1208



INDIAN BUFFET PROCESS

to represent the weights associated with features that are currently not possessed by any of the
available options. These auxiliary variables effectively provide a Monte Carlo approximation to the
sum over parameters used in our Gibbs sampler (although there is no approximation error introduced
through this step).

6.2 Modeling Protein Interactions

Proteomics aims to understand the functional interactions of proteins, and is afield of growing
importance to modern biology and medicine. One of the key concepts in proteomics is aprotein
complex, a group of several interacting proteins. Protein complexes can be experimentally deter-
mined by doing high-throughput protein-protein interaction screens. Typically the results of such
experiments are subjected to mixture-model based clustering methods. However, a protein can be-
long to multiple complexes at the same time, making the mixture model assumption invalid. Chu
et al. (2006) proposed a nonparametric Bayesian approach based onthe IBP for identifying protein
complexes and their constituents from interaction screens. The latent binary featurezik indicates
whether proteini belongs to complexk. The likelihood function captures the probability that two
proteins will be observed to bind in the interaction screen as a function of how many complexes they
both belong to,∑∞

k=1zikzjk. The approach automatically infers the number of significant complexes
from the data and the results are validated using affinity purification/mass spectrometry experimen-
tal data from yeast RNA-processing complexes.

6.3 Binary Matrix Factorization for Modeling Dyadic Data

Many interesting data sets aredyadic: there are two sets of objects or entities and observations are
made on pairs with one element from each set. For example, the two sets might consist of movies
and viewers, and the observations are ratings given by viewers to movies. Alternatively, the two sets
might be genes and biological tissues and the observations may be expression levels for particular
genes in different tissues. Dyadic data can often be represented as matrices and many models
of dyadic data can be expressed in terms of matrix factorization. Models of dyadic data make it
possible to predict, for example, the ratings a viewer might give to a movie based on ratings from
other viewers, a task known ascollaborative filtering. A traditional approach to modeling dyadic
data isbi-clustering: simultaneously clustering both the rows (e.g., viewers) and the columns (e.g.,
movies) of the observation matrix using coupled mixture models. However, as we have discussed,
mixture models provide a very limited latent variable representation of data. Meeds et al. (2007)
presented a more expressive model of dyadic data based on the two-parameter version of the Indian
buffet process. In this model, both movies and viewers are representedby binary latent vectors
with an unbounded number of elements, corresponding to the features theymight possess (e.g.,
“likes horror movies”). The two corresponding infinite binary matrices interact via a real-valued
weight matrix which links features of movies to features of viewers, resultingin a binary matrix
factorization of the observed ratings.

The basic inference algorithm used in this model was similar to the non-conjugate version of
the Gibbs sampler outlined above, but the authors also developed a number of novel Metropolis-
Hastings proposals that are mixed with the steps of the Gibbs sampler. One proposal directly han-
dles the number of new features associated with each object, facilitating one of the more difficult
aspects of non-conjugate inference. Another proposal is a “split-merge” move, analogous to similar
proposals used in models based on the CRP (Jain and Neal, 2004; Dahl, 2003). In contrast to the
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Gibbs sampler, which slowly affects the number of features used in the modelby changing a single
feature allocation for a single object at a time, the split-merge proposal explores large-scale moves
such as dividing a single feature into two, or collapsing two features together. Combining these
large-scale moves with the Gibbs sampler can result in a Markov chain Monte Carlo algorithm that
explores the space of latent matrices faster.

6.4 Extracting Features from Similarity Judgments

One of the goals of cognitive psychology is to determine the kinds of representations that underlie
people’s judgments. In particular, theadditive clusteringmethod has been used to infer people’s
beliefs about the features of objects from their judgments of the similarity between them (Shepard
and Arabie, 1979). Given a square matrix of judgments of the similarity between N objects, where
si j is the similarity between objectsi and j, the additive clustering model seeks to recover aN×K
binary feature matrixF and a vector ofK weights associated with those features such thatsi j ≈

∑K
k=1wk fik f jk. A standard problem for this approach is determining the value ofK, for which a

variety of heuristic methods have been used. Navarro and Griffiths (2007) presented a nonparametric
Bayesian solution to this problem, using the IBP to define a prior onF and assuming thatsi j has
a Gaussian distribution with mean∑K+

k=1wk fik f jk (following Tenenbaum, 1996). Using this method
provides a posterior distribution over the effective dimension ofF, K+, and gives both a weight and
a posterior probability for the presence of each feature.

Samples from the posterior distribution over feature matrices reveal some surprisingly rich rep-
resentations expressed in classic similarity data sets. Performing posterior inference makes it possi-
ble to discover that there are multiple sensible sets of features that could account for human similar-
ity judgments, while previous approaches that had focused on finding the single best set of features
might only find one such set. For example, the nonparametric Bayesian modelreveals that people’s
similarity judgments for numbers from 0-9 can be accounted for by a set of features that includes
both the odd and the even numbers, while previous additive clustering analyses (e.g., Tenenbaum,
1996) had only produced the odd numbers.

The additive clustering model, like the choice model discussed above, is another case in which
non-conjugate inference is necessary. In this case, the inference algorithm is rendered simpler by
the fact that no attempt is made to model the similarity of an object to itself,sii . As a consequence, a
feature possessed by a single object has no effect on the likelihood, and the number of such features
and their associated weights can be drawn directly from the prior. Inference thus proceeds using an
algorithm similar to the Gibbs sampler derived above, with the addition of a Metropolis-Hastings
step to update the weights associated with each feature.

6.5 Latent Features in Link Prediction

Network data, indicating the relationships among a group of people or objects, have been analyzed
by both statisticians and sociologists. A basic goal of these analyses is predicting which unobserved
relationships might exist. For example, having observed friendly interactions among several pairs
of people, a sociologist might seek to predict which other people are likely tobe friends with one
another. This problem of link prediction can be solved using a probabilistic model for the structure
of graphs. One popular class of models, known as stochastic blockmodels, assume that each entity
belongs to a single latent class, and that the probability of a relationship existing between two en-
tities depends only on the classes of those entities (Nowicki and Snijders, 2001; Wang and Wong,
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1987). This is analogous to a mixture model, in which the probability that an object has certain
observed properties depends only on its latent class. Nonparametric versions of stochastic block-
models can be defined using the Chinese restaurant process (Kemp et al.,2006), corresponding to
an underlying stochastic process that generalizes the Dirichlet process(Roy and Teh, 2009).

Just as allowing objects to have latent features rather than a single latent class makes it possible
to go beyond mixture models, this approach allows us to define models for link prediction that
are richer than stochastic blockmodels. Miller et al. (2010) defined a classof nonparametric latent
feature models that can be used for link prediction. The key idea is to definethe probability of the
existence of a link between two entities in terms of a “squashing function” (such as the logistic or
probit) applied to a real-valued score for that link. The scores then depend on the features of the
two entities. For a set ofN entities, the pairwise scores are given by theN×N matrix ZWZ T ,
whereZ is a binary feature matrix, as used throughout this paper, andW is a matrix of real-valued
feature weights. Since the feature weights can be positive or negative, features can interact to either
increase or decrease the probability of a link. The resulting model is strictly more expressive than a
stochastic blockmodel and produces more accurate predictions, particularly in cases where multiple
factors interact to influence the existence of a relationship (such as in the decision to co-author a
paper, for example).

6.6 Independent Components Analysis and Sparse Factor Analysis

Independent Components Analysis (ICA) is a model which explains observed signals in terms of a
linear superposition, or mixing, of independent hidden sources (Comon,1994; Bell and Sejnowski,
1995; MacKay, 1996; Cardoso, 1998). ICA has been used to solve the problem of “blind source
separation” in which the goal is to unmix the hidden sources from the observed mixed signals
without assuming much knowledge of the hidden source distribution. This models, for example, a
listener in a cocktail party who may want to unmix the signals received on his twoears into the many
independent sound sources that produced them. ICA is closely related tofactor analysis, except that
while in factor analysis the sources are assumed to be Gaussian distributed,in ICA the sources are
assumed to have any distribution other than the Gaussian.

One of the key practical problems in ICA is determining the number of hidden sources. Knowles
and Ghahramani (2007) provided a solution to this problem by devising a non-parametric Bayesian
model for ICA based on the IBP. The basic assumption of this ICA model is thatthe number of
potential sources is unbounded, but that any particular source is typically not present in a given
signal. The IBP provides a natural model for determining which sources are present in each signal.
In the notation of Section 3, the observed signals are represented by a matrix X, the presence or
absence of the hidden sources by the IBP distributed matrixZ, and the value taken by the sources by
the matrixV. Knowles and Ghahramani (2007) considered several variants of themodel, including
ICA models where the elements ofV have Laplacian distributions, sparse FA models where the
elements ofV have Gaussian distributions, and one and two parameter versions of the IBP in both
cases. The model was applied to discovering gene signatures from geneexpression microarray data
from an ovarian cancer study.

Rai and Dauḿe (2009) developed two interesting extensions of this model also motivated by
applications to gene expression data. First they considered both factor analysis and factor regression
models, where the latter refers to solving a regression problem with a typicallylarge number of
input features by making predictions based solely on the factor representation. Second, they used
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an IBP to model the sparsity in the factor loading matrix (rather than the factor or source matrix in
nonparametric ICA) and they moreover assume that the factors are relatedto each other through a
hierarchy. They used Kingman’s coalescent as a nonparametric Bayesian model for this hierarchy,
following the inference algorithms developed in Teh et al. (2008). This paper shows a nice example
of how the IBP can be integrated with other nonparametric Bayesian distributions in a fairly modular
manner to solve useful inference problems.

6.7 Bipartite Graphs and Learning Hidden Causes

Wood et al. (2006) used the IBP as part of an algorithm for learning the structure of graphical
models. Specifically, they focused on the case where an unknown numberof hidden variables (e.g.,
diseases) are causes for some set of observed variables (e.g., symptoms). Rather than defining a prior
over the number of hidden causes, Wood et al. used a non-parametric Bayesian approach based on
the IBP to model the structure of graphs with countably infinitely many hidden causes. The binary
variablezik indicates whether hidden variablek has a direct causal influence on observed variable
i; in other words whetherk is a parent ofi in the graph. The data being modeled were the values
of the set of observed variables over a number of trials, where each variable was either present or
absent on each trial. Each hidden variable could be either present or absent on a particular trial, with
the probabilities of these states being determined by a parameter of the model, andhidden variables
were assumed to combine via a noisy-OR (Pearl, 1988) to influence the observed variables.

Wood et al. (2006) described an MCMC algorithm for inference in this model. Like many of the
cases discussed in this section, this model lacked natural conjugate priors. Inference was done using
a variant on the Gibbs sampler introduced above, with additional steps to modify the values of the
hidden variables. The sampling step for the introduction of new hidden causes into the graph was
facilitated by an analytic result making it possible to sum out the values of the variables associated
with those causes in a way that is analogous to summing out the parameters in a conjugate model.
However, Wood and Griffiths (2007) developed a sequential Monte Carlo algorithm for use in this
model, similar to algorithms that have been developed for use with the CRP (suchas Fearnhead,
2004). This algorithm is a form of particle filter, updating the posterior distribution onZ one row
at a time (in this case, as new observed variables are added to the data). The particle filter provides
an efficient and straightforward alternative for inference in models thatlack conjugate priors, and
generalizes naturally to other models using the IBP.

6.8 Structuring Markov Transition Matrices

Discrete Markov processes are widely used in machine learning, as partof hidden Markov models
and state-space models. Nonparametric Bayesian methods have been usedto define “infinite” ver-
sions of these models, allowing the number of states in a hidden Markov model tobe unbounded
(Beal et al., 2002). An infinite discrete Markov process can be definedby assuming that transitions
from each state follow a Chinese restaurant process, with transitions thathave been made frequently
in the past being more likely in the future. When a new transition is generated, the next state is
drawn from a higher-level Chinese restaurant process that is shared across all states. The resulting
distribution can also be obtained from a hierarchical Dirichlet process (Teh et al., 2004).

Fox et al. (2010) recently explored another way of defining an infinite discrete Markov process,
which allows for more structure in the transition matrix. In this model, it is assumed that each state
can only make transitions to a subset of other states. Thus, each state is associated with a binary
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vector indicating whether or not it makes transitions to other states. With an infinite set of states,
a distribution over these vectors can be defined using the IBP. This approach was used to define a
nonparametric autoregressive hidden Markov model, in which a sequence of continuous variables
were predicted as a linear function of the variables at the previous timestep,but the parameters of
the function were determined by a latent Markov process. The resulting model was able to identify
meaningful action components in motion capture data. In addition to introducing anovel model, this
paper explored the use of “birth and death” moves in the Markov chain Monte Carlo algorithm used
for inference, in which entire columns of the matrix produced by the IBP were created or destroyed.

6.9 Other Inference Algorithms

The broad range of settings in which the IBP has been applied have encouraged the development of
more efficient methods for probabilistic inference in the resulting nonparametric Bayesian models.
As discussed above, several innovations have been used to speed mixing in the Markov chain Monte
Carlo algorithms used with specific models. Other work has explored schemesfor making inference
in the linear-Gaussian model discussed in Section 5 more efficient and scalable to larger data sets.
For example, if instead of integrating out the weight matrixA, the posterior distribution overA is
maintained, it is possible to use an alternative sampling scheme that still mixes quickly where the
time for each iteration scales linearly inN (Doshi-Velez and Ghahramani, 2009a). This observation
also provides the basis for a parallelization scheme in which the features of different objects are
computed on different machines, with the potential to make large-scale applications of this linear-
Gaussian model possible (Doshi-Velez et al., 2010). Similar principles may apply in the other
models using the IBP discussed in this section.

An alternative approach to probabilistic inference is to reject the stochasticapproximations pro-
vided by MCMC algorithms in favor of deterministic approximations, using variational inference to
approximate the posterior. A mean field approximation to the IBP was developedby Doshi-Velez
et al. (2009), building on similar approximations for Dirichlet process mixturemodels (Blei and
Jordan, 2006). This variational inference method was applied to the infiniteICA model discussed
in Section 6.6, and compared against sampling schemes on both synthetic and real data. The results
of these comparisons suggested that the variational approach providesa more efficient strategy for
inference in this model when the dimensionality of the observed data is high. Variational inference
may thus be useful in working with some of the other models discussed in this section, at least in
specific regimes.

7. Extensions and Connections to Other Processes

The Indian buffet process gives a way to characterize our distributionon infinite binary matrices in
terms of a simple stochastic process. In this section we review how the IBP canbe extended to yield
more general classes of distributions, and summarize some of the connections between the IBP and
other stochastic processes. Our derivation of the IBP was based on considering the infinite limit
of a distribution on finite binary matrices. As with the CRP, this distribution can alsobe derived
via a stick-breaking construction, or by marginalizing out an underlying measure. These different
views of the IBP yield different generalizations of the distribution, and different opportunities for
developing inference algorithms.
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7.1 A Two-Parameter Generalization

As was discussed in Section 4.6, the distribution on the number of features per object and on the
total number of features produced by the IBP are directly coupled, throughα. This is an undesirable
constraint, as the sparsity of a matrix and its dimensionality should be able to varyindependently.
Ghahramani et al. (2007) introduced a two-parameter generalization of the IBP that separates these
two aspects of the distribution.6 This generalization keeps the average number of features per object
at α as before, but allows the overall number of represented features to range fromα, an extreme
where all features are shared between all objects, toNα, an extreme where no features are shared at
all. Between these extremes lie many distributions that capture the amount of sharing appropriate
for different domains.

As the one-parameter model, this two-parameter model can be derived by taking the limit of
a finite model, but usingπk|α,β ∼ Beta(αβ

K ,β) instead of Equation 9. Here we will focus on the
equivalent sequential generative process. To return to the languageof the Indian buffet, the first
customer starts at the left of the buffet and samples Poisson(α) dishes. Theith customer serves
himself from any dish previously sampled bymk > 0 customers with probabilitymk/(β+ i − 1),
and in addition from Poisson(αβ/(β+ i −1)) new dishes. The parameterβ is introduced in such a
way as to preserve the expected number of features per object,α, but the expected overall number of
features isα∑N

i=1
β

β+i−1, and the distribution ofK+ is Poisson with this mean. The total number of
features used thus increases asβ increases. For finiteβ, the expected number of features increases
asαβ lnN, but if β ≫ 1 the logarithmic regime is preceded by linear growth at smallN < β.

Figure 10 shows three matrices drawn from the two-parameter IBP, all withα = 10 but with
β = 0.2, β = 1, andβ = 5 respectively. Although all three matrices have roughly the same number
of non-zero entries, the number of features used varies considerably. At small values ofβ features
become likely to be shared by all objects. At high values ofβ features are more likely to be spe-
cific to particular objects. Further details about the properties of this distribution are provided in
Ghahramani et al. (2007).
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Figure 10: Three samples from the two-parameter Indian buffet process with α = 10 andβ = 0.2
(left), β = 1 (middle), andβ = 5 (right).

7.2 A Stick-Breaking Construction

Our strategy of taking the limit of a finite exchangeable distribution in deriving the IBP was inspired
by the derivation of the CRP as the limit of a Dirichlet-multinomial model. However, there are many

6. The original idea and analysis was described in an unpublished note bySollich (2005).
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other routes by which the CRP can be derived. One of these is via the Dirichlet process (Ferguson,
1973). A simple way to think about the Dirichlet process is in terms of a probability measure over
probability measures. The parameters of the process are its concentrationα and a base measure
G0. In a typical use, we would draw a measureG from the Dirichlet process, and then generate
parameters for a modelφi by sampling them independently fromG. Since the Dirichlet process
generates discrete measures with probability 1, it is possible for multiple parameters φi and φ j

drawn fromG to take the same value. We can thus imagine indexing the values taken by theφi with
discrete variableszi , such thatzi = zj if and only if φi = φ j . Thezi thus index unique values ofφi ,
and correspond to a partition of the indices of theφi . The distribution over partitionsz produced by
the Dirichlet process, integrating overG, is the CRP (Blackwell and MacQueen, 1973).

A straightforward way to understand how the Dirichlet process allocates probabilities to a dis-
crete set of atoms is to think about assigning probabilities in terms of breaking off pieces of a stick.
The stick is one unit in length, corresponding to the fact that our probabilities must sum to one.
Each piece of stick we break off represents the probability assigned to another discrete atom. After
breaking off each piece, we then consider how much of the remainder to break off as the next piece.
Sethuraman (1994) showed that if this process is repeated infinitely often,with a proportion of the
stick drawn from a Beta(α,1) distribution being broken off at each step, the lengths of the pieces
of broken stick are equivalent to the probabilities assigned to a discrete set of atoms by the Dirich-
let process with parameterα. This stick-breaking representation of the Dirichlet process is useful
in deriving its properties, and in developing inference algorithms such as the variational inference
algorithm proposed by Blei and Jordan (2006).

Teh et al. (2007) showed that a similar stick-breaking construction can bedefined for the IBP.
First, we imagine sorting theπk representing the probability of each feature being possessed by
an object from largest to smallest. Then, if we consider the proportion of the stick that is broken
off and discarded at each break in the stick-breaking construction forthe Dirichlet process, the
distribution of the sequence of stick lengths corresponds exactly to the distribution of these ordered
probabilities. This stick-breaking construction identifies an interesting relationship between the IBP
and the Dirichlet process, and is useful for exactly the same reasons. In particular, the stick-breaking
construction was used in defining the variational inference algorithm summarized in Section 6.9, and
can also be used to derive other inference algorithms for the IBP, such as slice sampling (Teh et al.,
2007).

7.3 Connections to the Beta Process

The relationship between the CRP and the Dirichlet process is an instance ofa more general re-
lationship between exchangeable distributions and underlying probability measures. The results
summarized in the previous paragraph indicate that we can write

P(z) =
∫ N

∏
i=1

P(zi |G)p(G)dG,

where thezi are drawn independently from the measureG, which is generated from the Dirichlet
process. The fact that we can represent the exchangeable distribution P(z) as the result of generating
thezi independently from a latent measure is a specific instance of the more general principle stated
in de Finetti’s exchangeability theorem, which indicates thatanyexchangeable distribution can be
represented in this way (see Bernardo and Smith, 1994, for details). Thisraises a natural question:
is there a similar measure underlying the exchangeable distribution producedby the IBP?
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Thibaux and Jordan (2007) provided an answer to this question, showing that the exchangeable
distribution produced by the IBP corresponds to the use of a latent measure based on the beta process
(Hjort, 1990). The beta process provides a source of Bernoulli parametersπk associated with the
elements of a (possibly continuous) index set. Sampling each of thezik independently according
to the distribution defined by the appropriate parameter results in the same distribution on Z as
the IBP. This perspective also makes it straightforward to define analogues of the two-parameter
process described in Section 7.1, and to extend the IBP to a hierarchical model that can capture
correlations in the features exhibited in multiple data sets. Teh and Görür (2010) also recently
used the relationship to the beta process to define a variant of the IBP that produces a power-law
distribution in feature frequencies, exploiting a connection to stable processes. Variants of this kind
may be useful in settings where power-law distributions are common, such asnatural language
processing.

7.4 Relaxing the Assumption of Exchangeability

The IBP assumes independence between the columns ofZ, and only the kind of weak dependency
implied by exchangeability for the rows ofZ. Both of these assumptions have been relaxed in sub-
sequent work. Producing correlations between the columns ofZ can be done by supplementing the
IBP with a secondary process capturing patterns in the latent features (Doshi-Velez and Ghahramani,
2009b). Modifying the assumption of exchangeability is potentially more problematic. Exchange-
ability was one of our original desiderata, since it is a reasonable assumption in many settings and
simplifies probabilistic inference. However, this assumption is not warrantedin cases where we
have additional information about the properties of our observations, such as the fact that they were
produced in a particular temporal sequence, or reflect a known patternof correlation. The chal-
lenge is thus to identify how the assumption of exchangeability can be relaxed while maintaining
the tractability of probabilistic inference. Two recent papers have presented strategies for modifying
the IBP to capture different forms of dependency between the rows ofZ.

The first kind of dependency can arise as the consequence of observations being generated in a
specific sequence. In such a case, it might be appropriate to assume thatthe latent features associated
with observations made closer in time should be more correlated. A strategy formodifying the IBP
to capture this kind of dependency was introduced by Van Gael et al. (2009). In this model—the
Markov Indian buffet process—it is assumed that the rows ofZ are generated via a Markov process,
where the values in each column are generated based on the corresponding values in the previous
row. This Markov process has two parameters, giving the probability of a0 in the previous row
changing to a 1, and the probability of a 1 in the previous row remaining unchanged. By assuming
that these parameters are generated from a Beta distribution and taking a limit analogous to that used
in the derivation of the IBP, it is possible to define a distribution over equivalence classes of binary
matrices in which the rows of the matrix reflect a Markov dependency structure. This model can be
used to define richer nonparametric models for temporal data, such as an infinite factorial hidden
Markov model, and probabilistic inference can be carried out using a slicesampler (see Van Gael
et al., 2009, for details).

A second kind of dependency can be the result of known degrees of relatedness among observa-
tions. For example, one might seek to draw inferences about a group of people with known genetic
relationships, or about a set of organisms or languages with a known evolutionary history. In cases
where the degrees of relatedness can be expressed in a tree, the phylogenetic Indian buffet process
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(Miller et al., 2008) can be used. In this model, the tree expresses the dependency structure that
governs the rows ofZ, and each column is generated independently by sampling from a stochastic
process defined on the tree. The parameters of the stochastic process are specified in a way that
guarantees the total number of columns follows a Poisson distribution, and theoriginal IBP is re-
covered as the special case where the tree is degenerate, with all branches meeting at the root. Trees
can be used to capture a wide range of dependency structures, including partial exchangeability, and
probabilistic inference by MCMC remains tractable because belief propagation on the tree can be
used to efficiently compute the relevant conditional probabilities.

8. Conclusions and Future Work

The methods that have been used to define infinite latent class models can be extended to models in
which objects are represented in terms of a set of latent features, and used to derive distributions on
infinite binary matrices that can be used as priors for such models. We usedthis method to derive a
prior that is the infinite limit of a simple distribution on finite binary matrices, and showed that the
same distribution can be specified in terms of a simple stochastic process—the Indian buffet process.
This distribution satisfies our two desiderata for a prior for infinite latent feature models: objects
are exchangeable, and inference remains tractable. When used as a prior in models that represent
objects using latent features, this distribution can be used to automatically inferthe number of
features required to account for observed data. More generally, it can be used as a prior in any
setting where a sparse binary matrix with a finite number of rows and infinite number of columns is
appropriate, such as estimating the adjacency matrix of a bipartite graph where the size of one class
of nodes is unknown.

Recent work has made significant progress on turning this nonparametricapproach to inferring
latent features into a tool that can be used to solve a wide range of machine learning problems. These
advances include more sophisticated MCMC algorithms, schemes for parallelizing probabilistic
inference, and deterministic methods for approximating posterior distributionsover latent feature
matrices. The connections between the IBP and other stochastic processes provide the groundwork
for further understanding and extending this class of probabilistic models,making it possible to
modify the distribution over feature assignments and to capture different patterns of dependency
that might exist among the latent features of objects. As with the CRP, the different views of the
IBP that result from considering the stick-breaking construction or the underlying measure that is
marginalized out to obtain the combinatorial stochastic process each support different extensions,
generalizations, and inference algorithms.

Despite the wide array of successful applications of the IBP and related distributions, we view
one of the primary contributions of this work to be the idea that we can define richer nonparametric
Bayesian models to suit the unique challenges of machine learning. Our success in transferring
the strategy of taking the limit of a finite model from latent classes to latent features suggests that
the same strategy might be applied with other representations, broadening thekinds of latent struc-
ture that can be recovered through unsupervised learning. This idea receives support both from
other examples of new nonparametric models defined via a similar strategy (e.g.,Titsias, 2008),
and from theoretical analyses of the conditions under which infinite models remain well defined
when obtained as limits of finite models (Orbanz, 2010). We anticipate that therewill be other
combinatorial structures for which this strategy will result in new and useful distributions.
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Appendix A. Details of Limits

This appendix contains the details of the limits of three expressions that appear in Equations 5 and
14.

The first expression is

K!
K0! KK+

=
∏K+

k=1(K−k+1)

KK+

=
KK+ − (K+−1)K+

2 KK+−1+ · · ·+(−1)K+−1(K+−1)!K

KK+

= 1−
(K+−1)K+

2K
+ · · ·+

(−1)K+−1(K+−1)!
KK+−1 .

For finiteK+, all terms except the first go to zero asK → ∞.
The second expression is

mk−1

∏
j=1

( j + α
K ) = (mk−1)!+ α

K

mk−1

∑
j=1

(mk−1)!
j

+ · · ·+
( α

K

)mk−1
.

For finitemk andα, all terms except the first go to zero asK → ∞.
The third expression is

(

N!

∏N
j=1( j + α

K )

)K

=

(

∏N
j=1 j

∏N
j=1( j + α

K )

)K

=

(

N

∏
j=1

j
( j + α

K )

)K

=
N

∏
j=1





1

1+
α 1

j

K





K

. (27)

We can now use the fact that

lim
K→∞

(

1
1+ x

K

)K

= exp{−x}
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to compute the limit of Equation 27 asK → ∞, obtaining

lim
K→∞

N

∏
j=1





1

1+
α 1

j

K





K

=
N

∏
j=1

exp{−α1
j }

= exp{−α
N

∑
j=1

1
j }

= exp{−αHN},

as desired.
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