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Abstract: This paper considers Bayesian counterparts of the classical tests for good-

ness of fit and their use in judging the fit of a single Bayesian model to the observed

data. We focus on posterior predictive assessment, in a framework that also includes

conditioning on auxiliary statistics. The Bayesian formulation facilitates the con-

struction and calculation of a meaningful reference distribution not only for any

(classical) statistic, but also for any parameter-dependent “statistic” or discrep-

ancy. The latter allows us to propose the realized discrepancy assessment of model

fitness, which directly measures the true discrepancy between data and the posited

model, for any aspect of the model which we want to explore. The computation

required for the realized discrepancy assessment is a straightforward byproduct of

the posterior simulation used for the original Bayesian analysis.

We illustrate with three applied examples. The first example, which serves

mainly to motivate the work, illustrates the difficulty of classical tests in assessing

the fitness of a Poisson model to a positron emission tomography image that is

constrained to be nonnegative. The second and third examples illustrate the details

of the posterior predictive approach in two problems: estimation in a model with

inequality constraints on the parameters, and estimation in a mixture model. In all

three examples, standard test statistics (either a χ2 or a likelihood ratio) are not

pivotal: the difficulty is not just how to compute the reference distribution for the

test, but that in the classical framework no such distribution exists, independent

of the unknown model parameters.
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1. Introduction

1.1. Classical and Bayesian model assessment

Assessing the plausibility of a posited model (or of assumptions in general) is
always fundamental, especially in Bayesian data analyses. A Bayesian analysis,
which conditions on the whole probability model, can be very misleading when
the model is far from plausible. Any meaningful Bayesian analysis, therefore,
should at least include a check to see if the posited model should be excluded
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because it fails to provide a reasonable summary of the data at hand. A standard
classical approach for this kind of model-checking is to perform a goodness-of-fit
test, which calculates a tail-area probability under the posited model to quantify
the extremeness of the observed value of a selected discrepancy (e.g., differences
between observations and predictions). The essence of the classical approach, as
we see it, lies in comparing the observed value of the discrepancy to its refer-
ence (i.e., sampling) distribution derived under the posited model. The tail-area
probability, or p-value, is only a computationally convenient way of locating the
observed value in the reference distribution, especially in the days when graphical
display of the reference distribution could not be done routinely. Plotting the
observed value against a reference distribution is more informative than merely
reporting a p-value.

The main purpose of this paper is to extend the essence of the classical ap-
proach to the Bayesian framework, with the aim of providing pragmatic methods
of assessing the fitness of a single model, especially in complex situations where
classical frequentist calculation of a reference distribution of an informative statis-
tic is not feasible. Our work is based on several earlier papers, particularly Rubin
(1984), §5, on assessing the fitness of a single Bayesian model. We use the term
“assessment” instead of “testing” to highlight the fundamental difference between
assessing the discrepancies between a model and data and testing the correctness
of a model. We believe that there is a general concern that there has been too
much emphasis on the latter problem and that, in the words of Tiao and Xu
(1993), there is a need in practice for “. . . development of diagnostic tools with
a greater emphasis on assessing the usefulness of an assumed model for specific
purposes at hand rather than on whether the model is true.”

For some problems, such as linear models, common goodness-of-fit tests serve
as good diagnostics (when used and interpreted appropriately) and are easy to
implement, because their reference distributions are known, at least approxi-
mately. Useful approximations to distributions of test statistics are possible for
some problems (see, for example, Chernoff (1954), concerning extensions of the
linear model), but are not always available (see, for example, McCullagh (1985,
1986), concerning the difficulty of finding distributions of classical goodness-of-
fit tests in generalized linear models). The classical approach relying on known,
or approximately known, reference distributions encounters difficulty in at least
three kinds of models: models with severe restrictions on the parameters, such as
positivity; models with probabilistic constraints, which may arise from a strong
prior distribution; and unusual models that cannot be parameterized as general-
ized linear models. The following example illustrates the type of problem with
which we are concerned, where it is difficult in practice and may be impossible
in theory to construct a sensible classical test.
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1.2. A motivating example

Gelman (1990, 1992) describes a positron emission tomography experiment
whose goal is to estimate the density of a radioactive isotope in a cross-section of
the brain. The two-dimensional image is estimated from gamma-ray counts in a
ring of detectors around the head. Each count is classified in one of n bins, based
on the positions of the detectors when the gamma rays are detected, and a typical
experimental run has about 6,000,000 counts. The bin counts, yi, are modeled
as independent Poisson random variables with means θi that can be written as
a linear function of the unknown image g, θ = Ag + r, where θ = (θ1, . . . , θn),
A is a known linear operator that maps the continuous g to a vector of length
n, and r is a known vector of corrections. Both A and r, as well as the image,
g, are nonnegative. In practice, g is discretized into “pixels” and becomes a
long (length greater than n) nonnegative vector, and A becomes a matrix with
nonnegative elements.

Were it not for the nonnegativity constraint, there would be no problem
finding an image to fit the data; in fact, an infinite number of images g solve the
linear equation, y = Ag + r. However, due to the Poisson noise, and perhaps
to failures in the model, it often occurs in practice that no exact nonnegative
solutions exist, and we must use an estimate (or family of estimates) ĝ for which
there is some discrepancy between the data, y, and their expectations, θ̂ = Aĝ+r.
The discrepancy between y and θ̂, however, should not be too large; given the
truth of the model, it is limited by the variance in the independent Poisson
distributions. For example, the χ2 discrepancy,

X2(y; θ̂) =
n∑

i=1

(yi − θ̂i)2

θ̂i

, (1)

should be no greater than could have arisen from a χ2 distribution with n degrees
of freedom (yi>50 for almost all the bins i, and so the χ2 distribution, based on
the normal approximation to the Poisson, is essentially exact). In fact, X2(y; θ̂)
should be considerably less, since θ̂ is the best fit to the data.

The posited model was fit to a real dataset, y, with n = 22,464. We would
ultimately like to determine the posterior distribution, P (θ|y), given a reasonable
prior distribution. As a first step, we need to determine if the model is invalidated
by the observed data. For this dataset, the best-fit nonnegative image ĝ was not
an exact fit; the discrepancy between y and θ̂ was X2(y; θ̂) ≈ 30,000. This is
unquestionably a rejection of the model, unexplainable by the Poisson variation.
At this point, the model and data should be examined to find the causes of the
lack of fit. Possible failures in the model include error in the specification of A
and r, lack of independence or super-Poisson variance in the counts, and error
from discretizing the continuous image, g.
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There is no difficulty in deciding to reject the model here as long asX2(y; θ̂) is
greater than n+2

√
2n ≈ 23,000, for we can be almost certain that the model does

not fit the data in this case. Suppose, however, that the experimental procedure
is carefully examined, the model is made more accurate, and the new model is fit
to the data, yielding a χ2 discrepancy of 22,000, or 20,000. We should probably
still be distrustful of the model, since a whole continuous image is being fit to
the data. (In fact, as the total number of counts increases, the Poisson variances
decrease proportionally, and it becomes increasingly likely that an exact fit image
ĝ will exist that solves y = Aĝ + r. Thus, conditional on the truth of the model,
X2(y; θ̂) must be zero, in the limit as the number of counts approaches infinity
with a fixed number of bins, n. Due to massive near-collinearity, the positron
emission tomography model is not near that asymptotic state even with 6,000,000
total counts.) If k linear parameters were fit, the χ2 discrepancy defined in (1)
would have a χ2 distribution with n − k degrees of freedom. It is difficult to
determine how many degrees of freedom correspond to the fitting of a continuous
image.

We have arrived at a practical problem: how to assess the quality of a model’s
fit to the observed data for complicated models in “close calls” for which the
simple χ2

n bound is too crude. The problem is important and common, because
if we take modeling seriously, as we should with any Bayesian analysis, we will
gradually improve models that clearly do not fit, and upgrade them into close
calls.

1.3. A brief overview

The preceding example illustrates the need for model checking in complex
situations. In Bayesian statistics, a model can be checked in at least three ways:
(1) examining sensitivity of inferences to reasonable changes in the prior distribu-
tion and the likelihood; (2) checking that the posterior inferences are reasonable,
given the substantive context of the model; and (3) checking that the model fits
the data. We address the third of these concerns using the posterior predictive
distribution for a discrepancy, an extension of classical test statistics to allow
dependence on unknown (nuisance) parameters. Posterior predictive assessment
was introduced by Guttman (1967), applied by Rubin (1981), and given a formal
Bayesian definition by Rubin (1984). Our new methodological contribution is
the adoption of more general discrepancies, which allows more direct assessment
of the discrepancy between data and the posited model.

The recent rapid development of Bayesian computation allows us to fit more
realistic and sophisticated models than previously possible, and thus there is a
corresponding need for general methods to assess the fitness of these models when
classical tests are not applicable, as our motivating example demonstrates. The
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approach we discuss here appears to be one such method. It is simple, both con-
ceptually and computationally, and connects well to the classical goodness-of-fit
methods that most researchers are familiar with. It is also very general, appli-
cable for comparing observations with model predictions in any form. Our own
applied work has benefited from the application of this method, as documented
here and in many examples in Gelman, Carlin, Stern and Rubin (1995) (also
see Belin and Rubin (1995), Gelman and Meng (1996) and Upadhyay and Smith
(1993)). Meng (1994) discusses a similar method for testing parameter values
within a model rather than for the entire model. West (1986) and Gelfand, Dey,
and Chang (1992) also present posterior predictive approaches to model evalua-
tion, in the context of sequential data and cross-validation of the existing data
set, respectively, rather than comparing to hypothetical replications of the entire
data set.

Our paper is organized as follows. Section 2 consists of definitions, a dis-
cussion of computational issues, and a theoretical illustration of the posterior
predictive approach. Section 3 presents detailed illustration in two applied con-
texts. Section 4 provides discussion of various issues, including a brief comparison
to the prior predictive approach of Box (1980).

2. Posterior Predictive Assessment of Model Fitness

2.1. Posterior predictive assessment using classical test statistics

We use the notation y for the observed data, H for the assumed model, and
θ for the d-dimensional unknown model parameter (d can be infinite). Also,
T denotes a test statistic, a function from data space to the real numbers. In
addition, we may specify a set of auxiliary statistics, A(y)—functions of the data
that are to be held constant in replications (for example, the sample size). In
general, A(y) may be a scalar, a vector, or the empty set.

To avoid confusion with the observed data, y, define yrep as the replicated
data that could have been observed, or, to think predictively, as the data that
would appear if the experiment that produced y today were replicated tomorrow
with the same model, H, the same (unknown) value of θ that produced y, and
the same value of the auxiliary statistics, A(y). Denote the distribution of this
replication by PA:

PA(yrep|H, θ) = P [yrep |H, θ,A(yrep) = A(y)]. (2)

In this notation, the classical p-value based on T is

pc(y, θ) = PA[T (yrep) ≥ T (y) |H, θ], (3)

and a p-value very close to 0 indicates that the lack of fit in the direction of the
test statistic, T (y), is unlikely to have occurred under the model. In (3), y is
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fixed, with all the randomness coming from yrep, and the value of pc is obtainable
only when it is free of the (nuisance) parameter θ. As emphasized in Section 1.1,
the key ingredient of the classical approach is not the p-value given in (3), but
rather locating T (y) in the distribution of T (yrep) derived from (2).

In the Bayesian framework, the inference for θ is provided by its posterior
distribution, P (θ|H, y), where the model H now also includes the prior distribu-
tion, P (θ). Correspondingly, the reference distribution of the future observation
yrep, given A(y), is its posterior predictive distribution,

PA(yrep|H, y) =
∫
PA(yrep|H, θ)P (θ|H, y)dθ. (4)

The observed value of T , T (y), is then plotted against the distribution of T (yrep)
induced by (4). The corresponding tail-area probability, analogous to (3), is

pb(y) = PA[T (yrep)≥T (y)|H, y] =
∫
pc(y, θ)P (θ|H, y)dθ, (5)

which is the classical p-value of (3) averaged over the posterior distribution of
θ. This is the p-value defined by Rubin (1984), which we term the posterior
predictive p-value (also see Meng (1994)) to contrast it with the prior predictive
p-value of Box (1980); see Section 4.1 for discussion.

Clearly, the sampling and posterior predictive reference distributions of
T (yrep) are identical when T is a pivotal quantity, conditional on A(y), under
the model H. For any posited Bayesian model, the posterior predictive approach
has the virtue of constructing a well-defined reference distribution (with a cor-
responding tail-area probability), which is easy to simulate (see Section 2.3), for
any test statistic.

Interestingly, the posterior predictive replication appears to be the replica-
tion that the classical approach intends to address. Figure 1a shows the posterior
predictive reference set, which corresponds to repeating the experiment tomor-
row with the same model, H, and the same (unknown) value of θ that produced
today’s data y. Because θ is unknown, but assumed to have the same value that
generated the current data y, we simulate from its posterior distribution given y.
Figure 1a is a conditional independence graph (see, e.g., Wermuth and Lauritzen
(1990)) that displays the dependence relations between y, θ, and yrep. Given θ,
the data y and the replicate yrep are independent, and both represent possible
datasets resulting from the given value of θ and the model H. The fact that
θ is displayed only once in the graph is not intended to imply that θ is known
or “fixed,” as in a frequentist analysis. (Figures 1b and 1c will be discussed in
Section 4.1.)
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2.2. Posterior predictive assessment using discrepancies

The Bayesian formulation not only handles the problem of nuisance parame-
ters for classical test statistics but also naturally allows the use of test “statistics”
that depend on θ. This generalization beyond Rubin’s (1984) formulation is im-
portant because it allows us to compare directly the discrepancy between the
observed data and the posited model, instead of between the data and the best
fit of the model. It also, as we shall show in Section 2.3, greatly simplifies the
computation of tail-area probabilities. Parameter-dependent test statistics have
been suggested before by Tsui and Weerahandi (1989) and Meng (1994) for the
case of testing parameters within a model. In particular, Tsui and Weerahandi
(1989) termed such a statistic a “test variable” and Meng (1994) called it a “dis-
crepancy variable”. We prefer the latter as it emphasizes that the focus here is
to measure discrepancies between a model and the data, not to test whether a
model is true; we will also drop the term “variable” to avoid possible confusion
with model variables (e.g., age).

For a selected discrepancy, D(y; θ), its reference distribution is derived from
the joint posterior distribution of yrep and θ,

PA(yrep, θ|H, y) = PA(yrep|H, θ)P (θ|H, y). (6)

This replication is a natural extension of (4), which is a marginal distribution of
(6). Directly locating the realized value, D(y; θ), within its reference distribution,
however, becomes nonfeasible when D(y; θ) depends on the unknown θ. The clas-
sical tail-area approach now becomes one possible technical device for measuring
the location. Specifically, we can formally define a tail-area probability of D
under its posterior reference distribution:

pb(y) = PA[D(yrep; θ)≥D(y; θ)|H, y], (7)

which includes pb of (5) as a special case. Interestingly, although the realized
value itself is not observable, this posterior predictive p-value is well defined and
calculable. The reference set for the discrepancy is the same as that in Figure 1a,
except that it is now composed of pairs (yrep, θ) instead of just yrep. The term
“realized” discrepancy is borrowed from Zellner (1975), where such discrepancies
were used for conducting Bayesian analysis of regression error terms (i.e., no
predictive replications were involved). Also see Chaloner and Brant (1988) and
Chaloner (1991) for related work.

By suitably eliminating its dependence on unknown θ, we can also construct
classical test statistics from a discrepancy. For example, as illustrated in Section
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2.4 for the χ2 test, the classical statistics that arise from comparing data with
the best fit of the models typically correspond to the minimum discrepancy:

Dmin(y) = min
θ

D(y; θ).

Another possibility is the average discrepancy statistic,

Davg(y) = E(D(y; θ)|H, y) =
∫
D(y; θ)P (θ|H, y)dθ.

The corresponding posterior predictive p-values are defined by (5) with T replaced
by Dmin and Davg, respectively.

2.3. Computation for posterior predictive assessment

Computation of reference distributions of discrepancies and the correspond-
ing tail-area probabilities can be performed analytically for some simple problems
(e.g., Meng (1994)), but in complicated models, such as arise in practical applica-
tions, it is more easily accomplished via Monte Carlo simulation. This typically
is not an extra computational burden, because simulation is a standard tool for
Bayesian analysis with complex models. In other words, the required computa-
tion is typically a byproduct of the usual Bayesian simulation that provides a set
of draws of θ from the posterior distribution, P (θ|H, y).

Specifically, consider the computation required for comparing the realized
discrepancy D(y; θ) to its reference distribution under (6). Given a set of (pos-
sibly dependent) draws, θj, j = 1, . . . , J , we need only perform the following two
steps for each j:

1. Given θj, draw a simulated replicated data set, yrep j , from the sampling
distribution, PA(yrep|H, θj).
2. Calculate D(y; θj) and D(yrep j; θj).

Having obtained
{(
D(y; θj),D(yrep j ; θj)

)
, j = 1, . . . , J

}
, we can make a scatter-

plot (see Figures 7 and 9) to make a graphical assessment, and estimate pb of (7)
by the proportion of the J pairs for which D(yrep j ; θj) exceeds D(y; θj).

For many problems, step 1 is easy (step 2 is almost always straightforward).
In addition, once the replicates have been drawn, the same draws {(θj , yrep j), j =
1, . . . , J} can be used for as many realized discrepancies as one wishes. This is
particularly convenient if we are interested in measuring the discrepancy of vari-
ous aspects of the model (e.g., mean-squared errors, quantiles, patterns of resid-
uals, etc.). In cases where the classical p-value based on D(y; θ) (i.e., treating θ
as known) is easy to calculate analytically, one can simulate pb more efficiently
by directly averaging the classical p-values, pc(y, θj), j = 1, . . . , J . In any case,
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we recommend making the scatterplot whenever feasible because it tells us the
typical magnitudes ofD(y; θ) andD(yrep; θ). We also note that “double paramet-
ric bootstrap” or various Bayesian bootstrap methods can sometimes be used to
obtain approximations to posterior predictive distributions (e.g., Rubin (1987),
Ch. 4; Tsay (1992)).

Simulating reference distributions for Dmin and Davg is more complicated
because one must minimize or average over θ when evaluating their values.
To compute Dmin, one needs to determine, for each j, the value θ for which
D(yrep j ; θ) is minimized; this may not be an easy computation. The compu-
tation for Davg(y) requires a potentially even more difficult integration. Thus,
while the minimum and average discrepancies are interesting theoretically and
for comparison to classical methods, they are typically much harder to compute
than the realized discrepancy, particular with complicated models.

2.4. A theoretical example: χ2 discrepancies

As a theoretical illustration, consider the χ2 discrepancy, by which we simply
mean a sum of squares of standardized residuals of the data with respect to their
expectations under a posited model. For simplicity, assume that the data are
expressed as a vector of n independent observations (not necessarily identically
distributed), y = (y1, . . . , yn), given the parameter vector θ, and no auxiliary
statistics. The χ2 discrepancy is then

X2(y; θ) =
n∑

i=1

(yi − E(yi|θ))2
Var (yi|θ) . (8)

For example, the discrepancy in equation (1) in Section 1.2 is the above formula
for the Poisson distribution, evaluated at the estimate θ̂. In this section, we
assume that, given θ, expression (8) has an approximate χ2

n distribution.
Now suppose we are interested in assessing the fitness of a model, H, that

constrains θ to lie in a subspace of �n, and for the purpose of theoretical com-
parisons we focus on calculating posterior predictive p-values. Given a prior
distribution, P (θ), on the subspace, we can calculate the posterior predictive
p-value based on X2 as

pb(y) =
∫
P (χ2

n ≥ X2(y; θ))P (θ|H, y)dθ, (9)

where χ2
n represents a chi-squared random variable with n degrees of freedom.

This computation is straightforward, once draws from P (θ|H, y) are obtained,
because the tail-area probability function for χ2

n can be found in any standard
statistical software.
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Computations for posterior predictive p-values for minimum χ2, X2
min, and

average χ2, X2
avg, are more complicated in general, as discussed in Section 2.3.

However, when H is a linear model (i.e., θ is constrained to lie on a hyperplane of
dimension k), the minimum χ2 discrepancy is essentially equivalent to the clas-
sical goodness-of-fit test statistic. (The classical χ2 test is sometimes evaluated
at the maximum likelihood estimate (MLE) and sometimes at the minimum-χ2

estimate, a distinction of some controversy (see, e.g., Berkson (1980)); we con-
sider the minimum χ2 in our presentation, but similar results could be obtained
using the MLE.) Thus X2

min(y) is approximately pivotal with a χ2
n−k distribu-

tion (e.g., Cochran (1952)). Consequently, the posterior predictive p-value can
be approximated by P (χ2

n−k ≥ X2
min(y)).

Furthermore, if θ is given a diffuse uniform prior distribution in the sub-
space defined by a linear model H, then the posterior predictive distributions of
X2(y; θ) and X2

avg(y) are closely related to that of X2
min(y). With the diffuse

prior distribution, the posterior distribution of X2(y; θ) − X2
min(y) is approxi-

mately χ2
k. Then we can decompose the average χ2 statistic as follows:

X2
avg(y) = E[X2

min(y) + (X2(y; θ) −X2
min(y))|y] ≈ X2

min(y) + k,

and thus the average χ2 discrepancy is approximately equivalent to the minimum
χ2 discrepancy, just shifted by a constant, k.

For the realized discrepancy, X2(y; θ), the same decomposition can be ap-
plied to (9), which yields

pb(y) =
∫
P [χ2

n ≥ X2
min(y) + (X2(y; θ) −X2

min)]P (θ|H, y)dθ
= P (χ2

n ≥ X2
min(y) + χ2

k) = P (χ2
n − χ2

k ≥ X2
min(y)),

where χ2
n and χ2

k are independent random variables. In other words, assessing a
linear model using X2(y; θ) is equivalent to using X2

min(y) but with a different
reference distribution: instead of a χ2

n−k, the reference distribution is the differ-
ence between two independent χ2 random variables, χ2

n − χ2
k. This implies that

the posterior predictive p-value for the realized discrepancy, X2(y; θ), is larger
than that from X2

min(y); the reference distribution of the former has a larger
variance, 2(n + k) versus 2(n − k). Suppose, for example, n = 250, k = 200,
and data y are observed for which X2

min(y) = 80. Under X2
min(y), this is three

standard deviations away from the mean of the χ2
50 reference distribution—an

indication of lack of fit. The corresponding reference distribution for X2(y; θ) is
χ2

250 −χ2
200, which has the same mean of 50 but with a larger standard deviation

of 30, and thus the data do not appear to be a surprise at all.
How do we interpret this difference? The lack of fit under X2

min shows that
the data are not as close to the best fitting model, in terms of the sum of the
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standardized residuals, as would be expected from a model with a large number
of parameters. However, it is possible that this lack of fit will not adversely affect
practical inferences from the data. In the example considered here, the realized
discrepancy indicates that the data are reasonably close to what could be ex-
pected in replications under the hypothesized model. The extra 30 by which the
minimum discrepancy exceeds its expectation seems large compared to 50 degrees
of freedom but small when examined in the context of the 250-dimensional space
of y. In the next section, we indicate the possibility of using the difference be-
tween the posterior predictive assessments from these two discrepancies to detect
whether the lack of fit is due to the likelihood or due to the prior specification.

If prior knowledge of θ is added, as expressed by a nonuniform prior distribu-
tion, the posterior predictive p-value for X2

min(y) is unchanged, since X2
min(y)

is still a pivotal quantity in the linear model case, but the assessments based on
X2

avg(y) and X2(y; θ) now change, as they are now measuring discrepancy from
the prior model as well as the likelihood. Sensitivity to the prior distribution
is discussed in Section 3 in the context of our applied examples, and further
discussed in Section 4.2.

3. Illustration with Two Applied Examples

3.1. Fitting an increasing, convex mortality rate function

For a simple real-life example, we reanalyze the data of Broffitt (1988), who
presents a problem in the estimation of mortality rates (Carlin (1992), provides
another Bayesian analysis of these data). For each age, t, from 35 to 64 years,
inclusive, Table 1 gives Nt, the number of people insured under a certain policy
and yt, the number of insured who died. (People who joined or left the policy in
the middle of the year are counted as half.) We wish to estimate the mortality
rate (probability of death) at each age, under the assumption that the rate is
increasing and convex over the observed range. The observed mortality rates
are shown in Figure 2 as a solid line. The observed deaths at each age, yt, are
assumed to follow independent binomial distributions, with rates equal to the
unknown mortality rates, θt, and known population sizes, Nt (equivalently, we
could consider the values Nt as random but treat them as auxiliary statistics).
Because the population for each age was in the hundreds or thousands, and the
rates were so low, we use the Poisson approximation for mathematical conve-
nience: P (y|θ) ∝ ∏

t θ
yt
t e

−Ntθt . An optimization routine was used to maximize
this likelihood, under the constraint that the mortality rate be increasing and
convex. The maximum likelihood fit is displayed as the dotted line in Figure
2. Having obtained an estimate, we would like to check its fit to the data. The
obvious possible flaws of the model are the Poisson distribution and the assumed
convexity.
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Table 1. Mortality rate data from Broffitt (1988)

number number number number
age, t insured, Nt of deaths, yt age, t insured, Nt of deaths, yt

35 1771.5 3 50 1516.0 4
36 2126.5 1 51 1371.5 7
37 2743.5 3 52 1343.0 4
38 2766.0 2 53 1304.0 4
39 2463.0 2 54 1232.5 11
40 2368.0 4 55 1204.5 11
41 2310.0 4 56 1113.5 13
42 2306.5 7 57 1048.0 12
43 2059.5 5 58 1155.0 12
44 1917.0 2 59 1018.5 19
45 1931.0 8 60 945.0 12
46 1746.5 13 61 853.0 16
47 1580.0 8 62 750.0 12
48 1580.0 2 63 693.0 6
49 1467.5 7 64 594.0 10

35 40 45 50 55 60 65

0
10

20
30

40

death
rate

per
1000

age

Figure 2. Observed mortality rates and the maximum likelihood estimate of
the mortality rate function, under the constraint that it be increasing and
convex.

The χ2 discrepancy between the data and the maximum likelihood estimate
is 30.0, and the minimum χ2 discrepancy (using minimum χ2 estimates in place
of the MLE) is 29.3. These are based on 30 data points, with 30 parameters
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being fit. There are obviously, however, less than 30 free parameters, because of
the constraints implied by the assumption of increasing, convex rates. In fact,
the MLE lies on the boundary of constraint space; the solution is essentially
characterized by only four parameters, corresponding to the two endpoints and
the two points of inflection of the best-fit increasing, convex curve in Figure
2. So perhaps a χ2

26 distribution is a reasonable approximation to the reference
distribution for the minimum χ2 statistic?

As a direct check, we can simulate the sampling distribution of the minimum
χ2 statistic, assuming θ = θ̂, the MLE. The resulting distribution of X2

min(yrep)
is shown in Figure 3; it has a mean of 23.0 and a variance of 43.4 (by comparison,
the mean and variance of a χ2

26 distribution are 26 and 52, respectively). The
observed value, X2

min(y) = 29.3, is plotted as a vertical line in Figure 3; it
corresponds to a tail-area probability of 16%. The distribution of Figure 3 is
only an approximation, however, as the value of θ that generates the current
data is unknown. In particular, we do not expect the true θ to lie exactly on
the boundary of the constrained parameter space. Moving θ into the interior
would lead to simulated data that would fit the constraints better, and thus
the distribution of Figure 3 provides a conservative p-value for the minimum χ2

discrepancy.

0 20 40 60

X2
min(yrep)

Figure 3. Histogram of 1000 simulations from the reference distribution for
X2

min(yrep), the minimum χ2 statistic for the mortality rates: classical ap-
proximation with θ set to the maximum likelihood estimate. The vertical line
represents X2

min(y), the observed value of the minimum χ2 statistic.

To conduct a Bayesian inference, we need to define a prior distribution for θ.
Since we were willing to use the MLE, we use a uniform prior distribution, under
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the constraint of increasing convexity. (The uniform distribution is also chosen
here for simplicity; Broffitt (1988) and Carlin (1992) apply various forms of the
gamma prior distribution.) Samples from the posterior distribution are generated
by simulating a random walk through the space of permissible values of θ, using
the Metropolis algorithm. Nine parallel sequences were simulated, three starting
at the MLE and three at each of two crude extreme estimates of θ—one a linear
function, the other a quadratic, chosen to loosely fit the raw data. Convergence
of the simulations was monitored using the method of Gelman and Rubin (1992),
with the iterations stopped after the within-sequence and total variances were
roughly equal for all components of θ. Nine draws from the posterior distribution
for θ, one from each of the simulated sequences, are plotted as dotted lines in
Figure 4, with the MLE from Figure 2 displayed as a solid line for comparison.

35 40 45 50 55 60 65

0
10

20
30

40

death
rate

per
1000

age

Figure 4. Nine draws from the posterior distribution of increasing, convex
mortality rates, with the maximum likelihood estimate (solid line) as a com-
parison.

3.2. Posterior predictive assessment for the mortality rate example

To make a posterior predictive assessment of the fitness, it is necessary to
define a reference set of replications; i.e., a set of “fixed features” in the notion of
Rubin (1984). For this dataset, we defined replications in which the (observed)
population size and (unobserved) mortality rates at each age stayed the same,
with only the number of deaths varying, according to their assumed Poisson
distributions. For each draw from the posterior distribution of θ, we simulated
a replication; a random sample of nine replicated datasets corresponding to the
previous nine draws of θ is plotted as dotted lines in Figure 5, with the observed
frequencies from Figure 2 displayed as a solid line for comparison.
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35 40 45 50 55 60 65

0
10

20
30

40

death
rate
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1000

age

Figure 5. Nine draws from the posterior predictive distribution of mortality
rates, corresponding to the nine draws of Figure 4, with the raw data (solid
line) as a comparison.

The fitness of the model can be checked directly by examining a graph such
as Figure 5—is the solid line an outlier in the forest of dotted lines?—or quan-
titatively, by defining a statistic such as y64, the number of deaths at age 64,
and comparing it to the distribution of simulated values of yrep

64 . We emphasize
that whenever feasible, graphical assessment, including those corresponding to
p-value calculations, should be made, because graphs provide the opportunity to
directly inspect the magnitude of the various quantities, as well as helping to
detect problems that may not be easily “visible” otherwise (e.g., Figure 5 shows
that the lack of fit is much more prominent for later ages; we will return to this
point shortly).

Checking residuals, especially in the form of the χ2 discrepancy, is another
standard practice for detecting lack of fit, and here we illustrate the minimum
and realized χ2 discrepancies discussed in Section 2.4. Besides illustrating the
posterior predictive approach graphically, we also estimate the associated p-value
as it provides a useful probability statement (when interpreted correctly) sup-
plementing the graphical assessment. For each simulated replication, yrep, the
optimization routine was run to find the minimum χ2 discrepancy, X2

min(yrep). A
histogram of these minimum χ2 values—the reference distribution for X2

min(y)—
is displayed in Figure 6. With a mean of 21.1 and a variance of 39.6, this posterior
predictive reference distribution has lower values than the approximate distribu-
tion based on the MLE and displayed in Figure 3. The posterior predictive
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p-value of the minimum χ2 is 10%, which is more extreme than the maximum
likelihood approximation, as expected.

0 20 40 60

X2
min(yrep)

Figure 6. Histogram of 1000 simulations from the reference distribution for
X2

min(yrep), the minimum χ2 statistic for the mortality rates, using the pos-
terior predictive distribution. The vertical line represents X2

min(y), the ob-
served value of the minimum χ2 statistic.
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Figure 7. Scatterplot of predictive vs. realized χ2 discrepancies for the mor-
tality rates, under the joint posterior distribution; the p-value is estimated by
the proportion of points above the 45◦ line.



750 ANDREW GELMAN, XIAO-LI MENG AND HAL STERN

For the realized discrepancy, Figure 7 shows a scatterplot of the realized
discrepancy, X2(y; θ) and the predictive discrepancy, X2(yrep; θ), in which each
point corresponds to a different value of (θ, yrep) drawn from the posterior dis-
tribution, as described in Section 2.3. The tail-area probability of the realized
discrepancy is just the probability that the predictive discrepancy exceeds the
realized discrepancy, which in this case equals 6.3%, the proportion of points
above the 45◦ line in the figure. The realized discrepancy p-value is more extreme
than the minimum discrepancy p-value, which perhaps suggests that, given the
constraint of increasing convexity, it is the uniform prior distribution, not neces-
sarily the likelihood, that does not fit the data. (The analysis of linear models
in Section 2.4 suggests that if the likelihood were the source of the poor fit, the
minimum discrepancy assessment would give the more extreme tail-area proba-
bility. Assessing sources of lack of fit is an important topic that requires further
investigation; related discussion is provided in Section 4.1.)

Even if we do not overhaul the model immediately, it is useful to note that
the posterior predictive datasets were mostly higher than the observed data for
the later ages (see Figure 5), and to consider this information when reformulating
the model or setting a prior distribution for a similar new dataset. Even if the
assumption of convex mortality rate is true in the natural population, it is very
likely that the insurance company has screened out some high-risk older people,
and thus destroys the convexity for later ages. In addition, there are general
problems with using the uniform prior distribution for parameters constrained
to be increasing, as discussed by Gelman (1996) in the context of this example.

3.3. Assessing fitness of a mixture model in psychology

Stern, Arcus, Kagan, Rubin, and Snidman (1995) fit a latent class model to
the data from an infant temperament study. Ninety-three infants were scored on
the degree of motor activity and crying to stimuli at 4 months and the degree of
fear to unfamiliar stimuli at 14 months. Table 2 gives the data, y, in the form of
a 4×3×3 contingency table. The latent class model specifies that the population
of infants is a mixture of relatively homogeneous subpopulations, within which
the observed variables are independent of each other. The parameter vector, θ,
includes the proportion of the population belonging to each mixture class and the
multinomial probabilities that specify the distribution of the observed variables
within a class. Psychological and physiological arguments suggest two to four
classes for the mixture, with specific predictions about the nature of the infants
in each class.

Table 3 summarizes the results of fitting one through four-class models us-
ing the EM algorithm. A discrepancy usually associated with contingency ta-
bles is the log likelihood ratio (with respect to the saturated model), D(y; θ) =
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2
∑

i yi log[yi/E(yi|θ)], where the sum is over the cells of the contingency table.
The final column in Table 3 gives Dmin(y) for each model. The two-class mixture
model provides an adequate fit that does not appear to improve with additional
classes. The maximum likelihood estimates of the parameters of the two-class
model (not shown) indicate that the two classes correspond to two groups: the
uninhibited children (low scores on all variables) and the inhibited children (high
scores on all variables). It is well known that the usual asymptotic reference
distribution for the likelihood ratio test (the χ2 distribution) is not appropriate
for mixture models (e.g., Titterington, Smith, and Makov (1985)).

Table 2. Infant temperament data

motor cry fear= 1 fear= 2 fear= 3
1 1 5 4 1
1 2 0 1 2
1 3 2 0 2
2 1 15 4 2
2 2 2 3 1
2 3 4 4 2
3 1 3 3 4
3 2 0 2 3
3 3 1 1 7
4 1 2 1 2
4 2 0 1 3
4 3 0 3 3

Table 3. Comparing latent class models for the data of Table 2

Degrees of
Model Description Freedom Dmin(y)
Independence (= 1 class) 28 48.761
2 Latent Classes 20 14.150
3 Latent Classes 12 9.109
4 Latent Classes 4 4.718

At one level, this is a model selection problem (i.e., choosing the number of
classes) for which a complete Bayesian analysis, incorporating the uncertainty in
the number of classes, could be carried out. However, such an analysis is com-
plicated by the fact that the parameters of the various probability models (e.g.,
the two- and four-class mixture models) are related, but not in a straightforward
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manner. To be more explicit, theory suggests at least two fundamentally differ-
ent groups of children, the inhibited and the uninhibited. Additional classes, if
they are present, represent a bifurcation of one or both of these classes, and the
parameters of such classes are related to the parameters of the two-class model
in a way that is difficult to model explicitly. Given the small amount of data, we
restrict our attention to only assessing the fit of the two-class model.

The prior distribution of the parameters of the latent class model is taken
to be a product of independent Dirichlet distributions: one for the class propor-
tions, and one for each set of multinomial parameters within a mixture class.
The Dirichlet parameters were chosen so that the multinomial probabilities for
a variable (e.g., motor activity) are centered around the values expected by the
psychological theory but with large variance. The use of a weak but not uniform
prior distribution helps identify the mixture classes (e.g., the first class of the
two-class mixture specifies the uninhibited infants). With this prior distribution
and the latent class model, draws from the posterior distribution are obtained
using the data augmentation algorithm of Tanner and Wong (1987). Ten widely
dispersed starting values were selected and the convergence of the simulations
was monitored using the method of Gelman and Rubin (1992). The draws from
the posterior distribution of the parameters for the two-class model were cen-
tered about the MLE. Rubin and Stern (1994) describe the prior distribution
and resulting Bayesian analysis more fully. Their analysis of the data includes a
posterior predictive evaluation of the likelihood ratio statistic for testing a one-
class model versus a two-class model but does not directly address the fit of the
model.

3.4. Posterior predictive assessment for the psychology example

To assess the quality of fit of the two-class model, we define replications of
the data in which the parameters of the latent class model are the same as those
responsible for the available data. These replications may be considered as data
sets that would be expected if new samples of infants were to be selected from
the same population. For each draw from the posterior distribution, a replicated
data set yrep was drawn according to the latent class sampling distribution. The
reference distribution of the minimum discrepancy, Dmin(yrep), based on 500
replications, is shown in Figure 8 with a vertical line indicating the observed
value Dmin(y). The mean of this distribution, 23.4, and the variance, 45.3,
differ nontrivially from the χ2

20 distribution that would be expected if the usual
asymptotic results applied. The posterior predictive p-value is 93% based on
these replications.
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0 20 40 60

Dmin(yrep)

Figure 8. Histogram of 1000 simulations from the reference distribution for
Dmin(yrep), the log likelihood ratio statistic for the latent class example, using
the posterior predictive distribution. The vertical line representsDmin(y), the
observed value of the minimum discrepancy.
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Figure 9. Scatterplot of predictive vs. realized log likelihood ratio discrep-
ancies for the latent class model, under the joint posterior distribution; the
p-value is estimated by the proportion of points above the 45◦ line.



754 ANDREW GELMAN, XIAO-LI MENG AND HAL STERN

Using Dmin with mixture models is often problematic because of multi-
modality of the likelihood. For the data at hand, two modes of the two-class
mixture likelihood were found, and for larger models the situation can be worse.
Model assessments based on only a single mode, such as with Dmin, may ignore
important information.

In contrast, the realized discrepancy, D(y; θ), uses the entire posterior distri-
bution rather than a single mode. In addition, the realized discrepancy requires
much less computation, as discussed in Section 2.3. Figure 9 is a scatterplot of
the discrepancies for the observed data and for the replications under the two-
class model. The p-value for the realized discrepancy is 74% based on 500 Monte
Carlo draws. Thus, we have not obtained any evidence suggesting lack of fit
of the two-class model. Again, this says nothing about the correctness of the
model, only that the values of the discrepancy measures we have examined are
reasonable under the posited model.

To indicate the type of result that we might obtain for a clearly inade-
quate model, we performed the same calculations for the one-class mixture model
(equivalent to the independence model for the contingency table), yielding p-
values for the minimum and realized discrepancies of 2.4% and 5.8%, respectively.
Here the realized discrepancy gives the less extreme p-value, which seems to con-
firm that the lack of fit is due to the likelihood, not the prior distribution (as
mentioned in Section 3.2, this assertion requires validation from further studies).
At this point, a person who is using posterior predictive p-values in the Neyman-
Pearson fashion might be troubled by the fact that the two p-values are on the
opposite sides of the conventional cut-off point 5%. We emphasize again that we
are merely using them as probability measures of lack of fit of various aspects of
the posited model, which we know is at best a useful inferential approximation to
the underlying true model. Nevertheless, empirical and theoretical studies so far
do suggest that posterior predictive p-values generally have reasonable long-run
frequentist properties. For example, the theoretical results on Type I error pre-
sented in Meng (1994) can be easily extended to replications involving auxiliary
statistics, as presented in an early version of this paper, Gelman, Meng, and
Stern (1992).

4. Making Choices

4.1. Differences among replications and comparison to the prior pre-
dictive distribution of Box (1980)

Choosing replications amounts to specifying the joint distribution,
P [y, θ, yrep |A(yrep) = A(y)], from which all reference distributions can be derived
by conditioning on y, with the auxiliary statistics being fixed at their observed
values. Three different replications are illustrated in Figure 1. Figure 1a is
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the posterior predictive replication, the focus of this paper, corresponding to
repeating the experiment tomorrow with the same (unknown) value of θ that
produced today’s data, y. In contrast, Figure 1b shows the prior predictive
replication, advocated by Box (1980), in which new values of both θ and y are
assumed to occur tomorrow. Figure 1c shows a mixed predictive replication that
can be useful with hierarchical models, where we may choose to assume that the
same value of the hyperparameters α defines the replications but that new values
of the parameters θ are assumed to occur. In practice, the choice of a model
for yrep, as well as the choice of auxiliary statistics, should depend on which
hypothetical replications are of interest.

Unlike the posterior predictive replication, the prior predictive replication
is undefined under improper prior distributions, which limits its use in practice.
More generally, if the parameters θ are well-estimated from the data, posterior
predictive assessments give results similar to classical procedures for reasonable
prior distributions. In contrast, results of prior predictive assessments are
sensitive to the prior distribution, even in analyses with a large amount
of data in which the prior distribution is essentially irrelevant to posterior
inferences.

As an illustration, we compare the prior and posterior predictive distribu-
tions for the following simple theoretical example. Consider 100 observations,
y1, . . . , yn, modeled as independent samples from a N(θ, 1) distribution with a
diffuse prior distribution, say, p(θ) = 1

2A for θ ∈ [−A,A] with some extremely
large value of A, such as 105. We wish to check the model using, as a test statis-
tic, T (y) = maxi|yi|: is the maximum absolute observed value consistent with
the normal model? We choose this test statistic as an illustration of the kind of
measure that might be used to identify outliers or extreme points. Consider a
data set in which y = 5.1 and T (y) = 8.1. To perform the posterior predictive
check, we first determine the posterior distribution of θ, N(5.1, 1/100), and then
compute the posterior predictive distribution of T (yrep) by simulation: for each
posterior simulation of θ, we draw 100 values yrep

i ∼ N(θ, 1) and compute the
maximum of their absolute values. Figure 10 displays a histogram of 1000 val-
ues of T (yrep); 149 of the 1000 values are greater than 8.1, giving an estimated
p-value of 15%. Thus the observed T (y) is larger than usual under the model,
but not surprisingly so.
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6.5 7.0 7.5 8.0 8.5 9.0

T (yrep)

Figure 10. Histogram of 1000 simulations from the posterior predictive distri-
bution for T (yrep), the maximum absolute observed value for the hypothetical
normal example. The vertical line represents T (y), the observed value of the
test statistic.

In contrast, the prior predictive distribution of T (y), given the diffuse uni-
form prior distribution on θ, is spread roughly uniformly from 0 to A (with
some nonuniformity at the boundaries). For a large value of A, the observed
T (y) = 8.1 is in the extreme left tail of the distribution, with a p-value close
to 1 (or, equivalently, a p-value close to 0 for the test statistic −T (y)). The
difference between the posterior and prior predictive replications is that the for-
mer treats the prior distribution as an outmoded first guess, whereas the latter
treats the prior distribution as a true “population distribution.” It is commonly
useful in Bayesian analysis to use a diffuse prior distribution for parameters in a
well-understood model with the understanding that posterior inferences will be
reasonable. (For this particular example, the prior and posterior checks could be
made more similar by choosing a test statistic that is approximately pivotal, such
as T (y) = maxi|yi| − |y|, but our general desire is to be able to check the fit of
the model for any function of data and parameters, not just pivotal quantities.)

4.2. The impact of prior distributions

As we stated in the previous section, in the posterior predictive framework,
the prior distribution for the parameters of the model need not be especially
accurate (and it is often not accurate in routine practice), as long as the posterior
predictions are “near” the data. This relates to the observation that Bayesian
methods based on convenient prior models (normality, uniformity, etc.) can often
yield useful inferences in practice.

To check the impact of prior distributions, we calculated posterior predictive
p-values for the mixture example using one- and two-class models under a variety
of prior distributions. Two properties of the prior distribution were varied. The
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center of each class of the prior distribution was chosen either to match the values
suggested by the psychological theory, or to represent a uniform distribution over
the levels of each multinomial variable. The strength of the prior information was
also varied (by changing the scale of the Dirichlet distributions as measured by
the sum of the Dirichlet parameters). As long as the prior distributions are not
particularly strong, the size of the p-values and the conclusions reached remained
essentially unchanged. This was true for p-values based on both minimum and
realized discrepancies.

If the prior distribution is strongly informative, however, it affects the tail-
area probabilities of different discrepancies in different ways. Realized discrep-
ancies are naturally quite sensitive to such prior distributions. The posterior
predictions obtained under strong incorrect prior specifications may be quite far
from the observed data. For example, in Section 3.3, a strong prior distribution
specifying two mixture classes, but not corresponding to inhibited and uninhib-
ited children, leads to a tail-area probability of essentially zero. By comparison,
minimum discrepancies are much less sensitive to the prior distribution, because
the original dataset is judged relative to the best-fitting parameter value rather
than to the entire posterior distribution. Conversely, a strong prior distribution,
if trusted, can be used to more effectively assess the fit of the likelihood part of
the model.

4.3. Choosing discrepancies

In the traditional framework of testing the correctness of a null hypothesis,
the choices of test statistics are strongly influenced by the consideration of power,
which is necessarily governed by the specifications of alternative hypotheses. The
reason for preferring a more powerful test is to increase the chance of rejecting a
null hypothesis when it is wrong. In the context of checking a whole model (in
contrast to testing a few parameters within a model), we know that virtually all
models are wrong, and thus a more relevant focus is how the model fits in aspects
that are important for our problems at hand. Therefore, the choice of discrep-
ancies should reflect our inferential interests, as well as some standard checks
on overall fitness (such as those measured by the χ2 discrepancy). For example,
Gelman, Carlin, Stern, and Rubin (1995), §18.3, check the fit of a model used to
estimate a population total from a simple random sample; they use the sample
total as a test statistic and find poor fits under some reasonable-looking models
(such as the log-normal and power-transformed normal). They find that models
that poorly fit the sample total yield poor inferences for the population total,
although the same models can perform excellently for estimating the population
median. We also note that there is no need of adjusting for multiple comparisons
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when we use more than one discrepancy because here we are merely assessing
the fitness of a model from various perspectives.

We emphasize that the posterior predictive approach is suitable for assessing
the fitness of a single model (which could be a super-model that incorporates
various alternative models, as in Leamer (1978), Madigan and Raftery (1994),
and Draper (1995)) to the available data. As we illustrate here and elsewhere
(e.g., Gelman, Carlin, Stern, and Rubin (1995)), it is entirely possible to con-
struct sensible discrepancies to detect the lack of fit of a single model, in the
absence of explicit alternative models. We disagree with the opinion that one
should never reject a model unless there is an available alternative. A consumer
surely can refuse to buy a defective product, even if it is the only item avail-
able. If the consumer does decide to purchase it despite its deficiencies, he or she
surely still would like to know about its defects and their possible consequences.
The posterior predictive assessment provides an (imperfect) method for detect-
ing the “defective products” of applied statistics—invalid models. Whenever we
choose to work with a model, we should be aware of its deficiencies, always being
aware of the difference between practical significance and statistical significance.
We should always report any known defects of our chosen models, so as not to
mislead others who might be inclined to use the same models, as they may use
the model for purposes for which the model defects may be far more damaging.
Indeed, Bayesian inference is a powerful tool for learning about model defects,
because we have the ability to examine, as a discrepancy measure, any function
of data and parameters.
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COMMENT : UTILITY, SENSITIVITY ANALYSIS, AND

CROSS-VALIDATION IN BAYESIAN MODEL-CHECKING

David Draper

University of Bath

It might be best discussing this interesting paper to step back a bit and
see where its message fits into the overall picture of Bayesian (and frequentist)
modeling. I find it useful in my own applied work to think like a de-Finetti-
style Bayesian when formulating inferences and predictions, and to think like a
frequentist when evaluating their quality (by paying attention to calibrative sum-
maries of discrepancies between actual observables and predictive distributions
for those observables), and it is in the spirit of this sort of attempted fusion of
coherence and calibration that I make these comments.
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In the de Finetti approach you begin with observable (and already observed)
data y, and wish on the basis of y and assumptions A–about conditional ex-
changeability relationships, background beliefs about how the world works, and
contextual information about how the data were gathered–to assess uncertainty
about observables y∗ not yet seen, through predictive distributions p(y∗|y,A).
Inference about unobservable parameters θ is often expressible in this framework
by telling hypothetical stories about quantities that emerge from the conditional
exchangeability judgments. In the mortality example of Gelman, Meng and Stern
(1996), GMS, for instance, you start with the number Nt of people carrying a
particular insurance policy and the number yt of those people who died in a
particular (unspecified) time period, for ages t from 35 to 64. Since mortality
generally increases as people get older, it might well be reasonable to model
your uncertainty about the implied person-level death indicators not by taking
these indicators as unconditionally exchangeable, but instead as conditionally
exchangeable given age (as in GMS). This leads through the usual device of de
Finetti’s theorem for 0/1 outcomes to the positing of an “underlying death rate”
θt for each age, interpretable as the observed death rate of a hypothetical infi-
nite sample of policy-holders of age t, and the requirement, to achieve at least
approximate coherence, that you adopt the model θ = (θ35, . . . , θ64) ∼ p(θ),

(yt|θt)
indep∼ bin(Nt, θt) for some prior distribution p(θ) which ought to reflect the

presumed monotone relationship between mortality and age.
Thus in this problem the task of (initial) model selection–which in general

may be regarded as the choice of a subset of the space M = {all possible models
for the observables} on which to place nonzero prior probability–has reduced
to the specification of a prior p(θt, t = 35, . . . , 64) on 30 quantities which must
live between 0 and 1 and which ought perhaps to be nondecreasing in t. Once
such a prior has been specified, coherence has taken us as far as it can, without
addressing the calibrative concern that the resulting model, however reasonable
in appearance, may not accord well with the observables. This is where GMS
come in: their contribution is to further develop Rubin’s (1984) work on posterior
predictive assessment, as one possible way of measuring any discrepancies that
may exist between the observables and their predictive distributions under a
given model specification.

That there is a pressing need to perform such calibrative work with any
posited model has become even clearer at a time when Markov Chain Monte
Carlo (MCMC) methods permit the realization of de Finetti’s modeling ap-
proach in much more complicated settings than ever before. (In fact, Bayesians
are dwelling so much these days on another category of diagnostics–MCMC
convergence-monitoring–that a strong reminder of the value of model-checking
is all the more welcome.) The model-specification problem would have been
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even worse in GMS’s insurance example had the observables yt of interest been
continuous instead of dichotomous: in that case, with the same conditional ex-
changeability assumptions as before, de Finetti tells us that for coherence you
would have to posit the existence of an “underlying cdf” Ft, interpretable as the
empirical cdf for the outcome yt based on a hypothetical infinite sample of policy-
holders of age t, and adopt the model F = (F35, . . . , F64) ∼ p(F ), (yt|Ft)

indep∼ Ft

for some prior distribution p(F ) on F30, where F is the space of all possible
cdfs on the real line. Nobody knows how to specify such a prior in a truly
rich way. Instead (Draper (1995a)) people typically cheat, by looking at things
like probability plots of the data in each age category; if, e.g., the data look
roughly lognormal, you might replace the infinite-dimensional prior specifica-
tion problem on Ft ∈ F by a two-dimensional Gaussian specification, as in
(µt, σt) ∼ p(µt, σt), (log yt|µt, σt) ∼ N(µt, σ

2
t ). With the circular, use-the-data-

twice character of this approach to model-building, calibrative checks of the qual-
ity of a model’s predictions on new data not used in the model-selection process
become even more important.

However, having made the case for model-checking, it does not necessarily
follow that GMS’s predictive p-values based on omnibus “discrepancy variables”–
in their examples, χ2–style summaries–should be the way to do it. Here are a
few comments on GMS’s method and some thoughts on other ways to proceed.
• In their examples GMS do not share with us their approach to the entire

model-building process–from initial specification, through modification when
deficiencies are identified, to final model acceptance–but I suspect from their
writings elsewhere that they agree broadly with the model-expansion strategy
exemplified by Box and Tiao (1962), Draper (1995a), and others: start with
something reasonable based on context, check it in relevant ways, expand it
hierarchically (either continuously or discretely) in directions indicated by any
deficiencies found (note that the averaging over competing models implied by
this expansion will be guided numerically by Bayes factors, not p-values), and
stop when it passes all relevant checks. But how is the word “relevant” in this
strategy to be made operational? To put it another way, the point of model-
checking is to see if the current front-running model is good enough; but if you
buy into GMS’s framework, how do you know if a particular predictive p-value
is small enough to render the current model unacceptable? More generally
and more importantly, the model should indeed be good enough, but good
enough for what purpose?
Fully satisfying answers to these questions must include an attempt to quantify
the utilities involved in taking the available actions (e.g., simplify the current
model, leave it alone, expand it), and I suspect that in many (most?) cases
you would not be led to p-values at all if you went straight to utility (e.g.,



POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS 763

the lack of fit for high ages in GMS’s Fig. 2 would be fatal for some purposes
to which the monotone model might be put but unimportant for others, and
how do p-values help you make that distinction?). If the explicit goal is
real-world decision-making, then model-checking must be driven by utilities
elicited from the structure of the problem; if the short-term goal is scientific
summary, Spiegelhalter (1995) has sketched a partial utility solution, by using
Bernardo’s (1979) results on the relationship between information criteria and
scientific utility to suggest when a simple model in an expanded class of models
may suffice. This tells us when to simplify, but not when (and how) to expand
the current model, and when to stop expanding. Hodges (1987) must certainly
be right that the entire modeling process should be thought of as a constrained
optimization problem over a set of resources that includes the analyst’s time–
which if taken seriously will tell you when to stop–but I am not aware of any
serious applications of this idea yet.
The punchline, often noted elsewhere (e.g., Lindley (1968)) but more fre-
quently honored in the breach than in the observance, is that utility is difficult
but cannot be ignored. It is ironic that GMS bring up the difference between
practical and statistical significance in the last three sentences of the paper.
Their methods are solely about the latter; if they had addressed the former
they would have had to come to grips with utility.

• GMS assert in Section 4.3 that “. . . it is entirely possible to construct sensible
discrepancy variables to detect the lack of fit of a single model, in the absence
of explicit alternative models,” landing them squarely in a kettle of soup that
has been brewing since the arguments between Neyman and Fisher in the
1920s over the role of the alternative hypothesis in significance testing. It is
true that their method makes no explicit appeal to an alternative model, but
how do they recommend that people choose discrepancy measures in practice?
For example, why did they focus on y64 in Section 3.2? Because they had an
alternative in mind in which the underlying mortality rates for policy-holders
were not in fact monotone.
Every choice of discrepancy measure implicitly specifies an alternative to at
least some extent (this is even true of omnibus discrepancies like χ2, because
in any given problem you can usually think of two or more omnibus-style
measures which may yield different strengths of evidence against the current
model). It is not possible to avoid alternative models entirely; the thing
to do is to use sensitivity analysis to see if variation across the plausible
alternatives is modest, on the inferential and predictive scales of practical
significance–if so, expand the model hierarchically; if not, report the results
of the sensitivity analysis and stop.
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• It is notable that GMS’s Figs. 2, 4 and 5 provide much more insight in the
mortality example than their p-values and the plots that go with them. In
thinking about this example I was led to produce full-posterior inferential plots
(Figs. 1 and 2) as a first step in assessing model inadequacy, by (1) choosing a
prior for (θ35, . . . , θ64) in which each component was U(0, 0.05) subject to the
constraint that θ30 ≤ θ31 ≤ · · · ≤ θ64, (2) using Gibbs sampling to simulate
from the joint posterior for all 30 components of θ, (3) making perspective
and percentile plots of this joint posterior, and (4) superimposing the observed
mortality rates with two-standard-error traces either way. (In this modeling
I have not enforced a convexity constraint as GMS do, but it is evident from
Fig. 2 that convexity does not have much effect in this case. Incidentally, I
did not find it necessary to use an MCMC convergence-monitoring strategy
that was anywhere near as complicated as the Gelman-Rubin approach used
by GMS–a burn-in of 1K–5K, with starting values obtained from a regression
of yt/Nt on (t− t̄) and (t− t̄)2, followed by a single run of 5K–10K produced
results in good agreement with overdispersed strategies.) The uncertainty
bands shown in Fig. 2 are inferential (about the underlying rates) rather
than predictive (about future observed counts) in character, but even without
the addition of predictive uncertainty (see below) it is clear that something
funny is going on in the high age groups. Model expansion in this example
might involve telling a selection-bias story like the one mentioned by GMS,
in which the underlying death rates in the population at large are monotone
with age but the insurance company is skimming off the healthier people as
policy-holders; in this modeling the Nt would no longer be ancillary (e.g., a
comparison of the prevalences by age (Nt/

∑
Ni) in this data set with known

population prevalence would reveal a systematic tendency of the insurance
company to underinsure old people in relation to their prevalence).

• In model-checking it does seem quite reasonable, as GMS advocate, to think
predictively about D = {data sets you could get in the future if your cur-
rent model is “right” and you repeated the data-gathering activity} and to
ask where the present data set sits in D as measured by some distance d in
dataset-space, thereby inducing a density f of d values and locating dobs in
this distribution, but why summarize the unusualness of dobs with a tail-area?
This requires a stronger defense than the appeal GMS make to frequentist
familiarity. In the absence of a serious attempt to quantify utility, of the
type outlined above, it seems more natural to me to calculate a summary
more like a Bayes factor or likelihood ratio, e.g., fmax/f(dobs). In the ad-hoc
world created by abandoning utility this is arguably just as arbitrary as a
tail-area for judging unusualness, but the p-value scale has become ossified at
cutpoints that tend to exaggerate the evidence against the null in relation to
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Bayes-factor-like summaries (Berger and Delampady (1987)), which makes its
perpetuation well worth avoiding.
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Figure 1. Perspective plot of the marginal posteriors for (θ35, . . . , θ64) under
the assumption of monotonicity of the θt in the mortality example.
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Figure 2. Plot of the 100(1/k, . . . , (k−1)/k)-th percentiles (for k = 30) of the
same joint posterior as in Figure 1, with the observed mortality rates, and
inferential uncertainty bands two standard errors either way, superimposed.

• As an alternative to GMS’s version of posterior predictive assessment of χ2
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goodness-of-fit measures, it seems more natural to me to use predictive dis-
tributions in a somewhat different way, by cross-validating the modeling
process: setting aside some of your data, fitting the current model to the rest,
and then locating the observed values of the set-aside data in their respective
predictive distributions given the chosen model (for an example of this using
predictive z-scores, see Draper (1995b)). This differs from GMS’s prescrip-
tion in two ways: it uses a non-omnibus discrepancy measure that can better
highlight which parts of the data set are badly fit by the current model,
and it avoids the diagnostic overfitting problem inherent in, e.g., ordinary
least-squares residuals from Gaussian linear models in relation to externally
studentized residuals, in which the modeling that produces the ordinary resid-
uals tends to over-accommodate the very observations whose unusualness is
at issue.
In the mortality example, for instance, the two categories exhibiting the
greatest relative discrepancy with the monotone model in Figure 2 are ages
46 and 63. Setting aside these age groups one by one, fitting the non-
decreasing model to the rest of the data, and simulating from the predic-
tive distribution for the set-aside yt given its observed Nt produces in this
case approximate beta-binomial distributions with parameters (α, β,N) of
(47, 13137, 1747) and (37, 1464, 693) for t = 46 and 63, respectively. The ob-
served values of fmax/f(dobs) from these predictive distributions come out
about 19 to 1 at age 46 and 27 to 1 at age 63 (the corresponding one-tailed
p-values are 1 in 65 and 1 in 204, consistent with Berger and Delampady’s
message). If instead I judge the unusualness of y63 by comparing it with
its predictive distribution based on the entire data set, it looks substantially
less unusual, because the fitting process has made substantial use of y63 to
produce the monotone posterior for the entire θ vector: the approximate beta-
binomial now has parameters (61, 2954, 693), and fmax/f(dobs) drops from
27 to 1 down to about 9 to 1.
Without guidance from utility I am at the usual disadvantage of not knowing
precisely what ratios like 19 to 1 and 27 to 1 imply behaviorally, but informally
both values indicate a lack of fit that would be worth investigating. There is no
obvious substantive story to explain the discrepancy for t = 46, as there was
for t = 63, but with 30 age categories in which comparisons of this type may
be made, one of them is perhaps entitled to exhibit this level of misbehavior
“for no good reason.”

• I am not convinced by GMS’s examples or intuitive discussion that their
approach can diagnostically separate mis-specification of the prior and the
likelihood. It would seem better to treat this as part of the overall sensitivity
analysis described above–hold the prior (say) constant, change the likelihood
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across a broad plausible range, summarize the effects of this change on relevant
aspects of the posterior distribution, and then repeat these steps reversing the
role of prior and likelihood. It will become clear by doing this which aspects
of the current model are most in need of modifying.

School of Mathematical Sciences, University of Bath, Bath BA2 7AY, England.

COMMENT

Bruce M. Hill

University of Michigan

This is an interesting and thoughtful article concerning an important prob-
lem, model assessment, that despite its long history, going back at least to Daniel
Bernoulli’s celebrated analysis of the planetary orbits, is still largely unsolved
and controversial. In a certain class of such problems the authors argue that the
posterior predictive p-value can make a substantial improvement over both the
classical p-value and the prior predictive p-value, and in this I believe they are
correct. On the other hand, it can be argued that all the p-values are of limited
use for model selection in important decision problems where there are serious
alternative models in mind, and especially for prediction of future observations.
This is true even if such alternatives are only implicit, as when a test statistic
is chosen to achieve power against specific alternatives. In my opinion, only the
full-blown Jeffreys-Savage (JS) theory of hypothesis testing, as in Jeffreys (1961),
Savage (1962) and Hill (1993), can cope with such more demanding problems.

Like many others, I have come to regard the classical p-value as a useful
diagnostic device, particularly in screening large numbers of possibly meaningful
treatment comparisons. It is one of many ways quickly to alert oneself to some of
the important features of a data set. However, in my opinion it is not particularly
suited for careful decision-making in serious problems, or even for hypothesis
testing. Its primary function is to alert one to the need for making such a
more careful analysis, and perhaps to search for better models. Whether one
wishes actually to go beyond the p-value depends upon, among other things,
the importance of the problem, whether the quality of the data and information
about the model and a priori distributions is sufficiently high for such an analysis
to be worthwhile, and ultimately upon the perceived utility of such an analysis.

The main defect of the p-value is that it fails to consider, explicitly, what
happens under any alternative model, and thus can at best only suggest in a
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crude way that some conventional (or null) model may be faulty. Sometimes the
only alternative currently taken seriously is even more faulty, and in this case
a small p-value may also suggest the need to look for better models. This is
more than a mere possibility, and there are important problems in which this
frequently occurs (such as the variance component problems discussed below),
where the data fit the conventional model only too well, and where there may
be unknown constraints upon the data, including intentional or unintentional
cheating.

The predictive p-value, in either its posterior or prior form, can also be
of diagnostic value, but with exactly the same qualifications. There are four
different procedures that I think should be compared: the classical p-value, the
posterior predictive p-value, the prior predictive p-value, and the JS theory of
hypothesis testing, in which the posterior probability of the conventional model
plays a role similar to that of the various p-values. As I see it the first three p-
values can have an important role to play in cases where the JS approach is highly
non-robust to the input of prior distributions for the parameters specified by the
various models, and particularly for such prior distributions under alternative
models. The first two p values can then yield a relatively simple and possibly
robust analysis, which is quick and undemanding, and sometimes yield a good
approximation to the JS approach.

The posterior predictive p-value is closely related to its classical counterpart.
If one wishes to assess the suitability of a model that has unknown parameters,
and if it were the case that the parameter value was logically independent of the
model, then it would presumably be best to make the test (or analysis) using
the true value of the parameter. I like the examples of the authors, particularly
the tomography example, but it is relatively complicated, and perhaps a simpler
example will help focus on the substantive issues concerning the four procedures.
Suppose the question concerns whether errors of measurement for a fixed physi-
cally meaningful parameter θ are approximately Gaussian, versus various models
involving symmetrical long-tailed distributions (including the Cauchy) for the
errors. Suppose that the parameter θ is the center of symmetry for the distribu-
tion under each of the models, and that the meaning and value of the parameter
is independent of the model being tested. If we knew the true value of θ then it
would be preferable to make such a test using the true value, because this would
allow the measure of discrepancy from the conventional (Gaussian) model to be
uncontaminated by the problem of estimating the parameter. But given the data,
if the conventional model were true then the posterior distribution for θ would
best represent current knowledge about the parameter under that model, and so
for the same reason a test based upon this posterior distribution would appear to
be preferable. This appears to be the basic rationale for the posterior predictive
p-value. However the matter is substantially more subtle than might first appear,



POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS 769

and in particular, one must also consider the question from the viewpoint of the
way in which the model is to be employed.

A major defect of the classical view of hypothesis testing, as emphasized by
the authors, is that it attempts to test only whether the model is true. This came
out of the tradition in physics, where models such as Newtonian mechanics, the
gas laws, fluid dynamics, and so on, come so close to being “true” in the sense
of fitting (much of) the data, that one tends to neglect issues about the use of
the model. However, in typical statistical problems (especially in the biological
and social sciences but not exclusively so) one is almost certain a priori that the
model taken literally is false in a non-trivial way, and so one is instead concerned
whether the magnitude of discrepancies is sufficiently small so that the model
can be employed for some specific purpose. See Hill (1980) for a proposal of this
sort in connection with the variance components problem.

Consider the contemplated launching of a space shuttle. Given the conditions
at the planned time of launching, what is a reasonable evaluation of the posterior
(or post-data) probability for success? This might appear to be quite high, based
upon past experience with regard to previous launchings. But one might also have
a model relating the ambient conditions (not completely known and perhaps
varying rapidly at the current time) to certain other parameters of the model
(also not fully known) which in turn might, based partly upon past experience, be
known to have negative implications for success. For example, it might be known
that a complicated interaction of temperature with other variables does greatly
lower the probability of a successful launch. In this case it is necessary to assess,
as best one can, the available information about such parameters and covariates
and ancillary variables, including models for their effect upon the probability
of success. A serious Bayesian does so by means of prior, posterior, and even
post-data distributions for the variables that are thought most to influence the
chance of success.

One is here then not concerned so much with the truth of the model, as with
a careful assessment of the chance of success, including as realistically as possible
all the major factors believed to influence this chance. The computations would
often, in part, be made on the basis of an assumed model or perhaps models.
Of course one uses the best models one knows of, but these may not be good
enough, and one may even know that the current models are not likely to be
good enough. Data that was indicative that the model was defective in a serious
way, or even not firmly established for the current conditions, would suggest the
conservative wisdom of delaying the launch until the conditions were those in
which it was believed there was a high probability of success. For example, if the
model involved an assumption about how certain components would perform in
a certain temperature range, that was believed valid based upon past experience,
and if the current temperature was outside that range, or even near the borderline
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of that range, then the model that said the components would function at the
current temperature would be seriously in doubt. This illustrates what I believe
is an especially important type of decision problem, and one for which I think
the posterior p-value would be useful at best only as a preliminary diagnostic
device.

In my example of long-tailed distributions, suppose that some important de-
cision such as whether to lauch a space shuttle, or whether to perform a delicate
operation, might hinge upon whether the parameter θ has approximately some
specified value θ0 for which past experience suggests a high probability of success
of the undertaking, conditional upon that value. A conservative view would be
that in order to launch the shuttle, or perform the operation, the parameter must
not only be close to θ0, but one must essentially know that this is in fact the case.
That is, there must be convincing evidence that the parameter is close to the tar-
get value. Now the only way I know seriously to discuss this issue is in terms of
the posterior distribution, or more generally, the post-data distribution for θ. In
Hill (1990) a theory of Bayesian data-analysis was proposed in which a distinc-
tion between posterior and post-data distributions was made. The distinction
concerns whether or not, on the basis of data-analysis, one alters a pre-specified
model, or perhaps even finds a new model. In complicated real-world problems a
posterior distribution is often not accessible solely by means of Bayes’s theorem,
and in this case it is best to refer to probability distributions that critically de-
pend upon the data-analysis as post-data distributions. Posterior distributions
in the sense of Bayes are the ideal but may not be available. This would be true
if only for computational reasons, but a deeper reason concerns limitations in
human ability to deal with a large number of variables.

Suppose then that there is a known function of the data and parameter θ,
such as the posterior or post-data distribution of the parameter given the data,
upon which the perceived chance of success largely depends. Then under the
Gaussian model for the errors, one might have the usual sharp posterior distri-
bution for θ, with a precision that depends primarily upon the sample standard
deviation and sample size, as in Lindley (1965, p. 36) and the analysis is quite ro-
bust to the a priori distribution, which may therefore be taken to be the uniform
distribution, or perhaps the Cauchy distribution recommended by H. Jeffreys for
testing purposes if one is concerned with propriety. Let us say that given the
conventional Gaussian model, the conclusion of the analysis is that the posterior
probability of success on this particular occasion is quite high, and so condi-
tional upon this model one would make the launch. On the other hand, given
the long-tailed model (more or less specifically modelled) with say tail-index α,

the posterior distribution for θ is such that for the given occasion the appropriate
conclusion is that the posterior distribution does not give sufficiently high mass
to the near vicinity of θ0, and so one should not launch. In this example it is
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clear that the posterior or post-data distribution under alternative models cannot
be ignored, and therefore that any p-value that does not take such alternative
models explicitly into account is of limited use in deciding whether to launch.

With regard to the comparison between the prior and posterior predictive p-
values, the posterior p-value would appear to be more appropriate for the launch
problem if one is only concerned with the chance of success on the particular
occasion, that is with the particular realized values of θ and all ancillary statistics
and covariates. On the other hand, the prior p-value is more appropriate if one is
concerned with usage of the model on a number of such occasions, in which the
parameter values vary according to some a priori distribution π, which is based
upon past experience. To see a practically important distinction between these
two predictive p-values, suppose that in my long-tailed example the parameter
α > 0 is the usual tail-index for the upper tail of the distribution. It may well be
the case that the parameter θ and the parameter α are regarded as dependent,
with let us say large values of θ correlated with small values of α, so that when
the observations are large, then one tends to have a very long-tailed distribution
for the observations. Then it may be that for sufficiently small observations, the
predictive p-value suggests that on this particular occasion the long-tailed model
is not needed, and there is a high posterior probability for a successful launch.
But one could hardly justify the conclusion that the model would be appropriate
over a sequence of repetitions, since the a priori distribution for θ might give
substantial mass to values for which the long-tailed model would be more likely
to be appropriate.

Although I have argued above that the posterior predictive p-value can pro-
vide useful diagnostics for decisions such as to employ the conventional model
and launch on the particular occasion, there are some further natural questions to
ask. Should one be using a p-value at all for the most serious decision problems,
such as a space launch or operation, or only for preliminary diagnostic purposes?
And how do such predictive p-values relate to the Bayes factor (JS theory) for
an assumed alternative model?

I would maintain that even if one is concerned only with success on the
particular occasion, then the measure of discrepancy (or test statistic) is not ar-
bitrary, and requires some serious attention to the credible alternative models. It
cannot be based merely on conventional procedures such as minimum chi-square,
which may have little to do with, for example, the probability of a successful
launch. The standard measures of discrepancy are omnibus measures and are
not tailored to a particular use of the model, such as whether or not to launch.
In the long-tailed problem there is no way to ignore the distribution under the
alternative, since unless the data strongly indicate that the conventional model is
true, and the posterior distribution for θ is sufficiently concentrated near θ0 then,
if under plausible alternative models, the posterior distribution for the parameter
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θ is not so concentrated, or is centered at the wrong place, one should not make
the launch. Indeed, it is clear that the selection of a measure of discrepancy must
go hand in glove with the intended usage of the model. Just as the predictive
p-value derives its improvement over the classical p-value by giving more serious
consideration to the a priori distribution under the conventional model, so too
similar improvements can be made by giving more serious attention to the a
priori distribution under plausible alternative models.

The authors suggest that it is sometimes appropriate to make tests without
an alternative in mind. A partly contrary view is implied in the heading of
Chapter V of Jeffreys (1961), where the Cat tells Alice that if you don’t have any
idea where you want to go, it doesn’t much matter which way you go. Presumably
it is desirable to replace a model that is inadequate in some respects by a better
one. The celebrated Michelson-Morley experiment (1887), perhaps the most
famous experiment in all of science, led to the rejection of the ether (such rejection
not even being contemplated beforehand by the experimenters), and eventually
played an important role in the creation of relativity theory. But in physics the
models that are used have already been subjected to careful scrutiny, and while
not literally true, have been shown to provide excellent approximations in well-
defined circumstances. It is a major achievement to modify a particular model so
as to cover a wider variety of conditions; and a careful experiment that suggests
that a standard model is incorrect in some circumstances often leads to better
understanding and improvements. This is not always the case in applications of
modern statistics.

In the best uses of the classical p-value, such as by Daniel Bernoulli, or by
R. A. Fisher in connection with his exact analysis of a 2 by 2 contingency table,
there is an implicit alternative which suggests a direction of discrepancy. In
Bernoulli’s problem the implicit alternative is any model in which the planetary
orbits are nearly coplanar, and in Fisher’s problem the implicit alternative is
one in which the treatment is highly effective relative to the placebo. There
is a non-denumerable infinity of even continuous functions that might be used
blindly to provide a test statistic, under the conventional model. It is then
nearly certain that a statistician can select such a test statistic, if he wishes, to
achieve essentially any desired p-value. As argued in Hill (1985-86) not only such
shenanigans, but any use of data-analysis invalidates the non-Bayesian theory of
statistics. Of course no intelligent person with integrity would allow such tests
to be taken seriously, and we should instead focus on only those test statistics
that can be argued to be relevant to some sensible alternative.

Next, nonnegativity considerations arise not only in the tomography exam-
ple, but also in many other standard problems, such as in variance components
estimation, and the use of kernels in the estimation of densities, and pose a serious
difficulty for non-Bayesians. It was shown in Hill (1965, 1967, 1980, 1994a) that
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in the variance components problem, negative unbiased estimates of the between
variance component often imply a flat likelihood function for the true variance
component under the model, so little information is provided by the experiment
under the usual model. In such situations the posterior predictive p-value would
in effect turn out to employ essentially the a priori distribution for the between
variance component in its computation. There is more than an analogy here,
because as pointed out in Hill (1965, p. 808) certain questions regarding Pois-
son distributions are mathematically nearly identical with the related questions
for variance components. For example, if one has independent Poisson measure-
ments of radioactivity with and without a source present, and the background
reading is the larger of the two, then the likelihood function for the magnitude
of the source can be flat.

In pursuing such issues I was led to introduce an alternative assumption for
the one-way variance components model, namely that there is a constant negative
correlation between the errors in a row in Hill (1967). This then led me to perform
the full JS analysis comparing the standard model with such an alternative. I
found the results of this analysis convincing, and it showed that appropriate data
would lead one to reject the standard model in favor of one with such negative
correlations. This was a particularly simple such JS analysis, since both null
and alternative models were plausible, with the alternative model having only
one extra parameter, namely the correlation coefficient. The posterior predictive
p-value might also lead to rejection of the standard model, but would not allow
a meaningful comparison of the standard model with the alternative model, nor
allow for predictions based upon a mixture of the posterior distributions for the
two models. In my opinion the inability to obtain useful predictive procedures
giving weight to more than one model is a very serious limitation inherent in
all approaches other than the JS. Since the optimal weight necessarily involves
the posterior probability for the model, one is forced to assess this quantity.
The examples of Bayes (1764), Harrison and Stevens (1976), and Hill (1994b)
illustrate various aspects of the Bayesian theory of prediction.

In conclusion, the authors should be congratulated for making one of the
few serious contributions to an important issue. This comes out of their careful
attention to the use of a priori information under some conventional model. Since
it has taken some 2.5 centuries to progress from the p-value of Daniel Bernoulli
to the posterior predictive p-value, it may take quite a while until we progress to
more careful attention to the a priori information under alternative models, and
until such time the authors offer a real improvement over the classical p-value.

Department of Statistics, University of Michigan, Ann Arbor, MI 48109, U.S.A.



774 ANDREW GELMAN, XIAO-LI MENG AND HAL STERN

COMMENT

Robert E. Kass and Larry Wasserman

Carnegie Mellon University

Although, as Good (1971) pointed out, there may be at least as many kinds
of Bayesians as there are Bayesians, there is nonetheless a recognizable ortho-
doxy in Bayesian thinking which is derived from the premise that all inferences
are gambles, together with the fundamental result that for any state of knowledge
optimal gambles are based on expectations. Aside from a few very special or con-
trived situations there has not been any justification of hypothetical-replication
tail areas in terms of optimal gambles. Thus, these tail area calculations play no
role in “orthodox” Bayesian inference.

In contrast to the orthodox view, Dempster (1971) argued in favor of such
tail area calculations, articulating a Bayesian version of the Fisherian dualism in
probabilistic inference: for estimation based on a model, one uses posterior distri-
butions while for model assessment one uses hypothetical tail areas to calibrate
surprise. (Dempster described these with the labels predictive and postdictive
reasoning; although he chose his terminology to carry an explicit meaning, the
use of a predictive tail area becomes an instance of Dempster’s “postdictive”
inference.) Box (1980) took up the same theme, proposing prior predictive tail
areas as general model assessment tools, and Rubin (1984) recommended, in-
stead, posterior predictive tail areas. (See Good (1953) and Evans (1995) for
alternative approaches to quantifying surprise.) The authors’ contribution is to
show that the concept of posterior predictive model assessment can be applied
very generally and fits well with modern computational methods.

Whether one finds this methodology attractive depends, to a large extent, on
one’s philosophy of inference. In our commentary we would like to mention the
objections to hypothetical-replication tail areas and make a couple of remarks
about Bayes factors; we will then offer our own evaluative opinions.

Objections to Tail Areas

The authors’ method is to substitute posterior predictive p-values for fre-
quentist p-values in performing goodness-of-fit tests. Their tests are quite similar
in spirit to the analogous frequentist versions. Thus, the authors’ approach is
open to many of the same criticisms often leveled against the classical approach.
Here are three of them:
1. The rationale for the method is, at least, very different from the intuitive

probabilistic inference provided by other Bayesian procedures. In commenting
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on the oddity of using hypothetical replications of data in place of the data
at hand, Jeffreys (1961, p. 385) wrote, “What the use of P implies, therefore,
is that a hypothesis that may be true may be rejected because it has not
predicted observable results that have not occurred. ... On the face of it the
fact that such results have not occurred might more reasonably be taken as
evidence for the law, not against it.”
One way to avoid these hypothetical replications is to use the posterior dis-
tribution of a discrepancy measure directly, rather than the posterior predic-
tive distribution. For example, in the multinomial case, we might use the
Kullback-Leibler divergence to assess how far the data are from the model.
If p̂ is the MLE for the unreduced multinomial and p(θ) is the multinomial
according to the entertained model under parameter value θ, then we might
examine the posterior distribution of K(p(θ), p̂). This proposal is similar to a
suggestion made by Dempster (1975) to examine the posterior distribution of
the likelihood ratio, which also avoids the hypothetical replications.

2. How are the posterior predictive p-values to be calibrated? Should we adopt
the conventional levels that are widely applied with frequentist significance
testing? We found it very surprising that the authors’ p = .058 would be “the
type of result we might obtain for a clearly inadequate model.”
The problem of calibration can be especially difficult when sample sizes are
large, since small deviations from models become easy to find. The difficulty
is that it is often unclear how small a deviation would have to be in order to
be considered inconsequential.

3. Although, strictly speaking, questions about power seem irrelevant both in
Bayesian inference and in pure significance testing, there is sometimes a legit-
imate concern. We agree with the sentiment that judgment of poor fit must
depend on the questions being posed. (In Kass, Tierney, and Kadane (1989),
the same point was emphasized in assessing case influence and prior sensi-
tivity.) However, there are many instances in which a variety of alternative
discrepancy measures may apparently apply to the same roughly-posed ques-
tions. How then is the data analyst to weigh the results? Is this necessarily a
matter of personal scientific judgment, or might there be some guiding princi-
ples? As in other places where personal judgment enters, there is an issue as
to how standards might be created for scientific reporting, where summaries
are necessarily brief and somewhat conventional. Though less important than
the two points above, this third remains intriguing to us.

What does it Mean to Ask Whether a Model is True?

The authors contrast their approach with others partly by saying there is
often too much emphasis on asking whether a model is correct. We agree that
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the question tends to be overemphasized by practitioners. However, we have a
very hard time finding any content to statements saying that models are rarely
“perfectly true” (Gelman, Carlin, Stern and Rubin (1995, p. 162). This may be
a subtle point that ought to be argued at length, but let us very briefly outline
our difficulty.

Simply put, statistical models are used to connect scientific theories with
observed data. Of course, strictly speaking, the models are essentially never
correct, and the scientific theories themselves are also never true in any absolute
sense. However, just as obviously, in scientific work, as in everyday life, we find
it tremendously useful to act as if our theories (our “models of the world”) are
true. Operationally, our acting as if a theory were correct is the same thing as
believing it to be correct. The qualification to this statement, and the source of
the authors’ alternative perspective, is that for some purposes one may act as
if a theory were correct while for other purposes one may choose not to do so.
Thus, it might seem sensible to remove our global notion of acting as if a model
were true and replace it with a qualified version, acting instead as if a model
were true for some specified purpose.

We agree with the authors that it can be useful and important to make such
qualifications. However, they often are relatively minor within the scope of our
behavior and, therefore, can be something of a distraction. In everyday life,
for example, our “mental model” might say that a particular clock keeps time
accurately. Of course, we could qualify this according to purpose, but we rarely
bother because (i) it suffices to leave our qualifications (specifying mechanical
and electrical conditions required to make it run, as well as degree of accuracy)
implicit and (ii) we like to rely on that clock. Thus, we all carry around scientific
or personal models that we effectively assume to be correct, without need of any
explicit qualification.

In this regard, we find the authors’ analogy with consumer purchasing be-
havior to be somewhat inappropriate. They say, “A consumer surely can refuse
to buy a defective product, even if it is the only item available. If the consumer
does decide to purchase it despite its deficiencies, he or she surely would like to
know about its defects and their possible consequences.” Yes, we agree, it is very
important to be aware of serious deficiencies in models. This is what we like
about the methodology the authors describe. However, in many contexts we will
end up using a model for all future work until a better one can be found. In the
scientific context, Jeffreys (1961, p. 391) made this point by saying, “There has
not been a single date in the history of the law of gravitation when a modern
significance test would not have rejected all laws and left us with no law.”

To summarize, while we agree there is sometimes a misplaced emphasis on
methods that ask which of two models is “true”, and support the authors in
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their quest for methods that consider (albeit rather indirectly) the purpose to
which a model might be put, we strongly believe it is frequently useful to weigh
alternative models against each other by asking which of them would serve best
if we were to act as if it were correct. This, of course, explains our interest in
Bayes factors.

So, What About Bayes Factors?

The authors’ main interest is in goodness-of-fit of a single model, without
consideration of any alternatives. However, they also apply their technology
to the weighing of competing hypotheses. Despite their choice to focus on “
‘assessment’ instead of ‘testing’ ” the title of Rubin and Stern (1994) is “Testing
in latent class models using a posterior predictive check distribution.” This, we
feel, will often remain useful, but can potentially be dangerous: it drifts into
cases in which evidence is what is desired, and this precisely what they caution
users to avoid (Gelman, Carlin, Stern and Rubin (1995, p. 173)).

When evidence is what’s needed, Bayes factors are, in principle, the tool
to use. Kass and Raftery (1995) have reviewed the methodology, providing ex-
amples, discussion, and many references. As emphasized by Kass and Raftery
(1995), a serious practical difficulty involves the sensitivity to choice of prior on
model parameters. In particular, while improper reference (“noninformative”)
priors can be used on any parameters that are common to both of two models
(the nuisance parameters), they can not be used on the parameters of interest
that distinguish between the models. Although we acknowledge this to be a se-
rious problem that limits the applicability of Bayes factor technology to special
circumstances, we have discussed a solution that we think often offers a useful
procedure (Kass and Wasserman (1995)), and wish to emphasize here that the
technology can be pushed and these “special circumstances” can be important.

It is also possible to put the goodness of fit problem in the framework of
assessing the evidence of alternative models by expanding the nominal model. A
natural way to do this is to start with a family of densities {g(u|ψ);ψ ∈ Ψ} on
the unit interval and transform back to the real line under the nominal family
{f(x|θ); θ ∈ Θ}. This gives an expanded family

h(x|θ, ψ) = f(x|θ)g(F (x|θ)|ψ),

where F (x|θ) is the c.d.f corresponding to f(x|θ).
Neyman (1937) suggested the family

log g(u|ψ) =
k∑

j=1

ψjφj(u) − c(ψ),
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where ψ = (ψ1, ψ2, . . .), φ1, φ2, . . . are orthogonal polynomials on [0, 1] and c(ψ) is
a normalizing constant (see Ledwina (1994) for a recent discussion of this family).
Bayarri (1985) investigated a particular one parameter family for g(u|ψ) called
the α-distribution. (The family was originally introduced by Bernardo (1982).)
Verdinelli and Wasserman (1995) use the infinite dimensional version of Neyman’s
family:

log g(u|ψ) =
∞∑

j=1

ψjφj(u) − c(ψ).

They take φj ∼ N(0, τ2/c2j ) and give τ a half normal prior centered at 0 with
variance w. Verdinelli and Wasserman (1995) show how to choose the cj so that
the Bayes factor is consistent, i.e., goes to 0 or infinity if the nominal model is
false or true. This leaves a single hyperparameter w to choose. They suggest
a default value for w based on simulation studies and use MCMC methods to
estimate the Bayes factor. The model is nonparametric in the sense that it can be
shown to have support over (and be consistent for) a large, infinite dimensional
class of densities. Of course, many other alternative models could be developed.
The point is that it is possible to construct flexible classes of alternative models
with some generality. The success of these methods in practical problems has
yet to be determined.

Our Opinions

We applaud the authors’ investigation and believe the methodology will, be-
cause it is often easy to apply in conjunction with posterior simulation, substan-
tially extend goodness-of-fit assessment. Like the authors, we are not ourselves
followers of the orthodox Bayesian viewpoint we alluded to at the outset: we
believe Bayesian inference has an important role beyond decision-making. We
disagree philosophically with the authors on a couple of points and highlighted
them because applied statistical work should pay some attention to foundational
issues. On the other hand, we expect these disagreements to be relatively mi-
nor, being matters of shades of emphasis. In the end, applied work is likely to
be eclectic, acknowledging that all good statistical methods have their strengths
and limitations.

Our reservations about posterior predictive p-values are described well in
terms of Dempster’s (1975) separation of probability to represent belief about
unknown quantities of interest (his “predictive” reasoning) and probability to
calibrate surprise (his “postdictive” reasoning). We continue to see a role for
the representation of belief about hypotheses when one is primarily interested in
weighing evidence in favor of competing models; we believe posterior predictive
p-values, while remaining a useful supplement, should, at least in principle, be re-
placed by Bayes factors for this sometimes-important purpose. We also continue
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to wonder just what role in statistics should be played by formal expressions of
surprise.

Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

COMMENT: POSTERIOR PREDICTIVE ASSESSMENT

FOR DATA SUBSETS IN HIERARCHICAL

MODELS VIA MCMC

Steven M. Lewis and Adrian E. Raftery

University of Washington

1. Introduction

We congratulate Gelman, Meng and Stern – hereafter GMS – on an excel-
lent exposition of the uses of posterior predictive model checking. The methods
described are very useful, and we believe that this clear and compelling paper
will help to propagate their use.

Model checking is, as the authors point out, always a vital component of
model building. The frequentist approach relies on the clever choice of discrep-
ancy measures that are pivotal and whose distribution under the hypothesized
model is known, at least approximately. The Bayesian approach described by
the authors is more general. The discrepancy measures used do not have to be
pivotal or to have a known distribution, and so can be chosen for substantive
reasons or to check aspects of the model that cause concern.

In addition, there is always a natural set of discrepancy measures available,
namely the log predictive probability of each observation given all the others, or
given the previous ones in some ordering. The former generalizes the externally
studentized residuals of linear regression, or, more generally, leave-one-out cross-
validation (e.g. Gelfand, Dey and Chang (1992)), while the latter corresponds
to the prequential model assessment approach of Dawid (1984, 1992). These
are available for all models, and so there is less need for cleverness than in the
frequentist approach.

We would like to make explicit, and to illustrate, an extension of the idea,
namely that posterior predictive assessment can be applied not just to an overall
discrepancy measure, but also to discrepancy measures calculated for subsets of
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the data, such as males and females, blacks and whites, and so on. This could
reveal not just whether the model is inadequate, but also in what way, and so
could be useful for improving the model. We illustrate this with a hierarchical
event history model developed for World Fertility Survey data and estimated by
Markov chain Monte Carlo (MCMC). We also comment on the use of posterior
predictive checks for point processes in time and space, and on how the GMS
methods fit into the overall model-building process.

2. Posterior Predictive Assessment for Major Subsets of the Data

GMS provide an informative discussion of the use of posterior predictive
distributions to check the overall fit of a model. They argue that for D(Y; θ),
a discrepancy measure between sample and population quantities, a tail-area
probability of D under the posterior reference distribution is

pb(y) =
∫
P [D(Y; θ) ≥ D(y; θ)|M, θ]P (θ|M, y)dθ,

where M is used here to represent the assumed model. In other words pb(y) is
the probability of obtaining as unusual a discrepancy measure as the one actually
observed under the posterior predictive distribution.

Posterior predictive distributions can also be used to check the fit for sub-
stantively important subsets as well. For example, in modeling human fertility
the estimated model may fit the probabilities of births for women with less than
a secondary education but may not fit probabilities for more educated women
or the estimated model might fit women with lower parities but may not fit
women with higher parities. In turn, this may well suggest areas to look for
improvements in the model.

GMS describe how a sample from the posterior distribution obtained by
MCMC can be used to calculate different discrepancy measures for assessing
overall fit. Such a sample from the posterior can also be used to obtain a sample
from the posterior predictive distribution which in turn can be used to assess the
fit of the model to important subsets of the data. Our adaptation of the method
of GMS can be written as an algorithm in the following way.
1. Draw θ from the posterior distribution, P (θ |M, y).
2. Draw ÿ from the sampling distribution, P (Y | M, θ). We now have a single
realization from the joint distribution, P (θ,Y |M, y).
3. Repeat steps 1-2 many times.
The set of ÿ’s drawn using this procedure constitute a sample from the posterior
predictive distribution since

P (Y |M, y) =
∫
P (Y |M, θ)P (θ |M, y)dθ.
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GMS report model fitness in terms of a single number, the tail area prob-
ability for their choice of discrepancy measure, which they call a p-value. This
idea can be expanded by computing such values for several major subsets of the
data, to diagnose the nature of the model inadequacy, and thus to help suggest
the form of a better model. It can also be expanded by not restricting attention
to measures that can be viewed as distances, and by considering both upper and
lower tail area probabilities.

3. Example: A Hierarchical Event History Model from Demography

We used posterior predictive distributions to check the fit of a logistic hier-
archical model for fertility data collected in Iran as part of the World Fertility
Survey. For a description of the study and the main findings, see Raftery, Lewis
and Aghajanian (1995), and for further details of the analysis see Lewis (1994)
and Raftery, Lewis, Aghajanian and Kahn (1996).

We fitted a logistic hierarchical model of the form

logit(πit) = β0 +
p∑

p=1

βpxpit + αi,

where xpit was the pth covariate for the ith woman in exposure-year t, β0,
β1, . . . , βP were unknown regression coefficients and the αi’s were unobserved
woman-specific random effects representing unmeasured characteristics that af-
fect fertility, such as fecundability and coital frequency. We assumed that the
αi’s were independent random variates from a normal distribution with a mean
of 0 and a common variance, σ2.

Logistic hierarchical models were fitted to data from several different
provinces in Iran using MCMC. Boyrahmad province was one of the provinces
modeled. An important covariate in the model was the woman’s parity in the
current exposure-year. (Parity is the number of previous children the woman
has had.) In Boyrahmad, parity ranged between 1 and 5, inclusive. We were
concerned as to whether or not the model fit adequately at each of the five
parities. In other words we wanted to assess model fit for the parity 1 exposure-
years, the parity 2 exposure-years and so on.

Table 1. Tabulation of sample from posterior predictive distribution

Parity Number of Births Predicted
0 1 2 3 4 5 6 7 8 9

1 64 120 135 106 48 16 8 3
2 18 57 104 102 102 59 40 11 6 1
3 79 140 134 89 49 8 1
4 84 157 126 94 31 6 2
5 180 173 104 38 5
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In the example the support of the posterior predictive distribution within
each parity level was restricted to the integers between 0 and the number of
exposure-years found in the sample at each parity level. Such a tabulation is
presented in Table 1. In Table 1 the boldface entries reflect the actual number of
births reported in the IFS from Boyrahmad province. For each parity, the actual
number of births seems well within the central part of the posterior predictive
distribution.

The main points of this display can be shown more concisely using a two-
number summary consisting of the proportions of simulated numbers of births
above and below the observed numbers, as in Table 2. This confirms that the
observed data agree well with the posterior predictive distribution. However,
there is a slight suggestion that there were more births than expected at parity
1, and less at parity 2, indicating the incorporation of a parity effect might be
worth considering. One approach would be to expand the model this way and
then to compare the expanded model with the model without a parity effect
using Bayes factors (e.g. Kass and Raftery (1995)).

Table 2. Two-number summaries for location of observed number of births

Parity Less Than Observed Greater Than Observed
1 0.64 0.15
2 0.15 0.64
3 0.44 0.29
4 0.48 0.27
5 0.36 0.29

4. Posterior Predictive Distribution of Squared Standardized Pearson
Residuals, Summed Over Subsets

In the previous section we used the number of births as a summary statistic.
Any number of other summary statistics might have been used instead. For
example, the sum of the squared standardized Pearson residuals,

T (y) ≡
∑

i

( yi − niπ̂i√
niπ̂i(1 − π̂i)(1 − hii)

)2
,

where hii is the ith diagonal element of the hat matrix, is a good alternative
summary statistic.

Figure 1 contains plots of the posterior predictive distributions of the sums
of the squared standardized Pearson residuals over the parity 1, parity 2, parity
3 and parity 4 observations. The posterior predictive distributions displayed in
this figure were produced using the procedure described in Section 2, except that
instead of drawing from the sampling distribution of the response variable, draws
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were taken from the sampling distribution of the squared standardized Pearson
residuals.

Plots of squared standardized Pearson residual posterior predictive distributions
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Figure 1. Sums of squared standardized Pearson residuals in reference to their
parity determined posterior predictive distributions.

Looking at the plots in Figure 1 we see that the observed sums of the residuals
(represented by the solid vertical lines in each plot) are not at all unusual. For
the parity 1 observations it looks as if the observed sum might be located in the
right tail of the distribution, giving a hint that the model might be improved by
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adding an indicator variable for the parity 1 observations. In fact, Raftery, Lewis,
Aghajanian and Kahn (1996) came to just such a conclusion on the basis of the
data from all of Iran (here we are analyzing the data from only one province for
illustrative purposes).

Table 3 shows two-number summaries for each parity level. The poorest
fitting sets of observations are those for parities 1 and 2, but they do not fit
badly: in each case at least 20% of the posterior predictive distribution is beyond
the observed value.

Table 3. Two-number summaries for location of observed sum of squared
standardized Pearson residuals

Parity Less Than Observed Greater Than Observed
1 0.79 0.21
2 0.20 0.80
3 0.64 0.36
4 0.69 0.31
5 0.61 0.39

5. Application to Point Processes

The adequacy of models for point processes in time or space has traditionally
been checked more using graphs of functions that describe the process, with
pointwise confidence bands around them, than by single-number overall measures
of fit. For point processes in time, such functions include N(t), the cumulative
number of events up to time t, and the conditional intensity function (Cox and
Lewis (1966), p. 69). For spatial point processes, the function K(t) = the average
number of events in a ball of radius t around a randomly picked event, and related
functions, are often used (Cressie (1993); Diggle (1983); Ripley (1977, 1981)).

The distribution of the graphed function, such as N(t), or K(t), under the
hypothesized model usually depends on unknown parameters, θ, that are esti-
mated. The pointwise confidence bands are most often computed by simulation
using the plug-in rule, i.e. conditionally on an estimate of θ. This underesti-
mates uncertainty because it takes no account of uncertainty about the model
parameters, and so may lead to overstringent model assessment if the discrepancy
measure is not pivotal.

The GMS method shows immediately how this difficulty can be overcome:
(1) simulate a value of θ from its posterior distribution;
(2) simulate (or find analytically) the function to be graphed given θ;
(3) repeat (1) and (2) many times (19 and 99 are conventional numbers of times
in the spatial point process literature);
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(4) plot the resulting pointwise confidence bands.
This was done for a nonhomogeneous Poisson process model arising in soft-

ware reliability by Raftery (1988). Results for two data sets are shown in Figure
2. For the first data set, N(t) lies within the posterior predictive confidence
bands over the entire range of the data, so there is no indication of model in-
adequacy. In contrast, the plot shows clearly that the model does not fit the
second data set at all well, as the observed function lies outside the confidence
bands for over two-thirds of the events. This observation was subsequently used
to develop a better fitting model for these data, with very different implications
for the main question of interest, i.e. the extent to which the software had been
debugged (Raftery (1987)). The idea is essentially the same as that underlying
Figures 4 and 5 of GMS, and can be applied in any context where model check-
ing is reasonably based on a function rather than (or in addition to) a single
overall discrepancy measure. Another application of posterior predictive check-
ing to point processes was given by Raftery (1989), this time in the context of
environmental monitoring.
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Figure 2. The cumulative number of events N(t), with posterior predictive
pointwise 95% confidence bands for a nonhomogeneous Poisson process, for
two software reliability data sets.
Source: Raftery (1988).
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6. Posterior Predictive Assessment in Model Building

We view posterior predictive assessment as a useful component of the
overall model-building process. Any model should be checked using graphical
displays and diagnostic checks. Posterior predictive assessment provides a
general methodology for calibrating such displays and checks, which should
be used to indicate which improvements to the model one should develop
and test.

However, we feel that only rarely should posterior predictive assessment be
used to reject a model in an absolute sense when no better alternative is available.
Rather, it should be used to develop a new model, which is then compared to the
current model using Bayes factors. In many applications, the task is to make a
decision, and this has to be done on the basis of the best available model, even
if it is not a perfect one. Jeffreys (1961, p. 391) pointed out that the best
available model gets used even when inadequacies are found, noting that
“there has not been a single date in the history of the law of gravitation
when a modern significance test would not have rejected all laws and left
us with no law.”

Thus we feel that posterior predictive assessment should usually be used to
point the way to a better model, rather than to reject the current model in an
absolute sense. This is compounded by the fact that the methods of GMS are
based on tail area probabilities rather than the probability of the data themselves
under the model, and so one should be cautious in interpreting their output as
evidence against the current model (e.g. Berger and Delampady (1987); Berger
and Sellke (1987)). Conversely, one should not necessarily stop trying to improve
the model just because it is accepted using posterior predictive assessment meth-
ods. For a related debate between Gelman and Raftery (with the roles of author
and discussant reversed), see Raftery (1995).
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COMMENT : ON POSTERIOR PREDICTIVE p-VALUES

Donald B. Rubin

Harvard University

Gelman, Meng and Stern ((1996); GMS) are to be congratulated for insight-
fully summarizing and extending the theory of posterior predictive check (ppc)
distributions and for illustrating various applications in revealing examples. The
extension to include generalized discrepancies D(y; θ) rather than just statistics
T (y), as in Rubin (1984), may be practically quite important because of the
potentially tremendous computational advantages when averaging rather than
maximizing over θ, especially with multi-modal likelihoods.

As more realistic and complex models are fit to data using increasingly so-
phisticated software and hardware, statisticians with serious interests in applica-
tions will be compelled to employ Bayesian technology, and I’m convinced that
ppc’s will be an integral part of that technology. Thus, I strongly advocate the
central theme of GMS that a scientist can question and reject a posited model–
with the implied directive to return to the scientific drawing board, without hav-
ing any specific alternative model available; for example, quantifying evidence
of failings of Newtonian physics must be allowed without having Einsteinium
relativity available for the assessment. Those who define “Bayesian statistics” to
exclude such model-assessment activities condemn it to be of marginal relevance
in science rather than at its core, where I feel it belongs.

My opinion on this topic has remained the same for many years (Rubin
(1984, p. 1166)).

5. Model monitoring by posterior predictive checks
... Given observed data, Xobs, what would we expect to see in hypo-
thetical replications of the study that generated Xobs? Intuitively, if
the model specifications are appropriate, we would expect to see some-
thing similar to what we saw this time, at least similar in “relevant
ways”. This statement, which is essentially a fundamental premise of
frequency inference, seems to me so basic that it needs no defense. Un-
like the frequentist, the Bayesian, though, will condition on all observed
values.

Need for Careful Terminology

For ppc’s to achieve the broad acceptance they deserve, I expect that it will
be necessary to obtain a better understanding of their operating characteristics in
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the traditional frequentist sense. Some issues here appear to me to be relatively
subtle and elusive, and so precise and evocative terminology may be especially
important. For example, it is important to realize that the function pc(y; θ) in
equation (3), the GMS “classical p-value” for statistic T (y), is not generally a p-
value in the standard sense because of its potential dependence on the unknown
parameter θ; perhaps “classical tail-area function” for statistic T (y) would be
more descriptive.

Special care is also necessary when reading the symbol “yrep”. Although
the meaning of yrep in equations (4)-(7) is the same (a draw from its posterior
predictive distribution, i.e., given observed data y under the posited model H),
the meaning of yrep in (3) comes from (2), a draw form its posited sampling
distribution; that is, under H and given θ, in (3), y and yrep are i.i.d. copies
of the same random variable, with yrep the random variable and y conditioned
upon. Thus with continuous T (y), the distribution of pc(y; θ) will be uniform
on (0, 1) for each θ, and close to uniform for discrete T (y). In general, however,
pc(y; θ) cannot be calculated from y alone, so the need arises to eliminate θ if an
actual p-value is to be obtained.

Interpreting the ppc p-Value from Bayesian and Frequentist Perspec-
tives

Of course, the Bayesian eliminates a nuisance unknown, such as θ in pc(y; θ),
by integration over its posterior distribution. Thus the Bayesian who is interested
in pc(y; θ) is naturally led to its posterior expectation, the posterior predictive
p-value, pb in (4) or (7), which is a valid Bayesian posterior probability for the
event D(y; θ) > D(yrep; θ).

When pc(y; θ) itself is the object of interest, however, aspects of its poste-
rior distribution other than its mean are also important, just as the full posterior
distribution of the bias of a coin can be important. This possibility was also men-
tioned in Meng (1994a). The posterior distribution of pc(y; θ) can be simulated
by obtaining repeated draws of yrep j at each drawn value of θj, thereby estimat-
ing pc(y; θj), whence we obtain the posterior distribution of pc(y; θ) when the θj

are draws from the posterior distribution of θ. Even with a general discrepancy
D(y; θ) replacing the statistic T (y) in (3), if the posterior distribution of pc(y; θ)
is tightly concentrated about pb with little sensitivity to the prior distribution
on θ, then pb should be acceptable to a frequentist as an honest p-value, because
it has nearly a uniform sampling distribution under H for all plausible θ; any
applied frequentist, even a devoted one, should not care much about operating
characteristics under distributions that are irrelevant given observed data.

Moreover, even when the posterior distribution of pc(y; θ) is not tightly con-
centrated about its mean, the ppc p-value, pb, has a comfortable frequency inter-
pretation. As in Rubin (1984, p. 1160) simply describe the averaging of pc(y; θ)
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over the posterior distribution of θ as a frequency operation involving condition-
ing on those values of θ that could have led to the observed value of y.

Suppose we first draw equally likely values of θ from p(θ), and label
these θ1, . . . , θs. The θj, j = 1, . . . , s, can be thought of as representing
the possible populations that might have generated the observed X[y
in GMS]. For each θj, we now draw an X from f(X|θ = θj); label
these X1, . . . ,Xs. The Xj represent possible values of X that might
have been observed under the full model f(X|θ)p(θ). Now some of
the X will look just like the observed X and many will not; of course,
subject to the degree of rounding and the number of possible values
of X, s might have to be very large in order to find generated Xj

that agree with the observed X, but this creates no problem for our
conceptual experiment. Suppose we collect together all Xj that match
the observed X, and then all θj that correspond to these Xj . This
collection of θj represents the values of θ that could have generated the
observed X; formally, this collection of θ values represents the posterior
distribution of θ.

And the average value of pc(y; θ) over this collection of θ values is the ppc p-value.

On the Typical Conservatism of ppc p-Values

Despite this direct frequency interpretation of the ppc p-value, it is still of
interest to understand its repeated-sampling operating characteristics, that is,
its distribution over repeated draws of y given fixed θ under H. Meng (1994a)
provides some results when averaging over the prior distribution of θ, but sharper
results are desirable, for example concerning the typical conservatism of ppc p-
value noted by GMS, Meng (1994a), and Rubin (1996a). This conservatism
can be connected to recent discussions of the potential conservatism of multiple
imputation in Meng (1994) and Rubin (1996b) stimulated by comments in Fay
(1992, 1996). For this discussion, I assume that H is true and that there exists
a true value of θ.

Consider a hypothetical infinite complete data set ycomplete =(y, yrep 1, yrep 2,
. . .) where each of the infinite number of yrep j is an actual i.i.d. replication, i.e.,
drawn from GMS’s equation (2). The data analyst’s hypothetical complete-data
statistic pcomplete is the infinite sample analogue of pc(y; θ):

pcomplete(ycomplete) = [proportion of T (yrep j) that are larger than T (y)].

The value of pcomplete(ycomplete) is pc(y; θ) evaluated at the true value of θ, and
its distribution over repeated draws of y is uniform on (0, 1).
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But pcomplete(ycomplete) cannot be calculated from the observed data y be-
cause the yrep j are missing. Consequently, in the spirit of multiple imputation
(Rubin (1987)) they will be imputed from their posterior predictive distribution
(i.e. from GMS’s equation (4)) to produce yimputed

complete. The data analyst will then
evaluate the complete-data statistic on this hypothetical infinite imputed data set
to obtain pcomplete(y

imputed
complete), which equals pb(y) of GMS’s equation (5). These

imputations will typically be “superefficient” for the statistic pcomplete in the fol-
lowing sense (Rubin (1996b), Section 3.6): first, by the consistency of Bayesian
estimates under the correct model in large samples of y, the expectations of
pcomplete(ycomplete) and pcomplete(y

imputed
complete) are the same, both equal to .5, over re-

peated new draws of data y; and second, because y and the imputations of yrep j

are positively correlated, the variance of pcomplete(y
imputed
complete) = pb(y) will tend to

be less than the variance of pcomplete(ycomplete) = pc(y; θ). As a result, pb(y) will
be centered at .5 but less variable than a uniform random variable, and thus will
have conservative operating characteristics. The extra conservativeness typically
found when using a generalized discrepancy rather than a statistic presumably
arises from the extra missing information when doing an analysis involving miss-
ing θ in addition to missing yrep.

Mathematically rigorous versions of these theoretical assertions could, I be-
lieve, be based on a combination of the work by GMS, Meng (1994, 1994a), and
Rubin (1996b). Of course, conservatism in failing to reject a true posited model
is not a bad result, even if it occurs more frequently than indicated by a nomi-
nal level, and doing so is “confidence-valid” in the sense of Neyman (1934) (see
Rubin (1996b), Section 1.4 and Rejoinder for some discussion).

When is a Posited Model “Good Enough”?

In this context of failing to reject a posited model, it is important to reinforce
one of GMS’s main points. Even when a ppc with a very powerful discrepancy
measure can establish the inadequacy of posited model, the model still may be
perfectly adequate for other purposes as measured by a less powerful, but more
relevant discrepancy. For example, consider a long-history time-series data base,
with two possible models for predicting weather. A ppc p-value based on 60-day-
ahead forecasts might discard one model that satisfies ppc evaluations for 7-day-
ahead forecasts, and vice-versa for the other model. Clearly, however, we need
not discard both models: each model can be valuable for its intended purpose
and need not be rejected because it is unsatisfactory for a different purpose.

For another example, consider a very large data set where all sorts of inter-
actions are clearly present, but a parsimonious model does pragmatically nearly
as well as a “full” model (e.g., in a regression context, R2 = .300 with the full
model and R2 = .299 with the simple model, and the extra precision of prediction



POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS 791

using the full model is essentially lost in the error variance (1−R2) of predictive
distributions). The decision whether to use a “rejectable” model must be based
on pragmatic and scientific criteria. In some cases, as when the truth of an ac-
cepted scientific model is in question, using powerful and diverse discrepancies
will be appropriate, whereas in many other cases, as when using a model for
obtaining predictive distributions across different settings, less powerful discrep-
ancies, which can accept the adequacy of model for the purpose at hand, will be
appropriate.

The Critical Role of “Fixed Features” of the Replications

Critically important to this discussion of when a model is “good enough”
is the issue of what is meant by a replication – what are the “fixed features”
(Rubin (1984), Section 5.3) underlying the new draws of (θ, yrep)? This choice
can be as important as the choice of discrepancy for determining the adequacy of
a posited model. For example, Rubin and Stern (1994) show that by imbedding
both the χ2 test and Fisher’s exact test for a 2×2 table within the ppc framework,
the essential difference between the answers generated by the two approaches is
not due to the statistics themselves or the prior distribution over the marginal
nuisance parameter, but rather simply due to the definition of what constitutes
a replication. If the replications keep the margins fixed, so that, for example, the
replications of a medical experiment always involve the same numbers of healthy
and sick people as in this study, using either χ2 or the Fisher statistic as the
discrepancy gives the Fisher hypergeometric p-value as the ppc p-value, whereas
if the replications randomly sample new patients for the replicated experiments,
the ppc p-values, using either statistic for the discrepancy and almost any prior
distribution on the nuisance parameter, are very nearly equal to the asymptotic
χ2 p-value.

For other interesting examples of the critical role of fixed features of the
replications, consider sequential experiments with data-dependent stopping rules
(as in Rubin (1984), Section 4.4). Suppose we keep sampling in a normal problem
until the t statistic is greater than 2.5, and in our study we stop with the observed
t statistic equal to 2.51. Considering t to be the discrepancy for the posited model
of zero mean, this result may be just what we would expect to see when the
replications correspond to the actual study design, whereas if the “replications”
were defined to be simple random samples with the same fixed sample size as
the observed sample size, the ppc replications would lead to a more extreme p-
value and a possible rejection of the posited model. Study design does influence
Bayesian posterior assessment of posited models!

In conclusion, this fine contribution by GMS should encourage more applica-
tions of ppc p-values, thereby improving the quality of applications of Bayesian
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statistics, and moreover should stimulate new theoretical work concerning fre-
quentist operating characteristics for these diagnostic techniques, thereby pro-
viding frequentists with new tools, and improving the bridge between Bayesians
and frequentists.
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COMMENT

Sam Weerahandi and Kam-Wah Tsui

Bellcore and University of Wisconsin

Gelman, Meng, and Stern (GMS) provide a useful methodology in a Bayesian
framework to assess the goodness of fit of a statistical model to the observed data.
Their approach is based on the idea of discrepancy variables and posterior pre-
dictive p-values defined in Meng (1994) in a related problem. The treatment in
GMS is particularly appealing as there is a class of natural and familiar discrep-
ancy measures to facilitate the approach. Moreover, the GMS treatment does
not seem to have an undesirable feature (described below) of the former paper
on posterior predictive p-values.

We would like to comment on some aspects of the proposed method and
address some of the problems raised in the examples discussed by GMS. As
there are other types of applications where their approach has great potential
for providing solutions, we also attempt to bring the attention of Bayesians to
a class of problems in which the conventional Bayesian approach seems to have
failed. In Section 3 below, we describe one such class, which is in a sense similar
to the one undertaken in GMS; to stimulate much needed further research in this
direction we solve a particular problem by taking the authors’ approach.

1. Advantages of the Approach

One major advantage of the Bayesian approach proposed in GMS is its ability
to provide relatively simple p-values for problems of testing simple/point null
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hypotheses (e.g., the equality of a number of parameters) involving one or more
parameters. The conventional Bayesian approach often runs into difficulties or
fails in testing such hypotheses unless a more complicated form of prior placing
a point mass on the null is assumed.

Another welcome feature of the posterior predictive p-values presented in
GMS is that it has avoided a certain undesirable feature in Meng’s original paper.
In the treatment of Meng (1994), the prior distribution is confined to part of the
parameter space as opposed to the whole parameter space as in a true Bayesian
treatment. We considered this undesirable because when a prior distribution has
been specified one should be able to carry out any kind of inference, not just
hypothesis testing. For example, in ANOVA, after the original null hypothesis
has been tested, one must carry out multiple comparisons and provide point
estimates and interval estimates for parameters of interest.

2. Some Reservations

Although the examples used in GMS to motivate the problem and illustrate
the solution are interesting and provide insight into the difficulties of classical
treatments, some of them are not quite convincing due to the inherent problems
of the assumed models themselves. For instance, in the motivating example on
the position emission tomography experiment, one can assess and conclude the
inadequacy of the model even before seeing any data. A model should be con-
sistent with not only the observed data and estimated parameters, but also with
any other data set that could have been observed. In the current application this
means that the assumed model should have the property that each component
of θ is a positive quantity. Therefore, it is customary in this type of application
to model a transformed value of the parameter, such as log(θ) (the logarithm of
each component), rather than θ itself. After transforming the parameter space,
the positivity constraint discussed in the paper is no longer an issue.

In many instances, the computation of the posterior predictive p-value is
based on realizations simulated from the posterior distribution. Therefore the re-
liability of the simulated result is important and requires much attention. When
the posterior distribution cannot be simulated directly, an indirect simulation
method (Markov Chain Monte Carlo) such as the Metropolis algorithm is often
used, as in the mortality rate example described in Sections 3.1 and 3.2 in GMS.
In Figure 6, the histogram is based on 1000 simulations from the reference distri-
bution for the minimum chi-square statistic for the mortality rate. It is not clear
in this paper if the 1000’s were generated in 1000 parallel sequences using the
Metropolis algorithm, similar to the description given in the last paragraph of
Section 3.1, or the 1000’s were generated in one sequence after the convergence of
the simulation is checked. Probably both lead to similar shapes of the histogram.
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Among the recent literature on indirect simulation of a posterior distribution, for
example, Geyer (1992) argues that simulation based on just one sequence of re-
alization is preferable. In general, some discussion is needed on how sensitive the
computed value of the posterior predictive p-value is to the way the posterior
distribution is simulated.

3. Solving ANOVA Problems

To our knowledge, currently there are no Bayesian solutions available to
problems in ANOVA involving fixed effects models when the underlying error
variances are not necessarily equal. The conventional Bayesian treatment seems
to have failed in this context. In a sense ANOVA problems have some features
similar to the problem of the assessment of model fitness. For example, when we
are to test the equality of some treatment means, the question we need to answer
is, “are the observed differences in sample means just an artifact of sampling
variation or is it due to differences in population means?” The question makes
perfect sense and the treatment means may (or may not) indeed be equal because
treatments being compared might be nothing but pure water from the same
source flavored with banana, papaya, or mango. Given this reality, the idea of
trying to compute the posterior probability of the null hypothesis based on a
special prior (e.g. prior probability of 1/2 that the null hypothesis is true) is
not only naive but also does not address the real underlying problem. Moreover,
one should be able to perform other inferences such as multiple comparisons
and interval estimation using the specified prior. The approach which attempts
to handle ANOVA problems in terms of contrasts also becomes complicated or
intractable in higher-way ANOVA problems and under heteroscedasticity.

The GMS approach provides great promise to solving ANOVA problems. In
this section we attempt to solve the simple one-way ANOVA problem by taking
their approach. We hope that this will stimulate much needed further research
in this direction. Recently Weerahandi (1995) obtained a generalized p-value (cf.
Tsui and Weerahandi (1989)) for the one-way ANOVA situation. The posterior
predictive p-value approach of GMS may be able to produce a p-value equal to or
similar to the generalized p-value using an appropriate prior. Below we solve the
problem assuming the classical noninformative prior, which can be employed in
any type of inference concerning the treatment means including the problem of
testing their equality. The results can be easily obtained with natural conjugate
priors as well. The approach presented below should prove to be useful in solving
many higher-way ANOVA problems.

Consider the problem of comparing the means of k populations with unequal
variances. Suppose a random sample of size ni is available from the ith popula-
tion, i = 1, . . . , k. Let Xij , i = 1, . . . , k, j = 1, . . . , ni be the random variables
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representing the observations taken from the k populations. Denote by X the
vector of all Xij ’s. Let

Xi =
ni∑

j=1

Xij/ni and S2
i =

ni∑
j=1

(Xij −Xi)2/ni, i = 1, . . . , k,

be the sample means and the sample variances (MLE’s) of the k populations.
The observed values of these random variables are denoted as xi, s

2
i , i = 1, . . . , k,

j = 1, . . . , ni, respectively.
Let µi be the mean of the ith population. With the assumption of normally

distributed observations consider the linear model:

Xij = µi + εij , with εij ∼ N(0, σ2
i ), i = 1, . . . , k, j = 1, . . . , ni. (3.1)

Consider the null hypothesis

H0 : µ1 = µ2 = · · · = µk. (3.2)

As in Weerahandi (1995), define the standardized between group sum of
squares

S̃b = S̃b(σ2
1 , . . . , σ

2
k) =

k∑
i=1

ni

σ2
i

(X̄i − X̄w)2
/ k∑

i=1

ni

σ2
i

, (3.3)

where X̄w = (
∑k

i=1 niX̄i/σ
2
i )/(

∑k
i=1 ni/σ

2
i ). Let s̃b = s̃b(σ2

1 , . . . , σ
2
k) be the value

of the random variable S̃b obtained by replacing X̄i’s appearing in (3.3) by their
observed values x̄i, i = 1, . . . , k.

Let σ2 be the vector of k population variances and let θ = (µ,σ2) be the
vector of all unknown parameters. In the Bayesian treatment of GMS the usual
non-informative prior (as opposed to the prior that Meng (1994) used in the
k = 2 case) is

π(θ) ∝ σ−2
1 · · · σ−2

k .

Then the posterior density f(σ2) of (σ2
1 , . . . , σ

2
k) given the data x is the product

of the densities of σ2
i , i = 1, . . . , k with the ith distribution given by

Yi = σ−2
i nis

2
i ∼ χ2

ni−1. (3.4)

Using the notation in Meng (1994)

D(X, θ) = S̃b(σ2
1 , . . . , σ

2
k)

is a discrepancy variable appropriate for the current testing problem. In fact in
the k = 2 case this reduces to the discrepancy variable used by Meng (1994) and
is the obvious direct counterpart in the general case.
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We use the notation X in place of xrep in GMS. Then, under H0 and given
(σ2

1 , . . . , σ
2
k), we have the conditional distribution

W = D(X, θ) ∼ χ2
k−1. (3.5)

Moreover, since this is free of nuisance parameters, it is in fact independently dis-
tributed from the distribution (3.4) of (σ2

1 , . . . , σ
2
k). Hence, noting that D(x, θ) =

s̃b(σ2
1 , . . . , σ

2
k) we can compute the posterior predictive p-value as

pb(x) =
∫
Pr(W ≥ s̃b(σ2

1 , . . . , σ
2
k) | H0))f(σ2)dσ2

= E
(
Pr(W ≥ s̃b(

n1s
2
1

Y1
, . . . ,

nks
2
k

Yk
))

)
.

Now proceeding with arguments similar to those in Weerahandi (1995), pp. 597-
598, we get,

pb = 1 − E
(
H(

N − k

k − 1
s̃b[

n1s
2
1

B1B2 · · ·Bk−1
,

n2s
2
2

(1 −B1)B2 · · ·Bk−1
, . . . ,

nks
2
k

(1 −Bk−1)
])

)
,

where H is the cdf of the F -distribution with k − 1 and N − k degrees of free-
dom and the expectation is taken with respect to the independent beta random
variables

Bj ∼ Beta
[ j∑

i=1

(ni − 1)
2

,
nj+1 − 1

2

]
, j = 1, 2, . . . , k − 1. (3.6)

This is the same expression that Weerahandi (1995) obtained for the generalized
p-value for testing the equality of means. Therefore, the two solutions are nu-
merically equivalent. The p-value can be conveniently computed using the XPro
software package.

Bellcore, 445 South St., Morristown, NJ 07960-6438, U.S.A.

REJOINDER

Andrew Gelman, Xiao-Li Meng and Hal Stern

The primary purpose of our paper is to encourage routine goodness-of-fit
assessment for complex models. This is especially important in view of the in-
creasing utility and popularity of models with which we have limited experience,
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partially due to recent advances in computational methods. With sophisticated
models there can often be difficulties in applying classical goodness-of-fit tests,
and the posterior predictive assessment is useful in such cases, especially given
the increased flexibility provided by discrepancies that can be functions of pa-
rameters as well as data. We use the plural “models” to emphasize that even
when one has fit several models for comparison or as part of a sensitivity analysis,
the fit of each model still needs to be assessed before the analysis can be used as
a serious component of a scientific investigation.

Comparing model predictions to observed data is such an obvious idea for
model checking that we did not expect any statistician would object to it. We did,
however, expect some reservations about using tail-area probabilities, largely as
a reaction to the abuse of p-values in practice. We strongly condemn the abuse
of p-values, but that does not mean we should throw out the baby with the
bath water, since p-values, when viewed as appropriate probability statements,
can be useful for model checking. We thus are grateful to Statistica Sinica and
especially its Editor for organizing this collection of excellent discussions, which
provides us with an opportunity to further emphasize our key points. We are
also very grateful to the discussants for their valuable comments and suggestions,
and are particularly encouraged by the consensus on the critical importance of
Bayesian model diagnosis. Below, we respond to various points for which we
believe some elaboration will be useful for readers; we list the names of relevant
discussants in brackets whenever one of our points is relevant to that discussion,
using abbreviations for multiple authors (KW = Kass and Wasserman; LR =
Lewis and Raftery; WT = Weerahandi and Tsui).

On the General Use of Posterior Predictive Assessments in Practice

Our work was motivated by our belief that posterior predictive assessments,
as formalized in Rubin (1984), are the natural Bayesian extension of classical
model checking. Simulation-based model checking has a long history in statis-
tics; examples from this century include a comparison of data on dog learning
to simulated data from a stochastic model (Bush and Mosteller (1954), §11.2)
and comparison of photographic images to a simulation from a stochastic image
model (Ripley (1988), Ch. 6). In each of these examples, the parameters of the
stochastic model were fit to data, and simulations were computed with the pa-
rameters set to their point estimates. The model checking was useful in these
examples, as in ours, because the aspects of the data being checked were not
the same as those being fit by the model. In our terminology, we would consider
these simulations to be approximations to posterior predictive assessments, using
a point estimate of θ rather than its posterior distribution. In more complicated
problems, such as with hierarchical models, the plug-in rule can seriously under-
state posterior uncertainty (as noted by LR), and it is thus important to reflect
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such uncertainty in model checking. Rubin’s (1984) posterior predictive check
then comes naturally, and a key component of Rubin’s formulation is to set up
posterior predictive checks in terms of replicated data. In our notation, the dis-
tribution p(θ|y,H) determines Bayesian inference conditional on the model H,
but one typically needs to define the joint distribution p(yrep, θ|y,H) in order to
check the model. Posterior predictive assessment thus can be viewed as a part
of the Bayesian analysis over the larger probability space that includes yrep.

We echo Draper’s emphasis that both practical and statistical significance
are important. The former is addressed by the magnitude of the discrepancy,
in real terms, compared to its reference distribution; the latter is addressed by
the p-value. For example, Gelman et al. (1995), §8.4 check the fit of a regression
model fit to U.S. election data using, as a test statistic, the proportion of “party
switches”: elections in which the candidate of the incumbent party loses. The
observed proportion of party switches is T (y) = 0.126; by comparison, in the
posterior predictive simulations, 95% of the values of T (yrep) fall in the range
[0.130, 0.143]. The observed value of T (y) falls far in the tail of the posterior pre-
dictive distribution of T (yrep)—the lack of fit is thus statistically significant—but,
for the purposes for which the model was being used (estimating the advantage
of incumbency), a misfit of 0.01 in the proportion of switches is minor and not
practically significant. We see no problem with noting this lack of fit (which may
be useful to know about if we seek to expand the model or understand the data
better), while still finding the model useful.

Since writing this paper, we have made posterior predictive assessment a
standard part of our applied model fitting (examples appear in Gelman et al.
(1995), Ch. 6, 8, 13, 16, and 18). In most cases, the plot of the realized discrep-
ancy compared to the reference distribution is far more valuable than the p-value
itself. Even with simple methods such as plots of residuals, it can be useful in
complicated models to use the posterior predictive distribution as a reference dis-
tribution for comparison to the data. LR’s examples, including one that predates
our paper, further illustrate the usefulness and flexibility of posterior predictive
assessments. There have also been posterior predictive assessments in Bayesian
modeling stimulated by our paper (the first version of which was completed in
1992; see, for example, Green et al. (1994) and Vounatsou and Smith (1995)). We
expect that posterior predictive assessment, like Bayes methods in general, will
become increasingly common as users of statistical models realize how general
the idea is and how easily it can be applied.

Model Checking Without an Explicit Alternative is Inevitable

At the end of a Bayesian analysis, we summarize our inference by the joint
posterior distribution of all unknown quantities. (Sensitivity analysis is a set
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of such posterior distributions.) This posterior inference can be the result of a
series of model improvements and expansions, of model averaging, or of model
selection via Bayes factors or other criteria. To be confident that we have arrived
at a reasonable Bayesian inference, we need (at least) to know whether this final
model fails to capture important features of the data. That this model survived
the model building process does not logically assure us that it will be in good
agreement with the data, unless we have included goodness-of-fit assessment as
part of the model improvement process that led to the final model. Once we are at
the end of the analysis, either because we have exhausted our model improvement
effort or because we have reached a time constraint [Draper], we are not able to
consider any (further) explicit alternative models. However, we can and should
check the fitness of the final model to the data, and report any serious discrepancy
we find. We may (as KW suggest) keep this model for our current needs despite
some identified model failures. For serious decision problems [Draper; Hill], a
final check on the model is particularly important, because the ultimate decision
will condition on this final model (or models) being acceptable.

For example, in our mortality example, if we have to stop after fitting the
monotone-convexity model, we can still check it against the observed rates, as we
did, without formulating any explicit alternatives. We indeed had several implicit
alternatives in mind (e.g., non-convexity; alternative prior distributions requiring
convexity but not favoring quadratic curves) when we chose the discrepancy
variables χ2 and y64 [Draper]. But there is no need, and in fact it is often
impossible, to construct a model to quantify exactly an implicit alternative (e.g.,
“not monotone”) and then carry out the calculation of Bayes factors [Draper;
Hill; KW]. We agree with Draper that our Figures 4–5, which represent a form of
model checking without explicit alternatives, are more informative than aggregate
discrepancy measures for detecting the lack of fit and for suggesting directions
for improvement [KW; LR; Hill]. We chose such an example precisely because
it allows direct validation of the findings of the posterior predictive assessment
based on simple discrepancies. For more complex problems, such direct plots
may not be feasible (e.g., we may not have a scalar quantity, such as age, to plot
against). We certainly do not suggest that the discrepancy approach be used
as the only model check. Examining the posterior distribution with respect to
subject matter expertise will generally be a first check of model adequacy (and
sometimes programming accuracy). The more methods we have, the better, as
long as we apply each for the purpose for which it is designed. Hill summarizes
well for the posterior predictive assessment: “Its primary function is to alert one
to the need of making ... more careful analysis, and perhaps to search for better
models.”

We certainly agree that flaws discovered during model diagnosis should be
used to suggest alternative models whenever feasible [LR; KW; Hill]. As Box
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and Tiao (1973) and Gelman et al. (1995) indicate, model building, like scien-
tific investigation in general, is an iterative process. Included in this process is
the possibility of finding flaws in a model before a better explicit alternative has
appeared to replace it, suggesting more experiments or the need for better under-
standing of the underlying process from a substantive perspective. A “rejected”
model might be useful for many purposes (e.g., Newton’s law) while its rejec-
tion encourages us to continue searching for an improved model (e.g., Einstein’s
relativity).

Flexibility is Necessary in Model Checking

The fact that models are posited as approximations to the truth for spe-
cific purposes suggests that a sensible model checking technique must be flexible
enough to accommodate different needs. For example, the question of how un-
usual a realized discrepancy must be before one casts doubt about the aspect
of the model being checked [KW] must be judged in the practical context de-
pending on the utility [Draper] and the nature of the data. One problem that is
brought up repeatedly is that, in practice, any model being fit to real data can be
“rejected” by a goodness-of-fit test if the number of data points is large enough.
The resolution of this problem is that there is no need to abandon a model if its
lack of fit is minor in real terms, but it is still useful to discover problems with
the model with an eye to ultimately improving it (as in the previous election
example).

An important feature of the method we advocate is the flexibility in choosing
discrepancies and replications to diagnosis in what way the posited models are
inadequate [LR]. We agree with KW’s statement that “it might seem sensible
to remove our global notion of acting as if a model were true and replace it
with a qualified version, acting instead as if a model were true for some specified
purpose.” This is indeed the purpose of classical goodness-of-fit testing and its
generalization, posterior predictive assessment—the purpose of the checking is
not simply to “accept” or “reject”, but rather to discover what aspects of the
data are not being fit well by the model. It is clear that this goal cannot be
achieved with a fully automated diagnosis method.

In practice, we strongly suggest the use of more than one discrepancy, some
of which might be omnibus measures and others which might be problem-specific
(e.g., the χ2 and y64 in the mortality example). Recall that measures need not be
distances [LR]. Multiple discrepancy measures allow for the diagnosis of various
aspects of the posited models that need improvement [Draper; KW; LR]. We
welcome any suggestions that encourage multiple diagnostic checks (e.g, LR’s use
of subsets and Draper’s separation of likelihood and prior density). We emphasis
that there is no need to (formally) weight the findings from different discrepancies
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to provide a single summary, because they are designed to be sensitive to different
aspects of the model [KW].

Rubin’s comments on the conservatism of posterior predictive p-values, the
related concept of “confidence validity”, and the possible effects of varying the
definition of replications raise issues that require statisticians to move beyond
seeking unique, optimal, and automated procedures. While it is useful to seek
general rules that serve some common purposes (e.g., the χ2 tests in our paper
or the general discrepancies mentioned by LR), it is important for statistical
methods to retain the flexibility to meet the needs of a wide range of scientific
problems [Rubin]. Hill’s post-data analysis is also an attempt to make statistical
methods flexible enough for complex real-life applications. Also, there is a need
for theoretical studies of phenomena that appear to arise from the resulting
flexible statistical framework, such as “superefficiency” [Rubin].

Even for the task of model comparison, which KW and, to some extent, LR,
suggest should be reserved for Bayes factors, we believe predictive distributions
can have a useful role in practice; this topic is pursued further by Bernardo and
Smith (1994) and Draper (1995).

Every Method Requires Caution

The essence of a goodness-of-fit checking is the comparison between data
(or, more generally, a realized discrepancy) and a reference distribution. This
comparison can often be done informally or graphically, as in the examples of
Bush and Mosteller (1954) and Ripley (1988) cited earlier, as well as the figures
in our paper and in the discussions by Draper and LR. We agree with Draper
that other numerical summaries of the plots can be useful, such as LR’s upper
and lower tail-area probabilities for discrete discrepancies. We welcome Draper’s
suggestion of using the density ratio in the form fmax/f(dobs), but this approach
has its own drawbacks. It is not applicable when the discrepancy depends on
both parameter and data, a central theme of our proposal. In addition, unlike
the p-value, the density ratio does not have a direct interpretation as a posterior
probability.

Draper also suggests cross-validation, which can be a useful diagnostic tool.
However, we do not share Draper’s view that cross-validation is a more natu-
ral approach than the posterior predictive approach and the implication that
cross-validation is more suitable for general practice. It is well known that cross-
validation works best with large amounts of “unstructured” data (essentially
those that are i.i.d., possibly after some grouping), as discussed in Bailey, Hard-
ing, and Smith (1989). For highly structured data or small data sets (relative
to the number of parameters), the typical setting of the sophisticated Bayesian
models for which the posterior predictive assessment is designed, it is generally
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difficult to determine suitable “training” and “test” samples that will provide
information relevant to the model’s fit to the parent sample. For instance, for
the image problem, it is very difficult to decide a training image and a test image
that are scientifically relevant for the original image. For the mortality example,
which is essentially a non-linear regression problem, Draper’s analysis demon-
strates the difficulty of using cross-validation for regression analysis. Omitting
influential cases can greatly alter the estimated regression, and it is well known
that such a cross-validation analysis necessarily shows more lack-of-fit than the
full-data analysis (e.g., Stone (1974), Bailey et al. (1989)).

Regarding KW’s suggestion that the posterior distribution of a discrepancy
be used rather than hypothetical replications, we actually explored such a possi-
bility at an early stage of our work, using Dempster’s choice of discrepancy, the
log likelihood function. Our conclusion was that such an approach is essentially
only useful for comparing two models. Indeed, in the response to a question
raised by Cox on the implementation of his approach, Dempster (1974) made it
clear that if two models are being fit to the same data, then the one that yields
the posterior density of −2loglikelihood that is far to the left of the other is re-
garded as a better fit. Although “what constitutes ‘far to the left’ is not easy
to formalize precisely” (Dempster (1974), p. 353), having two posterior densities
provides a comparative scale for making such judgments. In contrast, when we
only have a single posterior density of a discrepancy, we find the magnitude of
the realized discrepancy given the posited model and the observed data, but we
do not know the magnitude of the corresponding realized discrepancy when the
data are indeed from the posited model. Inspecting a single posterior density of
a discrepancy might be sufficient for detecting a lack of fit when one has a rough
idea of the “acceptable” magnitude. But it is obviously more desirable to make
this determination in a more formal way, for the sake of both validity and cali-
bration, and the posterior predictive check using realized discrepancy is designed
for that purpose. It seems to us that in the context of assessing goodness-of-fit
of a model for a given data set, hypothetical replications are inevitable.

Concerning Various Examples and Applications

For the shuttle launching problem, we agree fully with Hill that the only sen-
sible thing to do, as statisticians, is to perform a sensitivity study and to present
the result to the decision makers. Neither a posterior predictive assessment nor a
Bayes factor nor any other statistical method can detect lack of fit of the model
for data outside the range of the existing data (e.g., low temperatures).

Regarding the psychology application in Sections 3.3–3.4 questioned by KW,
it is tempting to try to embed the two-class model into a suitable four-class model
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but this turned out not to be practical given the complicated relationships be-
tween the two-class and four-class models dictated by the substantive theory.
It was thus decided that it would be more effective, especially for the intended
audience of psychologists and statisticians (see Stern et al. (1995); Rubin and
Stern (1994)), to treat the four-class model as an implicit alternative when test-
ing the two-class model. It would be interesting to see alternative statistical
methods applied to this data set with the same scientific goals, especially to see
if more sophisticated methods can provide a better scientific understanding of
infant temperament. This example indicates that the line between implicit and
explicit alternatives is not absolute, and it also reinforces the importance of using
substantive knowledge in applied statistics.

The importance of scientific knowledge also is evident in the tomographic
image problem. Although we agree in general with WT that model constraints
can and should be considered before seeing any data (e.g., Gelman (1996)), the
log transformation does not remove our difficulties in this example, because the
expected data are a linear transformation of the image on the untransformed
scale. Taking logs removes the positivity constraint but at the cost of making
the problem nonlinear; under either parameterization, the χ2 or other natural
discrepancies do not have invariant distributions.

WT’s ANOVA problem, we believe, can be better handled by a hierarchical
linear model, which can be solved using a direct Bayesian approach (see, for
example, Gelman et al. (1995), Ch. 5). The posterior predictive assessment is
useful for checking the posited hierarchical model, but the inference about the
group means should be summarized by their joint posterior distribution. The
p-value provided by WT could perhaps be used to check whether an analysis
under the assumption of equal means provides a useful approximate analysis for
those situations when it would be a major investment for the analyst to carry
out the more general analysis.

Hill’s variance-component model provides another good example of the need
for model assessment. There the usual variance component model is fit to a data
set with the result that the sum of squares between group means is smaller (per-
haps much smaller) than would be implied by the within-group variance. This
is often taken as evidence of zero between-group variance while Hill suggests the
data may be indicating negative correlation of errors within groups (for problems
in which such negative correlation is plausible). Since the negative correlation
model is quite a bit more complex, one can easily imagine fitting a variance com-
ponents model first and assessing its adequacy. A diagnostic measure like the
range of group means might point out the lack of fit of the variance components
model and the statistician, perhaps with a subject matter expert, would then
need to determine if the result is due to chance, negative correlation, or some
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other explanation. Glickman and Stern (1995) present a posterior predictive as-
sessment of this sort in analyzing American football scores but conclude that
negative correlation is not a plausible alternative in that case. Hill’s model is
a very useful alternative but beginning with that model in all variance compo-
nent problems does not seem to be the best modeling strategy. It should also
be pointed out that the negative correlation model would need to be checked
against the observed data as well.

What Jeffreys (1961) Did (and Said)

The optimality of “orthodox” Bayesian inference [KW], like any optimality
result, is necessarily built upon the assumption that the underlying model is
true. Hypothetical replications, with or without tail-area calculations, are used
to check such an assumption. We thus do not see any conflict between such results
and the use of posterior predictive model checks; the situation is very much like
the debate on the likelihood principle—adopting the likelihood principle does
not require one to blindly adopt a particular likelihood (see McCullagh (1995)).
Although it is unnecessary to cite anyone to support this obvious point, we
would like to conclude our rejoinder by mentioning what Jeffreys (1961) did
in analyzing data, since his work was quoted several times by discussants [Hill;
KW; LR]. We hope this citation will show that there is indeed no conflict between
being a Bayesian and using hypothetical replications and tail-area probabilities
(of course, here our model assumes that the same Jeffreys was the author for all
the quoted pieces). In a study assessing whether correction of an astronomical
constant was required, after tabulating weighted individual deviations from a
weighted mean, Jeffreys (1961, p. 305) wrote “The weighted mean is +0.69 and
gives χ2 = 1043/7.72 = 16.9 on 7 degrees of freedom. This is beyond the 2 per
cent. point, and is enough to arouse suspicion.”
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