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Sampling and Bayes’ Inference in Scientific Modelling and Robustness

By GEoRGE E. P. Box
University of Wisconsin—-Madison

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the South Wales Local Group on
Thursday, May 15th, 1980, the President SIR CLAUS MOSER in the Chair]

SUMMARY

Scientific learning is an iterative process employing Criticism and Estimation.
Correspondingly the formulated model factors into two complementary parts—a
predictive part allowing model criticism, and a Bayes posterior part allowing estimation.
Implications for significance tests, the theory of precise measurement and for ridge
estimates are considered. Predictive checking functions for transformation, serial
correlation, bad values, and their relation with Bayesian options are considered.
Robustness is seen from a Bayesian viewpoint and examples are given. For the bad value
problem a comparison with M estimators is made.
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THEORY; PREDICTIVE DISTRIBUTION; DIAGNOSTIC CHECK; TRANSFORMATIONS; SERIAL
CORRELATION; BAD VALUES, OUTLIERS; ROBUST ESTIMATION

0. INTRODUCTION

No statistical model can safely be assumed adequate. Perspicacious criticism employing
diagnostic checks must therefore be applied. But while such checks are always necessary, they
may not be sufficient, because some discrepancies may on the one hand be potentially disastrous
and on the other be not easily detectable. In addition therefore it is often pertinent to make the
developing model robust against contingencies to which it is currently judged sensitive.

The object of this paper is to review the complementary roles in the model building process
of the predictive distribution and of the posterior distribution; the former in producing
diagnostic checks of parametric as well as residual features of the model, the latter in providing a
general basis for robust estimation.

1. SCIENTIFIC LEARNING AND STATISTICAL INFERENCE

Much of statistics is concerned with extending knowledge by building empirico-mechanistic
models that involve probability. A theory about such scientific model building ought to explain
what good statisticians and scientists actually do. It seems that scientific knowledge advances by
a practice—theory iteration. Known facts (data) suggest a tentative theory or model, implicit or
explicit, which in turn suggests a particular examination and analysis of data and/or the need to
acquire further data; analysis may then suggest a modified model that may require further
practical illumination and so on. I shall suppose that data are acquired from a designed
experiment, but the same argument would apply if data acquisition was from a sample survey or
even from a visit to the library. New knowledge thus evolves by an interplay between dual
processes of induction and deduction in which the model is not fixed but is continually
developing. The statistician’s role is to assist this evolution (see, for example, Box and Youle,
1955; Box, 1976). In doing so he employs two inferential devices: Criticismt and Estimation.

Suppose that at some stage i of an investigation, model M; is being entertained.

Criticism can induce model modification. It involves a confrontation of M; with available
data y (old as well as newly acquired), and asks whether M, is consonant with y and, if not, how

1 The apt naming of inferential criticism is due to Cuthbert Daniel, see also Popper (1959).
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not. It employs a process of diagnostic checking (see, for example, Box and Jenkins, 1970), which
is often done informally using plots of various kinds of residual quantities, or more formally,
with tests of goodness of fit or “tentative overfitting” procedures. When a modification to M, ,
has been made, this new model, in addition to confronting the same data, will in some cases be
checked against new data generated by a design D; ., ;. This new design will be chosen to explore
those shadowy regions whose illumination is judged currently to be important in view of the
nature of the modified model and the needs of independent verification.

Estimation. When the iteration leads to a model worthy to be entertained it may be used to
estimate parameters conditional on its truth. In practice such estimation is used not only at the
termination of the model building sequence but at many stages throughout it. This is because, to
conduct criticism of a model, it is often necessary to estimate provisionally parameters at
intermediate stages.

In any such enterprise many subjective choices are made, conscious or unconscious, good or
bad. They determine for instance which plots, displays. and checks of data and residuals are
looked at; and what treatments and variables are included at which levels, over what
experimental region, in which transformation, in what design, to illuminate which models. The
wisdom of these choices over successive stages of development is the major determinant of how
fast the iteration will converge or of whether it converges at all, and distinguishes good scientists
and statisticians from bad. It is in this context that theories of inference need be considered.
While it is comforting to remember that a good scientific iteration is likely to share the property
of a good numerical iteration—that mistakes often are self-correcting, this also implies that the
investigator must worry particularly about mistakes which are likely not to be self-correcting.

1.1. Rival Theories of Inference

The distinction between model criticism and parameter estimation has not always been
made and proponents both of sampling inference and Bayesian inference have long sought for a
single comprehensive theory.

I believe that, subject to some overlap discussed later, sampling theory is needed for
exploration and ultimate criticism of an entertained model in the light of current data, while
Bayes’ theory is needed for estimation of parameters conditional on the adequacy of the
entertained model. On this view (see also Box and Tiao, 1973) both processes would have
essential roles in the continuing scientific iteration just as the two sexes are required for human
reproduction. Attempts to choose between two entities which were not alternative but
complementary could certainly be expected to lead to contention, paradox and confusion of the
kind we have been experiencing. The view that more than one mode of statistical reasoning can
be useful is not, of course, new and was advanced (however with a different emphasis and
conclusions) by R. A. Fisher. See also in particular Dempster (1971).

1.2. The Need for Prior Distributions

In the past, the need for probabilities expressing prior belief has often been thought of, not as
a necessity for all scientific inference, but rather as a feature peculiar to Bayesian inference. This
seems to come from the curious idea that an outright assumption does not count as a prior
belief. The interconnection between model assumptions and prior distributions becomes clear
when it is remembered that every model can be imagined as embedded in a more complex one.
For example, an outright assumption of normality can be modelled by a suitable parametric
family of distributions indexed by a parameter §, which has a sharp prior at the normal value. I
believe that it is impossible logically to distinguish between model assumptions and the prior
distribution of the parameters. The model is the prior in the wide sense that it is a probability
statement of all the assumptions currently to be tentatively entertained a priori. On this view,
traditional sampling theory was of course not free from assumptions of prior knowledge.
Instead it was as if only two states of mind had been allowed—complete certainty or complete
uncertainty.
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One illustration of how implied prior knowledge which is implausibly imprecise can lead to
trouble in sampling theory is the famous discovery by Stein (1956) of the inadmissibility of the
multivariate sample mean. Consider for example the usual one-way analysis of variance set-up.
The prior assumption which justifies the shrinkage estimator (see, for example, Box and Tiao,
1968a; Lindley and Smith, 1972) that the group means y; are random samples from some normal
super-population having unknown mean and variance might, in appropriate circumstances, be
eminently reasonable. It is easy, however, to miss the lesson which is to be learned from such
examples. Notice that there are many circumstances in which this “Model II” assumption would
not be sensible either. For example, if the u’s were daily batch yields from some production
process, it might be much more reasonable to postulate a priori that they followed some time
series model such as a stationary autoregressive process. The estimators (Tiao and Ali, 1971)
then derived from Bayesian means are not Stein’s shrinkage estimators, but alternative
estimators allowing incorporation of relevant sample information about the autocorrelation of
the batch means. Thus while for this example, except as a numerical approximation, we ought
not to use the sample means as estimates, we ought not to use Stein’s shrinkage estimates either.
There seems no logical way to avoid trouble except by the explicit prior statement of the model
we wish to entertain.

1.3. Two Complementary Factors from Bayes’ Formula
If the prior probability distribution of parameters is accepted as essential, then a complete
statement of the entertained model at any stage of an investigation is provided by the joint
density for potential data y and parameters 0 calculated from

p(y,8]4) = p(y |0, 4) (0] A). (1.1)

In these expressions A is understood to indicate conditionality on all or some of the assumptions
in the model specification. This model(1.1) means to me that current belief about the outcome of
contemplated data acquisition would be calibrated with adequate approximation by a physical
simulation involving random sampling from the distributions p(y |8, 4) and p(0| 4).

The model can also be factored as

p(y,0]4) = p®|y, 4) ply| A). (1.2)

In particular the second factor on the right, which can be computed before any data become
available,

piy|A) = J'P(YIB, A)p(®|4)d6 (1.3)

is the predictive distribution. It is the distribution of the totality of all possible samples y that
could occur if the assumptions were true.
When an actual data vector y, becomes available

P(¥2,0|A) = p®]y,, A) p(ya| A) (14)
and the first factor on the right is Bayes’ posterior distribution of 0 given y,
p®]ya, 4) oc p(ya|0, 4) (6| A). (15)
But of equal importance is the second factor
p(ya|4) = fp(yaIB,A)p(ﬂlA)dﬂ, (1.6)

the predictive density associated with the particular data y, actually obtained. Fig. 1 illustrates
for a single parameter 6 and a sample y, of n = 2 observations.

If the model is to be believed, the posterior distribution p(0|yd,A) allows all relevant
estimation inferences to be made about 0. However, if y, were such as would be very unlikely to
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FIG. 1. A representation of the prior distribution, the posterior distribution and the predictive distribution for a single
parameter 6 and sample y, of two observations.

be generated by the model, this could not be shown by any abnormality in this factor, but could
be assessed by reference of the density p(y, | A) to the predictive reference distribution p(y | A)or
of the density p{g{y,) | A} of some relevant checking function g{y,) to its predictive distribution.
The importance of the predictive distribution and the possibility of using it in some way as a
model checking device has been discussed by a number of authors. See in particular Roberts
(1965), Guttman (1967), Geisser (1971, 1975), Dempster (1971, 1975), Geisser and Eddy (1979)
and Kadane et al. (1979). Also measures of surprise other than that discussed here have been
proposed, for example by Good (1956).

2. ESTIMATION OF THE MEAN OF A NORMAL DISTRIBUTION

As an example consider a sample of n observations drawn randomly from a normal
distribution with unknown mean 6 and known variance ¢? with uncertainty about the mean
expressed by supposing that, a priori, 0 is distributed normally about 6, with known variance 2.
Then conditional on the adequacy of the model,  is estimated by combining data and prior
information in the normal posterior distribution

POy, A) oc (I + 1) exp { — 315+ 1,) (0—6)*}, 2.1)

where I; = no~2, I, = 6,2 and 8 = wj+(1 —w) 6, is an appropriately weighted average of y
and 0,, with w = I,/(I;+I,) the proportion of information coming from the data.

The predictive distribution allowing criticism of the model by contrasting data and prior
information is

—m—nf * -% 1{(n—1)s? y—0,)>
p(y|A) oc 67¢ "(7+o‘§) exP{_i[( 0,2) +n9; -2 1)65]}. 2.2
An overall predictive check is supplied by calculating
o = Pr{p(y| ) <p(ya| A)} = Pr{xZ>g(ya)}, (2.3)
where
_ (3a—=0y*  (n—=1)s} 24
g()’d)—n—102+o.§+ 2 (24)

As an example suppose the sample consists of n = 4 analytical tests of yield y; = (77, 74, 75, 78)
performed on a single batch from an industrial process for which it is believed that the testing
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variance 62 = 1, the process mean 6, = 70 and the batch to batch variance is 67 = 2. We wish to
estimate the mean 6 for this particular batch.

In this example y, = 76, 0, = 70, s3 = 3-33, I,=4,1,=05w=089; so that, given the
appropriateness of the model previously discussed, 6 is estimated by the normal distribution
N(0,5?%) with 8 = (0-89 x 76)+(0-11 x 70) = 753, 6* = (4+0-5)" ! = 0-22.

However, from the predictive check

76 —70)>  3x33

and
a = Pr{y3>26} <0-001. (2.6)

Thus for this example the model, and hence the estimate of 6 supplied by the posterior
distribution N(75-3, 0-22), is discredited by the predictive check.

Notice the following: (a) While the posterior distribution combines information from data
and prior in a manner which is entirely appropriate if the model is to be believed, the predictive
distribution contrasts these two sources of information and checks their compatibility.

(b) The predictive check formalizes questions that any competent statistician would raise

having been presented with the supposed form of the model and the data. The components of
g(yp), {(n—1)s2}/a* and (y;—0,)*/{n"*' o> +03} are the standard checking functions for
contrasting an estimate of variance with a prior value and contrasting two estimates of the same
mean. ,
(c) In making this predictive check it was not necessary to be specific about an alternative
model. This issue is of some importance for it seems a matter of ordinary human experience that
an appreciation that a situation is unusual does not necessarily depend on the immediate
availability of an alternative.

(d) Whereas in estimating 0 assuming the model to be true the posterior distribution makes
use only of the single data vector y, that has actually occurred, by contrast, an assessment of
whether the sample y, is likely to have occurred at all is necessarily achieved by relating y, to a
relevant reference set of all data vectors y which could have occurred with the model true.

Inspection of the global function g(y,) alone would rarely ensure adequate checking of the
model. In this example, for instance, it would be natural to consider the individual contributions
from y, and s2 not only so that they could be separately considered, but also because unusually
small values of (n — 1) s3/0* as well as unusually large ones could point to model inadequacy.
Also if n were larger, we might wish to consider other functions g,(y,) of the data such as moment
coefficients and serial correlation coefficients which could reveal model inadequacies believed
important in the current experimental situation. This could be done by referring p{g(y,)| 4} to
the predictive distribution p{gy(y) | A} derived by appropriate integration of p(y | 4). Associated
with these more specific checks are (possibly vague) model alternatives, the logical consequences
of which are discussed in Section 4.6.

In practice, criticism of the model is often conducted by visual inspection of residual displays
and other more sophisticated plots. But such a process, although it is informal, seems to me to
fall within the logical framework described above. The plots are designed to make manifest
certain “features” in the data that would rarely be extreme, if the model were true. If such a
feature can be described by a function g(y,), its unusualness, if formalized, would be measured
appropriately by reference to p{g(y)|4}.

For the above example obvious functions for checking individual features of the model are y,
s? and suitably chosen functions of standardized residuals r = (ry,...,r,) with r; = (y;,=y)/s,
i = 1,...,n. These would usually include the individual residuals themselves plus other functions
which, depending on the context, might include checks for needed transformation, hetero-
scedasticity, serial correlation, “bad values”, skewness and kurtosis. See, for example, Anscombe
(1961), Anscombe and Tukey (1963), Andrews (1971a, b).
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The standardized residuals can be expressed more conveniently in terms of n—2
independently distributed functions obtained by making an orthogonal transformation from y
toY = (Yy, Y,..., ,) with ¥, = \/(n) y and then transforming to y, s* and u where u is a vector of
n—2 residual quantities u = (u,, u,,...,u,_,) such that

4= Yoy / {2 v? /f}*. @7

The Jacobian of the transformation from y to y, s%, u is proportional to

n—2
(2007 TT{1+u/j} 740D,

j=1
After transformation, the predictive distribution contains n elements distributed independently
P, % u|4) = p(7| 4) p(s* | 4) plu] A), (28)
where .
p(y| 4) oc (05 + 0% /n) " *exp { —H7—0,)* (5 + 0% /n)}, (2.9
p(s?| A) oc (6%) 7"~ {2} 3= D=l exp { — 4(n— 1) s%/6?}, (2.10)
n=2 w2 —36+ D
plu|4) oc T 1+—j1- . (2.11)
i=1
The unusualness of g, = J, g, = s> and of any residual functions of interestgs,g,,...,g, can then
be assessed by computing

which for ynimodal distributions will be tail area probabilities. For this example these would be
obtained by referring

(i) (3,—0o)/(c% +a*/n)* to the Normal table;

(i) (n—1)s2/o* to the x? table;

(ii) g34,---»gqa to reference distributions obtained by appropriate integration of p(u | 4).
These probabilities are of course affected by transformation. Thus the answer will be a little
different depending for example on whether we ask a question about s or about s2. I do not find
this particularly disturbing. Slightly different questions can be expected to have slightly different
answers. We now illustrate some implications.

2.1. Significance Tests

Suppose g7 is assumed small compared with ¢2/n, so that w, the relative amount of
information supplied by the data, is close to zero. Then, if this model can be relied upon, the
posterior distribution will be essentially the same as the prior, sharply centered at 6. A practical
context is one where the statistician is told that the process mean is known to be 6, and the batch
to batch variance o7 is negligible compared with testing variance ¢2. If he believed this model,
then any data y could do very little to change his belief that 6 = 6,. However, it could deny the
relevance of this model. In particular g,(y,) now involves essentially the reference of
(72— 00)/(a/y/n) to normal tables; the failure of this check means that the model is discredited
and therefore the Bayes calculation that leads to a sharp posterior distribution at 6, may not
logically be undertaken.

The above most satisfactorily explains to me the rationale of a significance test.

(a) The tentative model (null hypothesis) implies that 6 is close to 6.

(b) A check on the compatibility of this model and the data, so far as the mean is concerned,

is provided by reference of (3, —6,)/(c/y/n) to the Normal Table.

(c) If the tail area probability is not small we do not question the model. The application of
Bayes’ theorem then produces a posterior distribution which is sharply centred at 6,. We
have “no reason to question the null hypothesis”.

(d) If the tail area probability is small we conclude that the model which postulated that
0 = 6, is discredited by the data, i.e., the “null hypothesis is discredited”.
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(e) Notice too that although the failure of this check would most immediately proscribe the
use of Bayes’ theorem, the failure of other checks (and of that based on s? in particular)
would also suggest the need for model modification before proceeding further.

A difficulty that this removes for me is that, as usually formulated, significance tests had
seemed to provide no basis for belief. On this formulation, however, the significance test provides
a means of discrediting a model which if accepted would inevitably imply acceptance of the
belief that 8 lay close to 6. It is admitted that this formulation does not cover all possible
circumstances in which significance tests have been used (see in particular Cox, 1977), but it is
arguable that other applications are best dealt with in other ways.

2.2. Precise Measurement and Improper Priors

Suppose now that g7 is assumed large compared with a?/n, so that 1 —w, which measures the
proportion of the information about § coming from the prior, is close to zero. Then o3
dominates the denominator in the predictive checking function (a3 + 6%/n) % (5 — 0,) implying
that the model would not be called into question by sets of data having widely different sample
averages. This is the situation where we can invoke what L. J. Savage called the “theory of
precise measurement” to justify the very useful numerical approximation of the posterior
distribution by N(J, */n). Now since the predictive distribution for y does not exist at the limit
1—w = 0 when this limiting posterior distribution is obtained, it might be argued that, when
precise measurement theory is appropriate, we have a license to apply Bayes’ theorem without
any restraining checks on the model. Obviously, however, in any imaginable experimental
situation there would be values of y which would rightly be regarded as implausible given the
investigator’s current beliefs. Thus what is really being verified is that a non-informative prior
must, to make practical sense, always be proper, even though the appropriate posterior
distribution can, in suitable circumstances, be numerically approximated by substituting an
improper prior.

3. THE NORMAL LINEAR MODEL
Suppose
y~N(1u+X6,1,0%) (3.1)

with 1 a vector of unities and X of full rank k such that X' 1 = 0 and suppose that prior densities
are locally approximated by

p~N(po, ¢~ ' 6%), 8~ N0, ™' 6°), {0 /vg 55} ~ 1™ *(vo) (3.2

with 4 and @ independent but conditional on 2, and y~%(v,) the inverted > distribution.
Given a sample y,, special interest attaches to ® and ¢* which given the assumptions are
estimated by p(0, 6’ | Yo A) with marginal distributions

0—-0,)(X'X+T)(0—8,)| ~2+voth
P(GIYJ,A)OC{1+( ")((Hv:)&;( ")} (3.3)
p(0® | ys A) oc 6= Dexp { — Y(n+v,) 63/0%} (3.4)

with
0, =(XX+I)"'(X'X0,+10,), 8,=XX)"'Xy, v=n—k—1,
(n+v0) 65 = vsi +vo 55 +(0,—8o) {(XX) ™' +T '} 71 (0,—8)+(n ™" +c™ ) (— o)
Now let s2 be the pooled estimate
(v +vo) ! (vs? + v 55). (3.5)

Then the predictive distributions for (8 — 05)/s, s? and the v — 1 elements of the residual vector u,
defined in an analogous manner to that previously employed in (2.7), are independent and are
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given by
A -0, {(X'X I 1}71(@—0,)| #n+v-D
p{(0—6,)/s, | 4} oc{ Q-8 {( (v) +;:, )52 L )} , (3.6)
ps/s3 | 4) oc F*V“{1+V—F} T sy (3.7)
0
plul ) oc TT {1430} 40, 69)
The predictive check derived from (3.6)
Pr {P((é —0,)/s, I A)< P((éd —00)/5,4 | A)}
zpr{pk,vm L 00){X,X)_ks+r S 0")} (39)

is the standard analysis of variance check for compatibility of two estimates 0, and 8,. It was
earlier proposed as a check for compatibility of prior and sample information by Theil (1963).
The predictive check derived from (3.7) Pr {p(s* | 4) < p(s? |A)} yields the F test having v and v,
degrees of freedom appropriate to check whether the two estimates s2 and s2 are compatible.
Residual checks derived from (3.8) are obtainable as before.

3.1. Ridge Estimates
Now suppose the X matrix to be in correlation form and assume 6, = 0, = I, y,, v, — 0so
that sﬁ — 5%, Then the estimates 8, are the ridge estimators of Hoerl and Kennard (1970) which,
given the assumptions, appropriately combine information from the prior with information
from the data. The predictive check (3.9) now yields

o ’ 1 1
a=Pr{Fk,v>0"{(XX "+Iyg '} 0.,} (3.10)

ks2

allowing any choice of y, to be criticized.

For example, in their original analysis of the data of Gorman and Toman (1966), Hoerl and
Kennard (1970) chose a value y, = 0-25. However, substitution of this value in (3.10) yields
a = Pr{F, ;5> 359} <0-01 which discredits this choice. More recently it has been pointed out
(Lindley and Smith, 1972; Hoerl, Kennard and Baldwin, 1975) that given the model, y can be
estimated from the data. If we do this, much smaller values of y are obtained which of course are
not in conflict with the wider model. The two kinds of analysis further illustrate the overlap
between predictive checking and Bayesian estimation later discussed in Section 4.6.

The Bayes approach to ridge estimators has the characteristic advantage that the somewhat
arbifrary prior assumptions, which have to bé made even for compatible values of y, are
uncovered for criticism (see also Draper and Van Nostrand, 1977). If y5 * — 0, (3.10) yields the
standard ANOVA significance test which has a detailed interpretation parallel to that set out in
Section 2.1.

4. DiAGNosTIC CHECKS

It is useful to distinguish two kinds of checks which may be called respectively Overall or
Multidirectional checks and Specific or Unidirectional checks. An example of the first would be
a general inspection of residuals and the second a Durbin—-Watson test for first-order serial
correlation. This distinction is made, for example, by Box and Jenkins (1970) in their discussion
of the general philosophy of diagnostic checking. Concerning these two kinds of checks these
authors say “. .. although [overall checks] can point out unsuspected peculiarities . . . [they]
may not be particularly sensitive. Tests for specific departures ... are more sensitive, but may fail
to warn of trouble other than that specifically anticipated.” The two alternatives ought properly
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to be regarded as extremes on some scale of dependence of checking procedures on specific
alternatives. For example, consider the fitting of a parametric time series model. While residuals
themselves should always be inspected there are a number of way-stations between this overall
but insensitive check and the device called “overfitting” in which a model is tentatively
elaborated in a specific direction. Thus inspection of, and application of overall tests to, the
autocorrelation function and the periodogram of the residuals while still non-specific is less
general than the first device and much less specific than the second.

The model checking problem is comparable to that faced by a nation which fears aerial
attack that might come from any direction but with certain rather wide zones more likely than
others and certain specific directions believed especially likely. How should limited radio
detection devices, which are less sensitive the less they are focused, be deployed? The best
solution obviously involves some combination of wide and more specific searches, and
theoretically could be achieved knowing prior probabilities and expected losses.
Correspondingly, the competent statistician must, in a variety of contexts, be able to make
intelligent guesses not only of what discrepancies are particularly likely, but which are
potentially disastrous, and to allocate his effort accordingly. In practice this is done informally
and is part of what an adequate training in statistics achieves.

4.1. Checking Parametric Features of the Model

In the examples considered above where sufficient statistics were available parameter
preferences evidenced by proper priors were directly challenged, leading without a direct
statement of alternatives to appropriate checks. When a specific set of assumptions A,
alternative to 4, are in mind then an appropriate checking function might also be obtained from
the predictive ratio

P(Ya I Ay)/p(y, I Aop)- 4.1)

We shall not explore this possibility further here, except to note that this ratio is a component in
the direct assessment of Bayesian odds to which we refer briefly in Section 4.6.

4.2. Checking Residual Features of the Model

Residual checking functions are sometimes chosen on an ad hoc basis and sometimes using
specific models. I think the best course is again to employ an iteration—this time between theory
and intuition. An empirical procedure that works well invites the question: What kind of model
would be needed for its justification? Such a model can then be considered for use in a wider
context. For instance, exponential smoothing and the “three term” controller were both
empirically developed techniques found to be practically effective. ARIMA time series models are
generalizations of the stochastic processes that could justify these methods (Box and Jenkins,
1970). In a similar way the practical usefulness of such things as the jackknife and cross-
validation implies the existence of corresponding models which are worthy of further analysis.

The distinction between parametric features of the model and residual features is of course
arbitrary and a matter of convenience. In practice the needs of parsimony urge us to settle for
reasonably simple models and to consider possible deviations from them. Consider now
therefore an interesting but by no means unique method for obtaining an appropriate function
of the data for informal or formal checking for a particular kind of deviation from a current
model parametrized by a discrepancy parameter .

Suppose the predictive distribution conditional on some specific choice of Bis p(y | f). Thena
scaleless function of the data alone, appropriate to measure discrepancies from the value j,
taken in the current model, is provided by Fisher’s score function

o) =0 fi’g A -~ (42)
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We illustrate by considering some possible discrepancies from the standard normal linear
model. First consider the model when there is no discrepancy so that 8 = f,, and using the
structure of (3.1) write

@ =(u0), =(1:X). 43)

For simplicity we here suppose that the distributions of @ and In ¢ are locally flat a priori so that
p(®,0) = const o~ '. Then p(y| B,) is locally approximated by the singular distribution

p(y | Bo) = const S, (4.4)

where $% = Z_ ,(y;— $)* = Y Ryand R = I-M with M = Z(2'%) ' 4. If we transform to @,
S and u then the standardized residuals u which are functions of v — 1 angles are distributed as in
(3.8) and,

p(®, S, u|By) = const S~ ! p(u| Bo). (4.5)

To see the reasonableness of this set-up notice that by invocation of the linear model the
investigator in effect predicts that the sample point y will lie somewhere close to a hyperplane £ ,,
spanned by the columns of &. The formulation above interprets “somewhere close to” as
follows. Consider a future sample y in relation to (@, S) where @ are the k + 1 coordinates of the
projection y of y on# ,, and S is the perpendicular distance of y from £ ,. Equation (4.5) says that
locally any value of é is equally acceptable but that the density for the distance S will fall off
inversely with S.

To obtain g4(y) we need to determine how p(y | §) depends on the discrepancy parameter f in
the neighbourhood of § = S,,.

4.3. A Check for Needed Power Transformation

Especially when y.../Vmin is large some transformation of the data, for example
y*® = (y*—1)/A, might permit closer representation. Following the approximate argument of
Box and Cox (1964), with A the discrepancy parameter and j the geometric mean of the y’s, and
for A close to 1,

ply|2) & 4D, (4.6)
where the omitted constant does not depend on y or on A and where Q, = y» Ry,
Oln A ., -1 <
g = T0BYA) Ry =571 S o, @)
a=1 i=1

where z; = y,{1 —In(y,/$)}, s* = y'Ry/v and r; = (y;— ,)/s. The predictive check may thus be
performed by regressing the residuals y— § on the residuals z— # of the constructed variable
z = y{1 —In(y/y)}, which accords with a proposal of Atkinson (1973). The check can be made
informally by plotting one set of residuals versus the other. More formally the distribution of
g4(y) is not precisely known although an approximate level can be obtained by computer
simulation.

Relation to other proposed checks

Related checks proposed by Tukey (1949) and by Andrews (1971a) correlate the original
residuals with those from the constructed variables (§ — y)* and j In j respectively. Both possess
the advantage of having exactly known sampling distributions.

For illustration we consider:

(a) the biological data of Box and Cox (1964), for which they recommend a reciprocal
transformation,;

(b) the trapping data of Snedecor and Cochran (1967), for which they recommend a log
transformation.
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Figures 2(a) and (b) show plots of residuals y — y against residuals from y{1—In(y/y)} and
—(9— )% The correlation coefficient for the latter transforms directly to give Tukey’s one
degree of freedom for non-additivity. Plots for the constructed variable yln j are not shown
since they are essentially identical to the Tukey plot. The relationship between these various
procedures can be seen by noting that z = y{1 —In(y/y)} may be closely approximated by

z = j—B(y—j)> (4.8)
Thus after writing
yi_y=yi_yi+yi_y+y_y=ri+y;+d, (4.9)
s s s N
giy) oc —Z(ri+ Yi+dPr,=—{Er}+2Zr? Y, +Zr, Y2+ 2312 d} (4.10)
(a) Box and Cox biological data
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(b) Snedecor and Cochran trapping data
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FIG. 2. Plots of residuals y— j against residuals from two constructed variables z = y(1 —Iny/y) and —()—y)?, with

correlation coefficient p to indicate strength of association.
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and
giy) & —(Ta0 + 2Ty + Ty, +2vd), (4.11)

where the T;; are checking functions proposed by Anscombe (1961) and Anscombe and Tukey
(1963). See also Box and Cox (1964). In particular T}, is the component associated with Tukey’s
one degree of freedom for non-additivity. The approximation shows how g,(y) jointly employs
skewness (T;,), dependence of variance on level (T;,), as well as transformable non-additivity
(T},) to indicate the need for transformation.

The Box and Cox data were generated by a 3 x4 factorial with four-fold replication
supplying a good deal of information about the variance as a function of location. It is not
surprising therefore (see also Atkinson, 1973) that for this example g (y) is considerably more
sensitive than T, (or almost equivalently, than Andrew’s criterion) as a measure of the need for
transformation. By contrast the Snedecor and Cochran data are from an unreplicated 3 x 5
arrangement where most of the information comes from T;, measuring non-additivity.

4.4. A check for Serial Correlation

For data known or suspected to have been taken in a specific serial order in time or space, a
model that permitted the errors to follow a first-order autoregressive process with parameter
| ¢ | < 1 might provide an improved approximation. The dispersion matrix for the n-dimensional
vector of errors e would then be W, ! 6> where W, is a symmetric continuant with principal
diagonal {1,1+¢2,1+¢?,...,1+¢? 1} and with all the elements of super- and sub-diagonals
equal to —¢. Thus in particular Wy = 1. Then

ply|¢) & (1—¢*P Qg ¥, (4.12)
where Q, =yR,y and R, =W,—M, with M, =W, Z(Z'W, %)~ ! Z'W,. Then with
0W,/0¢ | 4o = —C where C is nxn with unities in super- and sub-diagonals and zeros
elsewhere, after some algebraic manipulation,

ol < Lo

9oy = ZREILD) - yyReRy)s? (@13
$=0
where R = R,,. Thus
n—1
g¢(Y) = igl Filiva (4.14)

which is a multiple of the sample first lag autocorrelation of the residuals from the fitted model.
This points to the sensitive graphical diagnostic procedure of plotting residuals r;, ; against r;
and yields the standard checking function of Durbin and Watson (1950).

4.5. A Check for Bad Values

Competent investigators have over the centuries treated data as possibly containing atypical
values, see for example Stigler (1973). This imples that they would not really have believed
standard textbook models of the kind y; = f(0,x;)+e¢; (i = 1,2,...,n) which state that the same
structure is appropriate for every one of a sample of n observations.

When it is unknown which observations are dubious a more credible “contaminated” model
proposed by Jeffreys (1932), Dixon (1953) and by Tukey (1960) supposes that there is a
probability o that any given observation is “bad” (cannot be represented by the ideal model).
Given , let p(y | @) be the predictive distribution and let p(b | ) denote the probability of getting b
bad values, then (Box and Tiao, 1968b; Bailey and Box, 1980a)

n

p(y|a) = éo(b)a"(l —a)""*p(y|b) (4.15)
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and

9uy) = ‘%‘—SSMFO - n{;’g = (1);— 1}. (4.16)

Now let z; indicate that the ith observation is bad, then

pylb=1=n"" 3 ply|2) @17

SO

9.9) = (z py|2) / Pyl =0)-n

Depending on experimental circumstances, there are a variety of ways in which bad values
might be modelled. In particular, contamination could come from increased error variance,
unknown bias, and mistaken sign. The last possibility was suggested by Barnard (1978) to
account for two suspiciously large outliers in Darwin’s data on cross- and self-fertilized plants,
quoted by Fisher (1935).

For illustration consider the first possibility. With one bad value, suppose the error
covariance matrix W, ! 62 has all elements equal to o, except for the ith element which is equal

to k2 62(x>1). Then
3o [\
guy) = K~ ‘(ﬁ) T (}) —n, (4.18)

vs2 =yRy, vs?=yRy=y{W,—W, Z(X'W,;Z)"'T'W,;}y, (4.19)

where W; =1—¢G;, g = 1—x~? and G, is an nx n matrix with a single unity for the ith
diagonal element and all other elements zero. Now

q
1—qu;

where

Vsi2 =vs?— (i _}7.')2,

where v; = var (§;)/0? = x(Z'%)” ' x; and y;— j, is the ith residual from the ideal model fit,
y—¥=Ry.
Thus finally g,(y) = k™ *{n/(n—q)}* D —n where

q 2 —H
D=3{1- r . (4.20)

v(1—qvy)
This is the simplest form for computation. The nature of this checking function D can however
be more clearly seen by writing it in terms of the weighted residuals #; = (y;—;)/s; where

y—¥ = R;y. Thus
D= 2{1 paloav) 7,.2}4”.

Thus D is proportional to the sum of the reciprocals of the n residual ¢ ordinates obtained by
downweighting (omitting as ¢ — 1) each observation in turn and recomputing the fitted value y;
and the standard deviation s;.

The situation of most interest is when « is large (say x > 5). Then g approaches unity and the
check may be carried out by calculating

D= z<1 —V(I’iv.))’” - 2{1 +(—1—_V—QF?FV. (4.21)
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Equation (4.16) brings out a feature of the checking function (4.2) which can be a disadvantage.
Differentiation at « = 0 on the boundary of the parameter space ensures that only the possibility
of one bad value is taken account of. Thus as is clear from (4.21), D in its present form would not
be expected to be sensitive to the occurrence of two or more bad values. Thus with k¥ = 5, we
obtain the value D = 59-05 for Darwin’s data. A Monte Carlo study with 5000 samples of 15
observations shows that this value would be exceeded by chance about 14 per cent of the time,
which hints only mildly at inadequacy in the standard model, confirming D’s insensitivity for
this example.
4.6. Bayesian Options for Specific Alternatives

When concrete alternatives are in mind, Bayesian options are available. In particular, the
predictive ratio p(y| A,)/p(y | Ao), mentioned earlier, is a component in the posterior odds ratio
which, with suitable priors, might be used to assess directly the relative evidence for one model
versus another. Also g4(y) of (4.2) has a Bayesian interpretation for, if corresponding to some
discrepancy parameter f, the prior distribution p(8) was locally flat then the posterior
distribution p(8|y,) would be proportional to the predictive density p(ys|B) regarded as a
function of . Furthermore, if that posterior distribution was approximated by a normal
distribution, then

95y) = {—(Bo— B)/}} (4.22)
and a second differentiation would produce a standardized variate.

The relation shows how any specific predictive check g,(y) is linked to a posterior
distribution. In particular, considering the illustrative examples of the last section, the marginal
posterior distribution for 4 was given by Box and Cox (1964), for ¢ by Zellner and Tiao (1964),
for the ridge regression parameters by Lindley and Smith (1972) and that for « may be obtained
using the results of Box and Tiao (1968b) and Bailey and Box (1980a).

Before leaving the topic of diagnostic checks two final points need to be made:

(i) The above discussion illustrates the “overlap” previously mentioned when specific
alternatives are in mind. It does not, however, establish the omnipotence of purely Bayesian
inference. However far the process of model elaboration is taken by Bayesian methods the final
model involving say the mth set of assumptions A,, can still be factored

p(y,8|A4,) = p®|y, 4,) p(y | 4,) (4.23)

thus there always remains an unexplored n-dimensional predictive distribution p(y |A,,) in
relation to which a small relative value for p(y,|4,,) could, on a sampling theory argument,
discredit the assumptions on which the Bayes analysis was conditional. The same is true of the
more plausible of two models chosen using a posterior odds ratio.

(ii) In addition to possible discrepancies to which we have been alerted by experience, other
features may appear pointing to inadequacies of a kind not previously suspected. This
possibility has sometimes proved perplexing, for while on the one hand the truly unexpected
could point the way to precious new knowledge, on the other, associated probabilities would be
indeterminate because of the uncountable character of other features that might also have been
regarded as surprising. I think the calculation which ignores this difficulty of indeterminate
selection is still worth making, for at least it helps to correct a misjudgement of something that
appears unusual but really is not. For example, Feller (1968) shows that for a random group of
30 people, the probability that at least two have coincident birthdays is over 70 per cent; this tells
us we need look no further for an explanation when we are surprised to find two such people at a
party. While the proposed policy will lead to the too frequent pursuit of non-existent assignable
causes, the iterative process will quickly terminate this chase.

5. ROBUST ESTIMATION

Efficient model building requires both diagnostic checking and model robustification, where
by robustification I mean judicious and grudging elaboration of the model to ensure against
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particular hazards (see also Box, 1979). Robustification becomes necessary when it is known
that likely, but not easily detectable, model discrepancies can yield badly misleading analyses. It
is well known, for example, that least squares analysis can be dramatically affected by moderate
serial correlation of errors.

Recently the serious consequences of bad values on standard least squares analysis has been
especially emphasized and numerous authors have proposed methods which rely on
abandonment or modification of classical estimation methods. In discussing the rationale for
this approach Huber (1977) says “The traditional approach to theoretical statistics was and is to
optimize an idealized model and then to rely on a continuity principal: what is optimal at the
model should be optimal nearby. Unfortunately, this reliance on continuity is unfounded: the
classical optimal procedures tend to be discontinuous in the statistically meaningful
topologies.”

He then quotes a motivating example given by Tukey (1960), who pointed out for example
that if a normal distribution were very mildly contaminated with another which is centrally
located but of larger variance, then the sample standard deviation could be a very poor estimate
of scale. Tukey’s contribution was remarkable because it had previously gone unnoticed that the
assumption that the same structure must apply to every observation y; (i = 1,2,...,n) with
absolute certainty (1 —a = 1), not only was unrealistic (since no responsible investigator would
make the claim that inadvertent bad values were impossible), but also could have serious
consequences. While Huber goes on to say that typical “good data” samples in the physical
sciences appear to be well modelled by this contaminated normal model, he does not develop
methods based on this more realistic set up. This is presumably because his objection would
apply equally to the new as well as to the old model.

I do not agree that the example would support a thesis of the need to abandon model-based
procedures. A model that omits the parameter o is, of course, the same as one that includes it but
sets its value exactly to zero. A value of « = 0, which allows no possibility whatever for bad
values, and a value of « = 0-001 are, I think, not close in any statistically meaningful topology.
Although 0-001 may look close to zero, an odds ratio of 0-999/0-001 = 999 for a “good” to a
“bad” value is obviously very different from one of infinity. Such differences in probability
distinguish, for example, a lifeless world in which no evolution could possibly occur from the one
we live in.

The proper conclusion to draw from Tukey’s example is, I think, that for many practical
situations in which occasional bad values are to be expected the standard linear model provides
an inadequate approximation that is potentially misleading and therefore the model should be
appropriately changed to approximate what is believed rather than what is not. The situation is
logically the same for a model that implicitly insists there can be no serial correlation, when data
have in fact been collected serially, or that no transformation of y could be needed when
Vemax/Ymin 18 large. As in the classical Stein problem if we know something a priori it may be
disastrous to omit it. On this view for robust estimation of the parameters of interest we should
modify the model which is at fault, rather than the method of estimation which is not.

5.1. Bayesian Robust Estimation
As was argued for example by Box and Tiao (1964), all relevant aspects of the problem are
brought out in an appropriate Bayes analysis. Supposing that @ has the same physical
interpretation for all § then estimation of @ which is robust relative to the discrepancy parameter
B is supplied by the posterior distribution

p@ly) = fmﬁlﬁ, Y)p(B|Y) P(B) dB. (5.1)

This expression contains three key elements that repay individual study: .
(a) the sensitivity of inferences about 8 to changes in f is reflected by p( | 8, y) considered as a
function of f;
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(b) the information about f coming from the data themselves is reflected in the pseudo-
likelihood

pAB|Y) = p(B|y)/p(B) « p(y | B); (5.2)

(c) the probability of occurrence of different values of f in the real world is represented by
p(B) which can be chosen to approximate what is believed or feared.

This route was used to explore deviations from the standard normal model for a particular
class of heavy-tailed distributions by Box and Tiao (1962, 1964); for the contaminated model of
Section 4.5 by Jeffreys (1932) and Box and Tiao (1968b); for a serial correlation model by Zellner
and Tiao (1964); for a transformation problem by Box and Cox (1964). Notice that using this
approach the parameters @ of interest are completely estimated in the sense that their
distribution rather than merely a point estimate is available. Also the various elements of p(8 | y)
which can be studied individually can provide a deép understanding of each robustness
problem. A particularly informative display shows contours of the joint distribution p,(6, 8| y)
for some parameter 0 of interest and the discrepancy parameter f together with the marginal
distribution p,(8 | y). When a less prodigal display is necessary the mean and standard deviation
of p(0| B, y) may be shown with p,(8| y). For illustration we consider some serial data analysed by
Coen, Gomme and Kendall (1969). They regressed quarterly values of the Financial Times
Share Index y on detrended lagged values of UK car production X ,, and of the Financial Times
Commodity Index X, using a modelf which could be written (Box and Newbold, 1971) as

Ve=Bo+Bit+0, X, ¢+0,X,, ;+e withe = ¢e,_;+a, (5.3

with a, white noise, and ¢ constrained to be equal to zero. Fig. 3 illustrates an analysis made by
Pallesen (1977) in which ¢ is unconstrained. It shows the joint posterior distribution for 6, and ¢
and the marginal distribution for ¢ assuming locally flat priors for 6, In o and ¢. Although for
this example serial correlation could have been easily detected by diagnostic checks, notice the
enormous shift (about five standard deviations) of the conditional distribution p(6, | ¢, y) which
occurs as ¢ changes from zero to more plausible values. This illustrates the point that smaller
serial correlation, of a magnitude difficult to detect with diagnostic checks, could disastrously
invalidate estimates of 0.

A second example discussed more fully in Bailey and Box (1980b) further illustrates this
approach for the “bad value” problem using the contaminated normal model of Section 4.5. The
data were used originally by Box and Behnken (1960) to illustrate the analysis of a balanced
incomplete four factor three-level design with n = 27 observations arranged in three blocks of
nine. A residual plot suggests the possibility of two bad values (y;, and y, ;). However, the small
number of residual degrees of freedom and the nature of this particular design would induce
large correlations yielding potentially misleading residual patterns.

Table 1 gives Bayesian means and standard deviations for coefficients in the fitted model

4 4 4 4
y=Bo+ i=21 Bi x; +i§1 Biix? + i;} j;} Bi;xix;j+e. (5:4)

In this analysis k was set equal to 5 and the values of « varied over the range 0 to 0-091. It has
been shown by Chen and Box (1979) that for x > 5 the posterior distribution is mainly a function
ofe = a/(1 —a) k so the results are also labelled in terms of this dominant discrepancy parameter
¢. It will be noticed: ‘

(a) The large change in each estimated effect and standard deviation occurs when no
possibility whatever of bad values (¢ = 0) is replaced by a small possibility (¢ = 0-001). For good

t For the present purpose we retain the model structure of Coen, Gomme and Kendall. However, its relevance seems
dubious, for example, a multivariate time series analysis by Tiao and Box (1980) for these three series shows the stock
prices y acting as a weak leading indicator for the commodity index X,.
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F1G. 3. Joint posterior distribution of 6, and ¢ and marginal posterior distribution of ¢. Note shift in approximate 95 per
cent interval as ¢ is changed.

data the typical behaviour of a table of this kind is that only very minor changes in mean and
standard deviation occur as ¢ is changed over the plausible range.

(b) For all the estimates except 8, , the standard deviations of effects are about halved. Thus
for these effects the use of the more appropriate model is equivalent to a four-fold increase in the
size/sensitivity of the experiment. This may be compared for example with a parallel analysis by
Box and Cox-of their biological data where a three-fold increase in sensitivity resulted from the
use of an appropriate transformation.

(c) The analysis can be further illuminated by considering other available quantities. In
particular a plot of the probability that the ith value is bad, given that one value is bad (see, for
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example, Abraham and Box, 1978), results in a plot with 94 per cent of the probability associated
with the tenth observation and the remainder spread among the remaining 26 observations. It is
likely therefore that y,, alone is a bad value. It is a deficiency of the design being used here that
least squares estimates of interactions employ only four of the 27 observations and so lack
robustness to bad observations (see, for example, Box and Draper, 1975). In particular
Bia =025 (y10—y11— Y12+ ¥13) so that the Bayesian down-weighting of y,, accounts for the
large change in this estimate and the increase in the standard deviation.

(d) We saw in the case of ridge regression how failure to take account of observational
information could lead to an unrealistic choice of the discrepancy parameter y. To complete the

TABLE 1
Bayesian means and (standard deviations) for polynomial coefficients using the contaminated
model of Section 4.5 with k = 5 (¢ = a/(1 —a)k)

P 0 0001 0005 0010 0015 0020
P 0 0005 0024 0048 0070 0091
Bo 90-60 90-60 90-60 90-60 90-60 90-60
(0:94) (045) (041) (0-41) (0-41) (041)

B, 193 246 249 249 249 249
(0-47) (028) 023) 022) 022) 022)

B, -196  —196 —196 —196 —196 —196
(047) 022) (0-20) (020) (0-20) (020)

B, 113 113 113 113 113 113
047) 022) (020) (0-20) (0-20) (0-20)

Ba —368  —315 312 312 —-312 312
(047) (028) 023) 022) 022) 022)

B, —142  —188 190 —190 189 —189
(070) (044) (041) (041) (042) (042)

Bss 433 —410 —409 —409 —409 —409
(0-70) (036) (0-34) (034) (0:34) (034)

Bss —224  —201 -200 —200 —200 —200
(070) (038) (0:34) (034) (034) (0-34)

Bas —258  —305 —306 —306 —306 -305
(0-70) (0-44) (041) 0-41) (042) 042)

B1a —167  —167 —167 —167 —167 —167
(081) (039) (035) (035) (034) (034)

Bis -383  —382 -382 382 —382 ~382
(081) (0:39) (035) (035) (034) (0:34)

—Bra 095  —045 —0-51 —0-50 —049 —048
081) (095) 092) (093) (095) (095)

Bss -167  —167 —167 —167 167 —167
0-81) (0:39) (035) (035) (035) (0-35)

Brs —262  —262 —262 —262 262 262
081) ©39 (035 (035) (0-35) (035)

Bas —425  —425 —425 —425 —425 —425

(0-81) (0-39) (0-35) (0-34) 034) 0-34)

picture, therefore, a plot of the marginal distribution of the discrepancy parameter ¢ should be
made in conjunction with Table 1 (compare also with the serial correlation example in Fig. 3).
For these data the distribution p,(¢ | y) has its mode close to ¢ = 0-010.

The Bayes approach to robust estimation has the advantage of generality; furthermore it
clearly reveals at any given stage, on precisely what assumptions the analysis is conditional.
With the increased speed of computers and availability of visual display equipment a general
Bayesian computer program, that can analyse any model we wish to entertain, seems a much
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more attractive prospect than the fresh devising of semi ad hoc procedures for each new
possibility.

Some parallels in the two approaches are briefly considered below for the “bad value”
problem.

5.2. Robust Estimation for the “bad value” Problem

For the “bad value”.problem a wide variety of semi-empirical estimators have been
proposed. Among these are the M, L and R, and various kinds of adaptive estimators. In turn
among the M estimators a number of different “i” functions have been suggested leading to
different ways of downweighting extreme observations.

Now consider the model of Section 4.5 for the simple location structure E(y;) = p. Then (see,
for example, Box and Tiao, 1968b) the Bayesian mean may be written

_ é pb |y, )7, (5.5)

where p(b|y,a) is the posterior probability that there are b bad values and y® is the
corresponding conditional posterior mean. Consider in particular 'V = Zw;, y,. Then Chen and
Box (1979) show that for k>5

w; = (n—1)"'(1—-D;/D), (5.6)
r2 4(n—1)
{1—( et } = {14n 170D, (5.7)

where r; and 7; are unweighted and welghted residuals defined in Section 4.5. Fig. 4(a) and (b)
show plots of w = w, against r, and ¥, for three random normal samples of ten observations
from a normal distribution when a multiple 0, 1,2,..., of ¢ is added to the first observation in
each sample. Empirical approximations for these weighting curves are provided by the
functions

w=01lexp{—|049r,|"} and w =0-lexp {—|03F, |}

Also shown in Fig. 4(b) for comparison is Tukey’s biweight function w = 0-1{1 — (¥/c)*}? for
¢ =53 (chosen to roughly match the curve). Although the Bayesian weights are sample
dependent they remain remarkably stable as is indicated (a) by the smooth manner in which the
remaining weight is evenly spread throughout the non-discrepant observations; (b) by the
closeness with which points from different samples follow the same curve.

The estimate [i is sample adaptive in another more striking way however. For illustration
consider the case where the p(b | y,a) are negligible for b>2. Then writing p = p(1|y,®) (5.5)
becomes

=(1-p)y+py? (5.8)

and the Bayesian mean is an interpolation between y and the “robustified” V. In this
expression the value of p is determined by the posterior odds ratio for one vs no bad values

pl1—p) =e{n[n—1}D, &=afl-a)x (5.9)

and D is the checking function encountered earlier.

Sample adapt1v1ty is evidenced as follows. For a sample with no outliers y and ! are not
very different so that i is close to y. But in the presence of an outlier of larger and larger size two
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things happen: the outlier is downweighted in y* which becomes more and more different from
y and also p becomes larger placing more and more emphasis on .

The purpose of this discussion is to show that sensible solutions which appropriately
downweight suspected bad values may be obtained directly from an appropriate model. From
the viewpoint of the traditional M estimator, the weight function (W say) for f itself is an
interpolation W= (1—p)n~'+pw between 1/n and w. Thus W will descend to the value
(1—p)/n for large 7. For a sample containing a large outlier, 1 —p will be negligible and W will
approach w plotted in Fig. 4(b) and will descend like Tukey’s biweight. However for a more
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normal-looking sample W will flatten out to some moderate non-zero value and will more
closely resemble the weighting originally proposed by Huber.

In choosing robust estimators there is room for empiricism but I think that some of its
inspiration should be applied to the choice, study, and consequences of appropriate
parsimonious models. The structure of the resulting Bayesian analysis should in each case be
carefully analysed, for the great strength of such a model-based approach is that the exact
consequences of whatever goes into the model must come out. These consequences will either
agree with “common sense” or they will not. If they do not then we know either that what went in
was inappropriate in a way we had failed to forsee, or else, as happens quite frequently, that our
common sense was too shortsighted. In either case we learn something.
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DiScUSSION OF PROFESSOR Box’s PAPER

Professor G. A. BARNARD (University of Waterloo): I very much welcome this important paper as a
further indication that views on the foundations of statistical inference are converging and the worrying
prospect that seemed to be opening itself up four or five years ago of hopelessly irreconcilable attitudes
being adopted amongst experts in the field can now be thought less probable.

Although I shall follow tradition and emphasize my difference from the author, I must first of all say
how strongly I agree with what he has said concerning “robust” estimation. The conditional approach
which he adopts—and which follows naturally from a Bayesian approach—is surely the only sound one.
We ought not to look for robust procedures, but rather for robust samples. For a robust sample varying
assumptions about the shape of the distribution will have little effect on the inference to be drawn. For a
non-robust sample these assumptions have an effect; and in that case the existence of this effect must form
part of the inference. We must tell our clients that unless they can find out something concerning the shape
of the distribution, the message of their sample is ambiguous. Alternatively, by taking further observations,
they may convert what was a non-robust sample into a robust sample and so avoid the necessity for
mvestlgatlons about the population shape. Insofar as the Bayesian approach bases itself essentially on
using the likelihood function, of course, we would expect a likelihood approach and a Bayesian approach
to agree in this respect. It has sometimes been said that the trouble with likelihood is that we need to know
the form of the distribution with more precision than is commonly available. Such a view overlooks the fact
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that if we have doubts about the form of the distribution we can always make a range of suppositions
concerning this, and derive a corresponding range of likelihood functions. It will very often be the case that
the range of likelihood functions so obtained will be quite narrow, showing that our sample is a robust one
and our ignorance of the precise shape of the distribution will do no harm. In the contrary case, where the
shape of the distribution does matter it is actually misleading to fail to point this out. It will be no comfort
to our current client if we should say that cases such as his rarely occur—he is concerned with what has
happened in his particular case, and if the inference drawn proves to be wholly incorrect, he will be entitled
to say that he ought to have been warned.

When the conditions for the simple-minded application of the method of maximum likelihood apply—
that is when the log likelihood function is nearly parabolic—the sensitivity or otherwise of a particular
sample to changes in distribution form can be indicated by the change in the position of the maximum
likelihood estimate, primarily, and secondarily by changes in the second derivative of the score function,
the information. If the maximum likelihood estimate does not change very much then for “point estimate”
purposes our sample is robust, and very often a modest allowance for variations in the information will
give the protection that is needed.

Now to return to the main topic. Professor Box had adopted a position very close to that of Emile
Borel. Borel’s view of the nature of probability was very close to that of de Finetti—the strongest advocate
of the personalistic view—but Borel was criticized, I think wrongly, by de Finetti for adopting “Cournot’s
principle” according to which we behave as if events of small probability do not occur. Another version of
Cournot’s principle is the so-called empirical law of large numbers, according to which probabilities must
agree with long run frequencies.

The fact is that if an individual went through life continually being amazed to find that the events for
which his subjective probability had been extremely small regularly turned out to be those that occurred,
the individual in question ought to ask himself whether his modes of assessment of probabilities were
reliable. The fallacy in the personalistic argument appears to me to arise from the fact that a personalistic
view of probability makes no allowance for the limitations of human imagination. In Box’s sequence of
model criticism, revised model and so on, the pure personalistic view has to treat the propositions “model
M, is true” and “model M; is false” as propositions on the same footing. Yet this is obviously absurd. If we
take as given that model M, is true we have a very clear picture of the possible events to be observed and the
parameter values to be associated with them. But to say simply that model M; is false give us absolutely no
idea of what sort of model might be true—we might or might not be required to introduce further
parameters, we might or might not think of a great multiplicity of shapes of distribution that might arise
and so on. Observations of incompatible events could well lead us to feel that M; could not be true, and yet
the intellectual effort involved in constructing a model that we think would apply to the situation in hand
could form as large a part of the whole intellectual exercise as any other. To take one example, Michelson
and Morley gained well-deserved fame for demonstrating the falsity of the simple minded notion of an
ether. But their credit is small compared with that of Einstein whose tremendous imagination was needed
to set up an alternative model which accounts for their data. To put the point formally, the pure theory of
personal probability treats H and not-H as propositions of the same kind. But the problem of calculating
the probability of E given H may be quite trivial, whereas the problem of calculating the probability of E
given not-E could be quite insoluble.

It is perhaps worthwhile to indicate how the de Finetti theory could be modified to take account of the
points that Box is making. To simplify a little, we can regard the model M; as being our (tentative) view of
what constitutes the totality of possibilities before we perform the experiment. If we then observe a result y
for which the probability density on the predictive distribution is low, we need to reconsider M, and ask
whether it really does encompass all the possibilities. When y presents a feature which, in the words of
Borel., is “en quelque sort remarquable” the fact that it is remarkable points us in a certain direction to try
to use our imagination to conjure up possibilities which previously we had not recognized. M, , , will then
embody these possibilities and the iteration process begins again. Thus as I see it a strict adherent to de
Finetti’s views need only admit the obvious fact that we can never think of everything to accept the force of
Box’s argument.

The modified personalistic view of probability put forward by Box and Borel is, I think, inadequate for
statisticians basically because statisticians work for clients. They are therefore not concerned with personal
probabilities but with what might be called “agreed probabilities”. And whereas personal probabilities
may be said always to exist in principle, agreed probabilities need not exist. We may have a parameter
involved in the statistical problem for which an agreed prior probability distribution does not exist and in
such a case I think it will often be wise for a statistician to regard the parameter as simply unknown,
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capable of taking on a number of values, and for the statistician to see his job as pointing to the
probabilistic consequences, in the light of the data, of assuming that the parameter takes various values in
its range. This is not equivalent to a prior concentrated on a single value. This is my major disagreement
with Professor Box.

As an extension of the general theory of likelihood, I have in recent years been developing a theory of
what I call “pivotal inference” concerning which I hope to present a paper to the Society shortly. In this
theory we start from quantities, called pivotals, which do have agreed probability distributions. Such
pivotals will usually be functions both of observations and of parameters. But some of them may also be, or
be transformed into, quantities which are functions of the observations only—these then become
ancillaries, upon which we should condition when we have the observations—or they may be functions of
the parameters only, in which case they represent prior distributions for the functions of the parameters
involved. By applying the standard rules of probability, concerned with marginalization and with
conditioning in the light of the values of the observations when these become known, we can infer
distributions for functions of the basic pivotals which will sometimes give posterior distributions, if the
necessary information for a full Bayesian inference is available, but more often will enable us only to make
statements to the effect that an assumption that a parameter has a value in some specified range will entail
that an event has occurred whose probability is small. We shall be disinclined to swallow such
improbabilities.

The pivotal approach does not require us to take a general position on the question, whether or not
unknown parameters are required to be endowed with probability distributions. In each specific case, we
can exercise judgement as to whether to ascribe such distributions to some or all of the parameters and we
can explore the final effects—often small—of adding or removing such assumptions. In any case the basic
inferential procedure is always the same—to condition on known, or approximately known quantities,
whose distribution is known, to arrive, if we can, at invertible pivotals for the quantities of interest, which
enable us to say that accepting the notion that a parameter value lies in a certain range entails accepting
that an event of a specifically low probability has occurred. This is all we can derive from a Bayesian
approach, unless we have—as is very rarely the case—a well-specified loss function which we aim to
minimize.

The neo-Bayesian movement has purged statistical inference of a great many stupidities which arise
from neglect of proper conditioning. I hope this paper will come to represent a major step towards a
situation where such absurdities no longer plague us, and we are much closer to general agreement on
foundations than we have been in the recent past.

It gives me great pleasure to propose the vote of thanks to Professor Box.

Professor A. P. DawID (The City University): This Society has traditionally recognised the importance
of both Estimation and Criticism as principal features of a vote of thanks. It is my very agreeable task to
bring these twin criteria to bear on tonight’s paper.

First, then, to register my esteem. Professor Box has given us a compelling account of his search for the
guiding principles of scientific learning, and illuminated it with practical examples which are both
interesting and important. We are all the richer for having him share his experience and insights with us.
Whilst, as he admits, his views are not new, his paper is a valuable and forceful reminder of an important
lesson: that there are at least two distinct fundamental functions of statistical reasoning, Criticism and
Estimation, and “never the twain shall meet”. We should constantly bear the distinction in mind when we
construct, select, or teach students about statistical techniques. A hypothesis test, for example, can be used
for model testing (Criticism) or model simplification (Estimation). The purpose, interpretation and
relevance are quite different for the two different cases.

Whether or not one agrees with Professor Box that Bayesian conditioning is the way to go about
Estimation, one must agree that something else is needed for Criticism, where no fully specified alternative
model is given. Professor Box makes a valuable contribution in proposing the predictive distribution as the
basis of Criticism, but the question of how to use it is not clarified, and we are left with familiar ad hoc
devices such as tail-area tests and (in a framework. that makes some concession to Estimation) score
statistics. This is not to belittle the usefulness of ad hoc solutions in the absence of underlying principles,
merely to point to a gaping hole in all our current theoretical formulations.

At a very general level, Box’s dualistic view of statistical reasoning is crudely analogous to Thomas
Kuhn’s account of the progress of scientific theories. In periods of “normalscience”, a particular paradigm,
or model, is taken for granted, and scientists work at refining it and apply it (“Estimation”). But the
predictions of the current paradigm are always open to confrontation with the real world (“Criticism”), and
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if and when discrepancies become unacceptable a “scientific revolution” topples the old paradigm and puts
anew one in its place. However, the old paradigm can be discredited even when no workable alternative is
in sight.

Kuhn’s ideas have made an enormous impact on the philosophy of Science, and it is valuable to be
reminded that similar reasoning can, and should, be applied to statistical investigations, however
mundane.

Let me now switch to Criticism mode and consider some details of tonight’s paper. Box distinguishes
between checks on parametric and residual features of the model. I believe that the former, which is
basically a check on the prior distribution, as in (3.9), will be the most useful practical contribution of this
paper, but it may not be much appreciated by non-Bayesians who do not accept, with Box, that a model
cannot exist in isolation from a prior distribution. Moreover, I do not find the attempted Bayesian
justification of significance tests (Section 2.1) any advance on the non-Bayesian interpretation. As for
residual checks, these have long been available in a non-Bayesian setting. Indeed, with the exception of
Section 4.3 (to which I shall return), Box’s analysis has merely reproduced classical tests. These examples
all involve models of the form

p(©,S,u|0,0,p) = S~2.p(O—©)/s,S/c|u; ). pu]| B).
Box takes his prior for (@, 6) given f to be “locally uniform™:

p(©,0|p) =c(p).o™".
(We must of course allow the general level, determined by ¢(f), to depend on ). Integrating out (®, o) gives

p(®,S,u|B) = S~ ' c(B)plu| B),
and so the score-statistic g4(y), from (4.2), is just {c'(Bo)/c(Bo)} + hyu), a simple transform of h4(u), the score
statistic derived from the purely classical approach of considering the standardized residuals only, and
having a known null distribution. A generalization of this remark holds for arbitrary group-invariant
models where the underlying pivot has a distribution governed by the discrepancy parameter .

At least the above theory leads us to hope that the Box approach to checking residual features, when
applied (as it should be) with a genuinely informative prior distribution, may lead to a test statistic
approximating hg(u), with null distribution not over-dependent on the prior. The situation is not so clear
for Section 4.3, however. If we again take a “locally uniform” prior of the form p(®, g | 1) = ¢(4) 0~ *, we find

Py [ Aoce(d) y" =D Q¥

(The slightly different expression (4.6) results from an interesting attempt by Box and Cox to specify c(4)
reasonably; for present purposes, this can be avoided.) Then we find

giy) = {d(W/c()}+(k+1)logy+s~ ' T,z

The constant term is irrelevant to the test statistic, leaving the extra term (k + 1) log j as a correction to (4.7).
Even if we stick to (4.7), what are we to do with it? Box suggests an informal graphical analysis, but we
have to know what features of the diagram to look for. It seems implicit that a substantial sample
correlation between z— 2 and y— j is to be regarded as evidence against A = 1. In fact, (4.7) is v x the slope
of the regression of z—Z on y— J, and is not a function of correlation. And is zero the appropriate “null
value” for (4.7)? What departures are “significant”? These problems do not disappear on “actual reference
of p(g.(y,)) to its sampling distribution”, since the null sampling distribution depends on the unknown
(@, 6). We could marginalize it with respect to the prior distribution (for (®, ¢) given 4 = 1), but the answer
would be critically dependent on the (proper, locally uniform) prior chosen, and cannot be approximated
by using an improper prior. Nevertheless, this marginalization would be the right course for the Bayesian.
The moral is that the need for transformation can only be assessed in the light of prior knowledge.

Box’s representation (4.11) is in error, a factor (s/j) being omitted (B = 1/ in (4.8)). For the simplest
case k = 0, we get g(y)= —¥(s/¥) Tso, and the variance of this is approximately proportional to ¢2/u?,
making assessment of significance impossible without prior information about (u,0). If we adjust by
omitting the — 3(s/y), we get Ty, a function of the normalized residuals with a known null distribution; but
after all these ad-hockeries, have we gained anything from a pseudo-Bayesian approach?

Finally, let me remove my critic’s hat and welcome Box’s whole-hearted Bayesian account of robust
estimation (Section 5). This captures all the common-sense features one would want: for example, there is
no point in guarding against model departures of a size which the data themselves suggest is implausible.
Even non-Bayesians could learn useful lessons from this analysis.
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Altogether I regard tonight’s paper as of the greatest importance, and second the vote of thanks to its
author, George Box, most warmly.

The vote of thanks was passed by acclamation.

Dr A. O’HAGAN (University of Warwick): Like all Professor Box’s work, this paper is suffused with
common-sense and insight. I applaud all that he has done in identifying and illuminating very clearly a
difficult problem. I have two complaints, one small and one I think rather larger. Both concern his curious
belief that Bayesian methods are appropriate to the selection of sensible parameter values but not to the
selection of models. The obvious Bayesian solution to the latter is to compute the posterior probability of
model M; via

P(Y.:|Mi)P(M.')
ZP(yale)P(Mj)

J .

P(Mx|ya) = *)

Of course this is conditional on one of the stated M ; being the true model, but for the moment let us
suppose that this is so. Professor Box argues that if p(y, | M) is sufficiently small, that is if the model M,
completely fails to fit the data y,, then M, is discredited. But the appearance of the prior probabilities P(M )]
in (*) shows that these are also relevant. We cannot say that P(M; | y,) is small unless we can find a model M f
which fits the data well and is credible a priori. Otherwise the denominator in (*) will also be small and
P(M;| y,) may even be near to one. Professor Box on his first page tells us that “A theory about scientific
model building ought to explain what good statisticians and scientists actually do”. Practising statisticians
when criticizing a model look at things like residual plots and sample autocorrelations, which Professor
Box has shown us carry implicit ideas of alternative models. Every way the statistician chooses to'look at
the data corresponds to a feeling, which perhaps never becomes conscious and explicit, for a specific kind of
alternative. Furthermore, his implied alternative is a priori credible—if he couldn’t conceive of
autocorrelation then he wouldn’t bother to look for it.

When good statisticians compare models they should and effectively do employ (*). The new idea in
Professor Box’s approach is that we can criticize a model without having any alternatives in mind. This is
very tempting because of course we can never'think of more than a few of the countless possible models.
Certainly if p(y, | M,) is small it sounds a warning to me and I start to look for sensible alternatives, but I do
not feel that I can gauge that smallness or reject M; until I've found a better alternative. Professor Box
judges the size of p(y,| M,) by means of a “tail-area”, but this is wrong in this context for the same reasons
that it is wrong in other stages of the analysis—the role played by p(y,| M) in (*) is that of the likelihood.
Studying p(y | M) as y varies is useless because we are interested in it only as M varies. Of course, in other
contexts sampling-theory methods based on tail-areas have often been found to approximate closely to
Bayesian procedures. But tail-areas are also known to be unreliable indicators, and I feel sure that
uncritical use of them to compare models will lead to familiar pitfalls. Just as in parameter estimation, there
is no substitute for a proper Bayesian analysis. We must consider all the alternatives which occur to us, and
if our original model M; is not bettered then we cannot in any sense reject it yet, however “small” p(y,| M,)
may appear to be. Nor should we forget that if we are satisfied with our current model we still cannot rule
out the possibility of something better being proposed.

In conclusion, I am sure that Professor Box is a far better practical statistician than I, and if he tells me
that he can persuade a thing for taking stones out of horses’ hooves to turn screws I believe him. I will stick
to my screwdriver/

Dr A. C. ATkinsoN (Department of Mathematics, Imperial College, London): I can still recall the
intellectual excitement of first reading Chapter 11 of “Big Davies” (Davies, 1956). More than any other,
this was the experience which inspired me to become a statistician. It is a pleasure to be able to thank
Professor Box in person for the initial and continuing stimulus of his books and papers.

My comments on tonight’s paper concern the diagnostic checking of regression models. If outlying
values of the carriers x are suspected, residual plots should be augmented by functions which respond to
the influence of the individual observations. Fig. D1 shows a half normal plot, for the Box and Behnken
data, of a modification of a statistic due to Cook (1977) which I call T,. For this designed experiment the
plot is similar to a residual plot, with identity for a D optimum design. There is clearly something strange
about one of the observations.
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FiG. D1. Half normal plot of modified Cook statistic 7; for 27 observations from Box and Behnken. * Observed.
I, Envelope from 19 simulations.

In several standard examples (Atkinson, 1980, 1981) transformation of the data provides an alternative
to rejection of outliers. In this case the asymptotically standard normal score statistic for transformations,
Tp, has the value —0-360, so no transformation is needed. Incidentally, I do not understand the remark
after (4.7) about the distribution of this statistic. Perhaps Professor Box was thinking of the apparently
anomalous results of Schlesselman (1973) which are due to a programming error (Fuchs, 1979). Other
transformations of the Box and Behnken data, such as considering (100 —y)* and replacement of
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V1o = 894 by 84-9, also fail to remove the outlier. If the observation is rejected the plot of T; for the
remaining 26 observations, Fig. D2, shows no further features of interest.

Table D1 gives the least squares estimates of the coefficients and the associated standard errors for the
full second-order model fitted to the 26 observations. If only two factor interactions are considered, with
the exception of 8, 4, the estimated coefficients agree to 3 significant figures with those in the last column of
Table 1. Complete agreement can be achieved by interchanging the two rows for 8, in Table 1, which also
brings the standard errors more nearly into line. I wonder whether the observed behaviour for 8, , may not
be due to a transcription error for at least some of the columns of these two rows.

In conclusion I would like to echo Professor Box’s remarks about the importance of computer graphics
inmodel checking. Itisironical that at a time when we are technically able to produce interesting plots with
great ease, economic pressures are such as to discourage the publication of figures and graphs.

TaBLE D1
Parameter estimates and associated standard deviations for Box and Behnken's data with y,,
deleted
Parameter lLeast squares estimate  Standard deviation
B, 2568 0124
B, —1958 0111
B, 1133 0111
B. —3041 0124
B4 —2:051 0175
[ —4012 0168
Bas —1:924 0168
Bes —3241 0175
[ —1-675 0192
Bis —3825 0192
Bis —0953 0252
Bas — 1675 0192
Bre —2625 0192
Bas —4250 0192

Professor D. R. Cox (Department of Mathematics, Imperial College, London): I admire the paper for
its combination of important general discussion with interesting examples.

Equation (2.12) derives a tail area by integration over all sample points with a density equal to or
smaller than that of the observed point. While, as stated just below the equation, relatively minor changes
such as from s to s? (or s?/3 or log s) will make relatively minor changes to the answer, in fact adjusting the
relation between two tails, it is not clear why they should make any difference at all: or to put the point
differently, how do we decide which is appropriate in a given instance? There is, of course, also the
theoretical possibility that radically non-linear transformations, or the use of quantities with very spiky
distributions, would lead to strange regions of integration. Would it not be better to define the test quantity
so as to order the sample points in order of increasing discrepancy in some respect and to integrate over
large values of the test quantity? I appreciate that this involves an implied qualitative specification of
alternatives which it might be desirable to avoid, but is some such specification really avoidable?

The section on robust estimation is very appealing. The idea of modelling suspected complications and
exploring the consequences by general theory is excellent for broad guidance, but if undue complication is
to be avoided, this idea would presumably have to be severely restrained in applications. We all recall what
Lord Kelvin said.

Professor M. STONE (University College London): The emphasis, in this authoritative and readable
paper, on the concept of compatibility between data and their marginal distribution is very welcome. I
hope that Professor Box’s message will be studied by those who have up to now ignored the value of the
compatibility concept in constructive criticism of a Bayesian model and elucidation of any paradoxical
aspects it may have when improper priors are used.

In Section 2.2, Professor Box rightly advises us that impropriety of the marginal data distribution does
not dispense with the need for criticism but he does not give much guidance to the potential critic. One
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analytical method available to deal with this troublesome corner is roughly as follows. Find, if you can, a
sequence of proper priors such that, for every ¢ >0, the (proper) marginal probability that the (proper)
posterior differs by “more than ¢” from the improper one of the model tends to unity down the sequence.
You can then say that the improper posteriors are justifiable in marginal probability but you cannot
conclude that the improper posterior for fixed data (i.e. what you wish to use) is also justified. Whether or
not it is acceptable may be determined by (a) the way in which the posterior is used (b) whether the (fixed)
data are in some relevant way asymptotically incompatible with the proper marginals. In some cases, the
test of asymptotic incompatibility is dramatically simple: any fixed data are unacceptable!

In a paper so rich in suggestions, I should not be surprised that the author has touched on another
problem that has worried me for some time. That is the question of the possible link between cross-
validatory procedures and the Bayesian models to whose output they bear a striking resemblance. The
similarity is most striking for Bayesian models that incorporate flexible priors of the multistage variety and
that are therefore rendered data-adaptive. By construction, cross-validatory procedures are data-adaptive
within the ambit prescribed for choice. However, I have been unable to obtain any technical insight into
problems of real significance. It is tempting to try to relate the cross-validatory weights in Modelmix to
posterior probabilities of the component “models”. A simple example with discontinuous weights, (1,0) or
(0, 1), is that of estimating the true mean u from a random sample of size n when it is known that p is either
1y Or i, With uy < p,. If the cross-validatory prescription is to say i = u, if y<oand fi = u, if y>a« and if
the “loss function” is quadratic between /i and an observation, a cross-validatory choice is to take «” = o
or — oo according to whether y<4(u, + p,) or y=4(u; +u,), thatis 4 = u, if and only if y<$(u, +u,). A
model for which this would be the posterior modal estimate of u would be that of normality and a prior
with P(u = p, | 6%)=P(u = p, | 6?). Is the normality implied by the use of yin the prescription and are the
equiprior probabilities mildly expressive of maximal data-adaptivity? In some sense, I believe they are and
that it ought to be possible to develop better illustrations of the relationship

Professor A. F. M. SMITH (University of Nottingham): Professor Box is a wise, practical statistician
and tonight’s distillation of his wisdom merits careful consideration by everyone genuinely concerned with
statistical methodology. In particular, it should be required reading for all those statistical Yahoos who
stridently proclaim the Bayesian approach to be misguided or irrelevant without bothering to study in
detail what it has to offer. Perhaps there are ad hoc “non-Bayesian” analogues of everything Box mentions
(and no doubt many of these ad hockeries “came first”), but Box’s unified perspective is surely more
satisfying and suggestive as a framework for overall understanding and further advance—even if, as
various other, basically sympathetic, discussants have indicated, there are still many issues to be clarified
within the framework.

So far as the details of the paper are concerned, I shall confine myself to a brief comment on the
Bayesian approach to Robust Estimation (Section 5). The author’s discussion concentrates on robustness
against bad values, where his approach is shown to have close links with non-Bayesian procedures. In fact,
an even more direct association with ideas like “M-estimates” and “influence functions” can be established
using the fact that if y = 0+¢, p(-) arbitrary, with 6~ N(m, ¢), then, using Masreliez (1975),

d
E@|y) = m+6[—alogp(y)]

d
~ M+C[—@logpc(y—rn)}

where p(y) = _[pc( y—0) p(0) d6. Using the approximate form, we see that the way in which the “innovation”
is used to update the prior mean depends on the choice of p( - ) through the score (or “influence”) function.
Interesting families of error distributions—such as the t-family, exponential power family, normal
centre/Laplace tails family—can be investigated for use as (model-based) robust estimation procedures.
The approach can be extended to provide robust Bayesian sequential learning within the Kalman filter
framework, with both location and covariance structure unknown. An account of these ideas is being
written as a Ph.D. thesis by Michael West at Nottingham University. Finally, it is worth remarking that
these and other robustifying and checking devices tend to lead to some tricky numerical problems if
integration over several (perhaps highly correlated) parameters is required in order to isolate a marginal
feature. An account of some recent progress in this area will be given in a paper currently being written by
myself and John Naylor, based on material which will form part of a Ph.D. thesis at Nottingham.
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Professor Jose M. BERNARDO (Department of Biostatistics, University of Valencia, Spain). Although I
certainly agree with Professor Box in the cyclical nature of scientific experimentation through model
criticism and parameter estimation, I do not understand his claim that “sampling theory is needed for
ultimate criticism of a model”. Indeed, when for this 'purpose he computes (2.3), that is
a = Pr{p(y| A)<p(y.| A)}, he is making use of a predictive distribution, which is not defined unless one has
a prior. The (interesting) mathematical accident by which the use of a reference (non-informative) prior
often leads to the same numerical manipulations as classical tests should not obscure the fact that one is
arguing within a Bayesian framework. Incidentally, reference should be made to the use of the surprise
index (2.3) by Barnard (1967, p. 28) and by Aitchison and Dunsmore (1975, p. 224).

At a more concrete level, I find unsatisfactory the use of Fisher’s score function (4.2) to measure
discrepancies from §, from a current model p(y | B). Indeed, as its Bayesian interpretation (4.22) openly
shows, (i) g4(y) is not invariant under scale changes in , as one might wish, and (ii) it assumes implicitly a
uniform prior for B, that would only be appropriate if § were a location parameter. An alternative
definition could be

: N
9iy) = D(Bly)

Here, E(B|y) and D(B|y) are the mean and standard deviation of the reference posterior distribution
(Bernardo, 1979) n(B | y) defined as n(B | y)oc p(y | B) n(B) where n(p) is a reference (non-informative) prior. If 8
is a continuous one-dimensional variable and p(y | B) is well behaved, then the appropriate choice for n(B) is
Jeffreys® prior

o %
n(p) o {— fp(y | Page log p(y | B) dy} .

If only distance from f to S, matters, I would probably use {g’,,(y)}2 rather than gj(y) as a measure of
discrepancy.

200

9p (y) Binomial model, n=5
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Fig. D3. Box’s discrepancy.

~In F.igs D3 apd Dé} the behaviour of Box’s g4(y) and the proposed measure {g(y)}? is shown for the
simple situation in which the value B, as the proportion of elements in a population which possess a given
feature, is to be tested using a binomial model p(y | B) = p(r| B,n)oc f7(1 — B)* ~". Here, one has
n—r

r
gp()’)—ﬁ 1-8
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n(f) oc ﬂ_%(l —B)_*, n(ﬂlr) oc ﬂ’—%(l _ﬁ)n—r—},
E(B|n) = (+1/2/(n+ 1), DY) = {(r+1/2)(n—r+1/D}/{(n+ 17 (22,
, _ (r+h(n+2) r+1/2 2
{gﬁ(Y)}z —(r+1/2)(n—r+l/2)< n+l _.B> .

I believe most people would prefer the behaviour of gi(y) to that of g4(y).

An even more attractive possibility which does not invoke approximate normality would be to test the
data against an assumed distribution p(f) (maybe centred in f,). A good measure of discrepancy would
then be the (positive, invariant) directed divergence

(B |y)
log————d
j"(ﬂ [y)toe” oy %

where n(B|y) is the reference posterior mentioned before.
I would like to finish by congratulating Professor Box by this very interesting, thought-provoking
paper.
80

{gs(y)}* Binomial model, n =5
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Fig. D4. Alternative discrepancy.

Professor Bovas ABRAHAM (University of Waterloo, Canada): I wish to congratulate Professor Box for
this excellent paper in which he discusses how Bayesian and Sampling Theory methods can complement
each other in the scientific modelling process. It seems implied in this paper as well as in many others in the
literature that the Bayesians do not perform model checking. I submit that any practically minded, and
realistic Bayesian would perform diagnostic checks (residual plots, etc.) before using the appropriate
posterior distributions obtained. After all, these distributions are derived under certain model assump-
tions. It is, therefore, comforting to see that this paper, using the concept of predictive distributions and
checks, has formally justified the use of significance tests for model checking. ’

I agree fully with the author in his preference to parametric models over the ad hoc procedures
suggested in the literature for “robustification”. The parametric analysis has the flexibility of presenting the
analyst with various alternatives. For instance, a parametric model containing a contamination parameter
gives the analyst the opportunity to examine the analysis corresponding to various degrees (including zero)
of contamination. Very often there is a dramatic difference in the analyses between models with extremely
small and zero amounts of contamination. Of course this difference will not be revealed in an analysis of a
model which excludes this possibility. This latter model is the same as the one which contains this
parameter but with the value zero. It should be noted that this type of model including the contamination
parameter also lends itself for further predictive checking.

I am sure that this paper will contribute significantly towards the progress of statistical science.
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Professor PETER J. BICKEL (University of California): I very much agree with the formulation in this
paper of the process of scientific inference and even with some of the critique of traditional sampling
theory—the lack of recognition that prior assumptions are prior assumptions and specifying the class of
distributions which the data are presumed to come from (the, parametric model) may be a giant step
compared to the further specification of prior distributions on the parameters.

Where I differ from Professor Box is in his next step of requiring that prior beliefs on the parameters are
made precise in terms of prior distributions and that subsequent inference be expressed in terms of
corrections to such prior beliefs. It seems to me there is middle ground between what he calls implausibly
imprecise prior knowledge i.c., Haar priors or global minimax criteria and proper Bayesian priors and
posterior inference. These types of compromises have been explored by Hodges and Lehmann (1952) and
Efron and Morris (1971) among others. I am also exploring such compromises.

I find his use of tests based on the predictive distribution very stimulating though perhaps a little
inconsistent with what I think of as a purist Bayesian point of view which should try to find a prior on the
space of all possible models. While the predictive distribution approach is very useful from a Bayesian
point of view it is not clear to me what advantages it possesses over the classical tests of model adequacy. It
can fail even as they do in detecting departures which can lead to overconservatism in inferences about
parameters of interest.

Suppose, for example, in the model of Section 2 that the assumptions are off in two respects.

1. The observations are not quite normal say they are better approximated by a long-tailed symmetric
density f.

2. The true variance o3 (say) is less than ¢2, the assumed variance.

Then the significance test based on (2.6) leads to large (non-significant) values of a. To see this note

%
= n?+0p(\/n).

Since x2_, = (n—1)+0,(/n), 63 <o? implies that « will tend to be larger than } for n large.

On the other hand, the true posterior distribution of 6 will be approximately normal (6, I(f)/n) where )
is the MLE for f and I(f) is the Fisher information.

A posterior probability such as

- g > [
P[Y+7r;<0< Y+%\ Y. Y,,]

V= ®(A+0)J/U(f) — V(A —0) JU))),

where A~normal (0,62 —I~!(f)) (in this case).
Clearly inference is still conservative on the average (Box’s robustness of validity more or less)

E(U) = 2®(0/5,)—1

but intervals centred on a robust estimate with length proportional to its estimated standard deviation
could be much shorter and also accurate.

I realize that the procedure discussed in 5.2 in which the prior takes other models into account should
do better (though I am a bit worried about masking of bad values by one another). However, the point [ am
making is that these methods have the same shortcomings as purely frequentist methods do. In fact they
can do worse. In the example I just discussed a standard goodness of fit test of normality with variance o?
would have (for very large sample sizes!) detected the lack of fit of the model. The approach in Section 5.2 is
a help with the “bad value—long tails” problem but so is Huber’s and I guess I do not see why one “fix” is
preferable to the other.

will tend to a limit law, that of,

Professor BRUNO DE FINETTI (University of Rome, Mathematical Institute): I have always felt myseff
to be on the whole in agreement with the point of view of G. E. P. Box, and this paper seems to confirm
strongly such a feeling.

Its illustration of “Bayesianism”—interpreted not simply as a systematic (and maybe sometimes
careless) application of a formula—should make clear that what is essential is an exploratory way of
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thinking and of weighing the evidence. This involves considering when to use or not to use theorems and
formulae rather than ideas expressible in words or simply at the level of instinctive propensities.

The Bayesian way of thinking must be followed everywhere, but this happens also under the guidance
of unconscious mental processes (often better than conscious ones). Mathematical machinery may be a
proper tool in some cases (those, for example, with a high degree of complexity, but which permit
exploration), but not in others: in conditions of lack of knowledge, of haste, or of pain, its use might be
disastrous.

Professor A. P. DEMPSTER (Harvard University): Professor Box displays an important trail of evolution
over the 25 years since R. A. Fisher’s Statistical Methods and Scientific Inference. The major change of
principle is that scattered varieties of likelihood and fiducial methods are subordinated to Bayesian
inference as the central principle of good estimation. The major practical change is a greatly heightened
concern for potentially damaging effects of model-dependence, while holding firm on the necessity of
models. I am in basic agreement with Box.

In the next 25 years we need much more emphasis on what a range of models tells us about the real
world as partially reflected in a data set, and less on parameter estimation. The computing revolution will
gradually but substantially expand the tool kit of models for which a posteriori analysis is available. I am
pessimistic about the prospects for robustification, since an extended range of available models may show
that nonrobustness is too often built into the limitiations of data and design. Checking sensitivity of results
to additional parameters is often inadequate, for there may be sensitivity to simple models rather
differently parametrized. For example, the extended discussion of robustness of location estimates for
symmetric populations has distracted attention from the less tractable but more important task of
estimating the population mean from asymmetric long-tailed populations. It hardly behoves us to be
“grudging” in the pursuit of such problems.

If statisticians are to address real questions they will need formal structures to assess and incorporate
sources of knowledge outside the current data set, whether from related data sets or rational arguments
based on tentatively accepted science. I look to extended development of such formal structures over the
next quarter century.

In summary, I applaud Professor Box’s report of progress, but am impatient for more revolutionary
changes ahead.

Mr R. GATHERCOLE (University College London): In general, the use of predictive checks is to be
commended. Certainly, any statistical analysis should contain a review of the prior assumptions, with the
aim of better understanding of the process in hand. It is useful to see the use of the Predictive Distribution
in this paper, and I would like to add some remarks, together with some further ideas.

With reference to the example of Section 2, the batch mean, the preoccupation with the batch mean
implies that the decision-maker has a quadratic loss function. Thus, the actual loss incurred in using the
prior mean is of magnitude 36, and the expected loss is of magnitude 2-25. This as a ratio appears in the first
half of the test statistic g(y,). With the same air of vagueness that surrounds the test statistic, we can use the
discrepancy in the two losses to show the weakness of the prior as a predictive model. Now consider the
case where the data are a random permutation of the sequence 70, 70, 70, 74. The posterior distribution is
N(70-8,0-22), which is (informally) quite reasonable in its proximity to the prior. The test g(y,) yields a value
of 12:44. Considering that Pr(X?(4)11-:07) = 0-05, what inference do we draw now about the prior?

For those of us who want to test our assumptions against completely specified alternatives it may be of
interest to consider using a loss function of the sort;

Ld,0)=1, if|d—0|<b,
=0, otherwise.

This is a step loss function, gauge b, and it is only a convenience that the upper bound of the loss is one. This
is not dissimilar to establishing a confidence region. In particular, a “1 —z” confidence region may be
interpreted as a decision rule with constant risk, z. This loss function has the bonus that it may be used as an
indicator of how well a model performs. If we have two competing prior formulations, we may want to
choose a value of the gauge that will maximize the difference in their respective expected losses. As an
illustration, take two models which are univariate normal, with respective variances, ¢, and c,. Under the
stated criterion, the optimal choice of gauge is

b* =[{c,c;.In (c1/e)} ey -k
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If we have n models with ranked variances c;, ..., ¢,, then the same formula applies, with c, substituted for
02-

Although this may be of little worth in “one off” cases, such as the batch mean, in sequential sampling,
there will be established a string of losses (binary) for each model, which can be used in conjunction with the
familiar, conventional odds ratio etc. to make an informed decision about the appropriateness of a model.
No such analogy exists with validation under unbounded loss.

Professor SEYMOUR GEISSER (University of Minnesota): Professor Box considers a variety of model
checking functions on the joint predictive (marginal) distribution of the entire data set. One can carry this
further and calculate

p(y| 4) = p(y2 | y1, A) p(y | 4), (1)

where y = (y,, y,) for subsets y, and y,. Suppose it is supected that the discrediting of the model is due to
some outliers or “bad” observations say, the set y,. One can check first whether the set y, adheres to the
model in Boxist fashion and assuming it does, then conditional on y,, we can now test whether y, would
have been an appropriate “prediction” from the model after observing y,, without necessarily a discernible
alternative in mind. For example, if there is one observation at issue, e.g. y, = y; and the model is as given
in Section 2, then Y; conditional on Y; = y;, which represents the set y with y; deleted, is normally
distributed with

(n—1) 05 ¥y +0° 0
(n—1)0%+0?

E(Y; I Yw) = =K (2
o*(e®+noy)
*+(n—1)a2 7

var (Y| yg) = ()
where J,;, is the mean with y; deleted. Note that in this distribution, as o3 grows, y; tends to y;; and o?to
6*(141/(n—1)). So analysis based on this distribution may still be useful in the so-called “precise
measurement” situation.

Now suppose the four observations were given as

yo=T1, y,=68, y;=69, y,=76 with o*>=1, 6,=70, ¢} =1
The Boxist computation

(71 =70)?

Jo=T1 3s3=38 g(y)="—5s

+38 = 388, 4)
presumably discredits the model. Notice that all of the so-called discreditation accrues to the second part of
(4)—the component with three degrees of freedom. On the first glance one might be tempted to patch up
the model by increasing ¢2. But an increase in 62 while reducing the second component also reduces the
first component to such a degree as to make it unbelievably small unless one displaced 6,. One could, in
many instances, vary 6, 62 and ¢2 simultaneously so that a compatible model resulted. However, the
danger of deluding oneself by such Procrustean activities is obvious. In looking at the data however, one is
immediately struck by y, which appears to be somewhat discrepant from the other three observations.
Checking to see if the first three observations discredit the model, we obtain
- (69-33 —70)?

91, Y2, ¥3) = T+2‘43 =28,

which is certainly in line with a y2 random variable. Now notice that Y, conditional on y,, y,, y; has

E(YA|Y1,Y2,Y3) =695, . V(YAIYDYZa y3) = 1:25,

so that the observation y, = 76 is more than 5 standard deviations from the centre of its conditional
predictive distribution. So perhaps the model may not be wrong but y, may be aberrant. One then might
look for reasons why y, appears aberrant if one had confidence in the original model. This type of analysis
could be of some value in the “precise measurement” situation where the model was assumed true but one
or more observations were made under suspicious circumstances and then aberrancy needed checking.
Since Box is not averse to probabilities affected by transformations, he could also entertain a diagnostic
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(suppressing A)

I )
Tply i)

to hunt for an observation which may be aberrant from the assumed model. In the “precise measurement”
case, neither numerator or denominator need exist whilst the ratio often does.

Another diagnostic put forth by Johnson and Geisser (1979, 1980) compares the predictive distribution
p(z|y) of a future observation z based on y with the predictive distribution p(z| ¥;)) based on y;. One
natural measure for how these distributions differ is the Kullback-Leibler-Good-Turing measure of
divergence:

= p0;|¥y): )

p.p) = log PE1Y)
(®.p)) Jp(ZIy) og FEE

Asingle “bad” observation should yield an I(p, p ;) Which stands out from the rest. The first diagnostic d ;
stresses how poorly will the “bad” observation be predicted given the remaining data; the second I(p, py)
can be considered an overall measure of the influence of y; for predicting future observations from the data.
It reflects how the predictive distributions differ with and without the “bad” observation—which is usually
the more critical issue in regard to the ultimate use of the data. Sometimes even if I(p, p;) is an order of
magnitude above the others it still may be so small that the discrepancy in the probability that a future
observation lies in a particular region of interest with and without the offending observation is negligible
enough so that its inclusion is of little or no consequence. How it affects what you are going to conclude,
infer or decide is the final arbiter of the observation’s influence.

Box notes that for the Bayesian, the “bad” value problem is in a sense manageable by modelling. For
one who is predictively oriented the “bad” value problem depends on what the predictive intent is. For
example, bad values may come about because of circumstances that may be considered sui generis in a
particular experiment so that no modelling apparatus is appropriate and the intent is to make a prediction
that does not permit the recurrence of such circumstances. Such observations then are to be excised from
influencing the predictive distribution of a future observation. Contaminated models are of a different
nature and two views are possible towards them. For example, if you assume the sampling in the
experiment was from

dz, j=1,..,n (6)

f]o,8,0) = (1=a) fi(y| B)+af2(v] ),

and there is no reason to suppose that your future observations will not be from this model, then you
calculate

n+1

P(yn+ 1 |Y1,---,yn)0( .].:[lf(yilaaﬁa G)Q(Q,B, O)da dﬂd@,

where g(a, B, 0) is the prior density, and that is an end to the matter.
On the other hand, as seems to be implicit in many situations if it is your intention to predict a value
from fi(y| B) then the appropriate density is

Pl(yn+lly19"'9yn) = fl(yn+llﬂ)p(ﬂlyb""yn)dﬂ

where p(B| y1,..., y,) is the posterior marginal density of . As other models arise they can be dealt with as
long as the predictive intent is clear.

With regard to robustness, I believe that Table 1 is incomplete without a demonstration of the effect o
or ¢ has on the predictive distribution of future observables at appropriate values of the independent
variables.

Formula (4.1) stressed by Geisser (1969, 1971) for comparing alternatives was modified by Geisser and
Eddy (1979) to

n n
I1 P(YJIY(j)’Al)/ Il P(leyu),Ao)
j=1 i=1
for “precise measurement” cases and is also viewed as a sample reuse procedure.

Professor Box has allowed us a glimpse at the contents of his artful and eclectic box of techniques and
though purists of various persuasions may perceive a similarity to the legendary Box, those less
apprehensive will enthusiastically welcome further revelation.
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Professor V. P. GopAMBE and Mr P. FeRREIRA (University of Waterloo, Canada). We are thankful to
Professor Box for explaining in so many details how the predictive distribution could be used for model
criticism. His “model” includes a prior distribution (Section 1.2) and “criticism” includes model modification
(Section 1). Thus criticism must also include estimation of the prior distribution, partly or fully. This points
to the following problematic area concerning Bayesian logic and practice.

With a notation slightly extended from the author’s, let a model M =(X,Q, 2, &) where X = {x} is the
sample space, Q = {0} the parameter space, 2 = {p,: 0€Q} the class of distributions and £ is a (prior)
distribution on Q. Assuming all distributions here to be discrete we can write the predictive distribution
Pe(X) = Zope(x) &(0)... (1). If x = x, is the (present) data, one may estimate ¢ by maximizing p, (xo)in (1) for
the variations of &. Similarly we can estimate 0 from py(x,). If £ and @ (e Q) are the corresponding
estimates we have

[Pe(x0) = pe(xo), V & and py(xo) = py(xo), 0 Q]=[E(D) = 1].

That is, the maximum likelihood estimate £ of the prior distribuition ¢ will have all its mass concentrated at
the maximum likelihood estimate 6 of 6. It then follows that p{6 = | x,) = 1. Thus one may as well use

just the maximum likelihood estimate of 6 ignoring the Bayesian prior distribution and the methodology
completely.

The above extreme example illustrates the general problem. There is nothing in Bayesian logic which
can tell in any given situation how to distinguish the “prior or past knowledge” on the one hand and the
“present data” on the other (Godambe, 1974, 1980). Yet such a distinction surely underlies all the
conventional Bayesian applications; the past knowledge is used (informally) to construct a prior
distribution and the present data to compute (formally) the posterior distribution. Worse still, it is not
unusual to see a model constructed after (what is judged rightly or wrongly to be) the present data, are at
hand. The data suggest some interesting investigation leading to a construction of an appropriate model.

Another related question concerns the Bayesian options (Section 4.6), for choosing between the
alternative models. What should one do if the significance testing based on the predictive distribution
(Section 2.1) rejects model M, but not M, while the posterior odds ratio based on some assumed
(Bayesian) prior probabilities for the models M, and M, prefers M, to M,? Such a situation can certainly
arise in practice. Then one could not avoid the question, which comes first, the result of significance testing
or the assumed prior probabilities?

Professor Box’s suggestion for the use of the predictive distribution is unquestionably very persuasive.
But its satisfactory implementation, obviously depends on how one resolves the problematic situation
mentioned in the above paragraphs.

Professor PETER J. HUBER (Harvard University): The first and main part of Professor Box’s paper is a
masterful exposition of the learning process in applied statistics, explaining how knowledge is extended by
a spiralling move through modelling, design, data acquisition, data analysis, inference, then again model
modification, with various minor loops, and so on. It is certainly the best such article I have ever seen.

I cannot extend this praise without reservations to the last section of the paper, on robustness from a
Bayesian viewpoint. I have often wondered why Bayesian robustness did not develop as vigorously as its
non-Bayesian counterpart; after all, the term “robust” was coined some 27 years ago by Professor Box, and
the early childhood of robustness had quite some Bayesian flavour. For me (and also for Frank Hampel,
see Hampel (1973), p. 95) some open robustness problems seem to be ideally fit for a Bayesian approach; I
can only surmise they were let lie fallow because some of the goals of robustness may clash with some of the
Bayesian dogmas—if the latter are interpreted narrowly. The present paper seems to offer some interesting
clues on these “theological” difficulties.

The first issue is rather deeply seated in the foundations and concerns a curious misunderstanding
about the “frequentist” probability interpretation. Professor Box alludes to it in Section 1.2, but I think he
misses the real point. It is not that the frequentist is unaware of the subjective nature of his probability
interpretation, he is only more restrictive than the Bayesian and admits a subjective interpretation only for
probabilities which are sufficiently close to zero or one. For intermediate probabilities, where he does not
have a direct interpretation, he takes recourse to the weak law of large numbers. This is tersely and lucidly

enunciated in Kolmogorov’s basic “Ergebnisheft” (1933) and the passage is worth quoting in full (from
the English translation (1956), p. 4):
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“Under certain conditions, which we shall not discuss here, we may assume that to an event 4
which may or may not occur under conditions C, is assigned a real number P(4) which has the
following characteristics:

(a) One can be practically certain that if the complex of conditions C is repeated a large number
of times, n, then if m be the number of occurrences of event A4, the ratio m/n will differ very slightly
from P(A).

(b) If P(A) is very small, one can be practically certain that when conditions C are realized only
once, the event 4 would not occur at all.”

Thus, in a certain sense, the frequentists constitute a most austere fraction of Bayesians!

As a consequence, modelling by frequentist dogma is restricted to choosing either a single point, or
more generally, a point set in a space of probability distributions, in which the unknown true element lies
with practical certainty.

At the bottom level, the Bayesian has more freedom: he can choose both a pointset and a prior
distribution supported by it. But by Bayesian dogma, he must formalize his ignorance in terms of a prior
distribution. This can create problems on the next higher level with robustness, since it is well-nigh
impossible to condense some beliefs (“I expect up to about 5 per cent gross errors, which could be
anywhere”) into a single prior distribution, without making very arbitrary choices; these choices might
matter more than what intuition tells us. )

Just as in topology, it is not possible to specify smallness in absolute terms. The widespread use of 5 per
cent levels in statistical testing shows that for many purposes a probability 0-05 is already close enough to
zero for an investigator to accept something as a practical certainty (at least provisionally, as a working
hypothesis). Sometimes, 10~? is not small enough. But from the point of view of interpretation, it is
absolutely essential that sufficiently small probability values are considered to be topologically close to
zero. The statements made by Box in the first part of Section 5 (on a = 0:001) in essence negate
Kolmogorov’s interpretation of probability. If we take them literally, they would even knock off the props
underneath the practical translation of probabilities into actions (does the probability of a fatal accident
have to be exactly zero for you to risk a plane trip?).

The second issue is related and is specific to the foundations of robustness. It takes off from the very
opening line of the paper: “No statistical model can safely be assumed adequate.” Among other things, this
dictum (with which I wholeheartedly agree) implies that the infinite regress of model improvement has to
be cut short somewhere (by a judicious application of Occam’s razor), and that one has to rely on
robustness to take care of the remaining inadequacies.

Here Bayesian robustness fails by too strictly adhering to the dogma that uncertainty has to be
formalized by a prior distribution, pulled from one’s mind by introspection. This is curious, because
otherwise Bayesians are much less strict and often choose priors out of mathematical convenience (e.g. the
so-called conjugate priors).

Typically, Bayesians try to achieve robustness with a last model, which contains some contamination
or tail-length parameters, together with some prior on these parameters. Let us call this the “super model”.
The super model is somewhat arbitrary, because typically neither the data nor the prior knowledge offer
adequate information at this late modelling stage. Estimation then proceeds in the pious but unwarranted
hope that the super model provides robustness. If the statistician has not tired yet, and still is keeping up
the good work, he should note a possible lack of robustness in the next criticism stage and he will only
waste a few iterations of the learning process.

Such an approach may have been the best available until about 10-12 years ago, but in between the
demands and potentialities of robustness have progressed a stage further. Essentially, by now the Bayesian
approach should be concerned not with the ad hoc construction of super models, but with deriving reliable
guide-lines on how to choose the super model (within the inherent arbitrariness) so as to guarantee
robustness, and how to do so in a best possible fashion. The paper by Rubin (1977) is a first small step
toward such a goal.

All this has to do with modelling within a last speck of probability, just before both the frequentist and
the Bayesian would switch to practical certainty, and I believe that in this region some ideas that ordinarily
are anathema to Bayesians (like minimax strategies) may be much preferable to picking arbitrary
distribution out of one’s zone of indifference. There may lie the cause of my disagreement with Professor
Box: while the o = 0-001 in the beginning of Section 5 may be too large to be lumped with zero, it is too
small for a reliable, data- or intuition-based modelling. If we cannot change the model to approximate
what is believed, because our belief is too fuzzy to stand a 1000-fold magnification, we better change the
model into the worst case compatible with our belief (namely, the belief that there might be a fraction of up
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to about o unspecified bad values). It is curious that the Bayesian version of this (i.e. formalizing the belief
about « in terms of a non-degenerate prior) to my knowledge has never been seriously explored.

Professor W. G. HUNTER (University of Wisconsin): I am reminded of something said some time ago by
J. Williard Gibbs: “One of the principal objects of theoretical research in any department of knowledge is
to find the point of view from which the subject appears in its greatest simplicity.” I believe that Professor
Box has taken an important step in that direction. He has found a vantage point from which it seems
sensible essentially to divide statistical real estate between those who use Bayesian methods and those who
use sampling theory. (It will be interesting to see to what extent this proposal actually leads to a reduction
in territorial disputes that have enlivened the statistical landscape over the years.) Note that adjoining
lands are occupied by experimenters and other research workers. I would like to comment on the value of
randomization as perceived by these three different groups.

Leaving aside refinements, the gist of the story is as follows. Suppose the experimenter gives the
Bayesian the data necessary for estimating the parameter 0in a cause-and-effect model A4 that purportedly
connects x to y. Suppose, as is usually the case, that the variance 62 is unknown. The Bayesian’s job is to
produce the posterior distribution p(0|x,y, A) for the experimenter, and the residuals y —§ for the critic.
The critic is provided, by the experimenter, with additional information about how the data (x,y) were
collected, including measurements on variables not contained in model A. The critic’s job is to report to the
experimenter whether any defects can be detected in 4. The Bayesian uses (1.5), the critic (2.3).

Given x, y, and 4, the added knowledge about whether randomization was used would not influence
any of the Bayesian’s calculations. To the Bayesian, therefore, randomization has no value. By contrast,
randomization stands between the critic and unemployment and so, to the critic, it has high value. The
critic’s job simply cannot be done if the data have not arisen from a randomized experiment. The critic
must consider whether the residual vector y —§ resembles random error, in particular, whether it can
reasonably be regarded as an approximation to a random sample from the error distribution p(g). Unlike
the Bayesian, the critic does not adhere to the likelihood principle. In calculating a significance level, which
is the critic’s stock-in-trade, a reference distribution is required. Consequently, the critic must consider
information other than x and y, basically for the same reason that Samuel Johnson said that “among the
works of Nature no man can properly call a river deep, or a mountain high, without the knowledge of many
mountains, many rivers”.

The experimenter wants information about @ and A, and the statistical task is finished when the
Bayesian supplies the posterior distribution for 8 and the critic reports that no defects can be found in A.
But the Bayesian and the critic are not infallible; even if they make no mistakes in calculation and conclude
that A does not appear to be inadequate, A in fact may be grossly inadequate for future use because of the
presence of an undetected lurking variable x,. Note, in this eventuality, that randomization helps the
experimenter in two ways.

(1) It tends to produce an orthogonal “design” in the sense of making the lurking variable vector
perpendicular to the space defined by the vectors of the x’s in the model. Suppose measurements on x, are
available but they have thus far been ignored in the analysis of the data. If they are later brought forward,
then randomization having been used will improve the experimenter’s chances of detecting x,’s
importance. In practice, if randomization is not used, the vector x,, will often tend to be close to the space
defined by the vectors of the x’s in the model (because of internal feedback or regulatory mechanisms or
other linkages within the system being studied); accordingly, to discover the effect of x, will be extremely
difficult, if not impossible.

(2) Even if the existence of x, remains undetected and it thereby biases the estimate of @, proper
randomization will tend to reduce the amount of this bias. The price paid will be to increase the variance of
the posterior distribution of 0. This is a desirable trade-off. Note that the Bayesian and the critic are blind
to advantages (1) and (2).

Thus, randomization should be used by the experimenter, even though the Bayesian cannot see any
sense in it. Although the critic knows it is a good idea, the critic does not realize how good it is. Rather than
use either Bayesian (B) or sampling theory (ST) methods, a statistician should use both. A statistician will
be even more effective by learning at least some elements of the subject matter field from which the data
arise, thereby becoming somewhat of an experimenter (E), too. This combination is clearly best.

Mr P. H. JacksoN (University College of Wales, Aberystwyth): I wonder whether Professor Box could
be persuaded to substitute the expression “the model is called into question” for “the model is discredited”
throughout Section 2 of the paper?
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Practising statisticians of any school of inference will react to surprising data by asking “Have I
overlooked something?”, and the formal checks for surprising features proposed will be valuable in
provoking this question. Usually the next questions to ask oneself are “Have I misunderstood the data?”
and “Do the data contain gross recording errors?”, followed by “Am I using an inappropriate model?” In
considering the last question the Bayesian will recall that his theory requires him to assign prior
probabilities to all states of nature (models in the present application), whereas his human finiteness has led
him to assign zero probability to models which should really have received at least epsilon. He will
therefore enquire whether there are models for which the likelihood ratio calculated from the data would
have increased even an epsilon’s worth of prior probability to a posterior probability greater than that for
the model employed. This is especially likely to be the case when, as in many examples given in the paper,
parsimony rather than genuine prior belief was the reason for selecting the model.

The objection to saying that “the model is discredited” is that it implies a decision, not a
reconsideration. It will be widely interpreted to mean that the model, regarded as a hypothesis, is rejected;
Professor Box himself encourages this interpretation in 2.1(d). Suppose that in my first season as captain of
a cricket team I lose the toss at all twelve matches of the season. An event has occurred for which almost
any relevant tail-area calculation, frequentist or Bayesian, will give a probability less than 0-001. But what
is discredited? The toss as a fair way to start a match? My suitability as captain? Certainly there are models
which make the data less surprising: telekinesis, “bad vibes”, or the ever-available divine intervention.
Believers in any of these theories might consider it wise to relieve me of the captaincy. Most of us, however,
having satisfied ourselves that there was nothing fishy about the way the tosses were conducted, would still
conclude that I had simply had a run of bad luck; that is, we would assign such a small probability to these
alternative models a priori that even data as extreme as this would not give them a large probability a
posteriori.

Professor JosepH B. KADANE (Carnegie-Mellon University): I am in sympathy with much of what
Professor Box has proposed in this paper, and yet there are parts I cannot accept. His claim for the need for
both model estimation and model criticism is well taken. His discussion of examples is illuminating, and his
remarks on robustness in the Bayesian context are important and insightful.

My difficulty with this paper lies in his proposal to resurrect significance testing, now to be done with
respect to the predictive distribution, as a method of model criticism. My difficulty does not have to do with
the use of predictive distribution itself. After all, an equivalent Bayesian analysis can be performed without
mentioning parameters at all, using Bayes’ Theorem to update the predictive distribution,

P(V15 Y2503 Vs Ynt 15++2)
P(yl’yb'“» yn)

Rather, my difficulty comes in interpreting his equation (2.3). How shall we choose an appropriate level a,
below which we decide that the model is discredited? Apparently, from equation (2.6), 0-001 is too small.
Why is that? What coherent theory can justify the use of such a critical value a,, without reference to the
size of the likely discrepancies, their impact on the conclusions drawn from the analysis, etc., in other
words, without a full decision-theoretic treatment?

A mathematical way of putting the same question is to point out that «, as computed in (2.3) is not
invariant to changes in the underlying measure u with respect to which the density p is a Radon-Nikodym
derivative. Thus if p(x) is taken to be Lebesgue measure if x <0 and k times Lebesgue measure if x>0, a
different interval p(y|A4)<p(y, | A) results for each k, and hence a different o Which is to be used?
Generalizations of this device can lead to «’s arbitrarily close to 0 and 1, by changing p. Does Professor Box
wish to argue that only densities with respect to Lebesgue measure are legitimate? By contrast, the
predictive ratio (4.1) is invariant to such changes, which suggests to me that it is on a more solid footing.

p(y'n+ l»yn+2»""|yl’y2»yn) =

Dr Ron KEeNeTT (University of Wisconsin): A testimony to the illuminating nature of this work is that
while reading it I kept asking myself why it is that this natural compromise between pure Bayesian
inference and pure Sampling inference was not already widely recognized.

My comments are on the general nature of model building and specifically on paragraph 1.2 describing
the need for prior distributions. I tend to agree with the author that for most problems attacked by
statistical means “there seems no logical way to avoid trouble except by the explicit prior statement of the
model we wish to entertain” but this might sometimes be impossible to achieve.

The alternative I have in mind stands half-way between Tukey’s exploratory data analysis and Box’s
proposals. In other words, it seems to me that there are situations when no prior elicitation (even of a
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model) is possible but still there is some relevant prior information that can be used. If the model is the prior
in the wide sense we might have a very “diffuse” prior. One might look at an analysis in such circumstances
as a structural exploratory data analysis.

To illustrate my point let me describe an analysis in which I was involved (Karlin, Kenett and Bonne’-
Tamir, 1979). Professor Bonne’-Tamir of the Human Genetics Department at Tel-Aviv University
collected frequencies of various biochemical genetic traits in various Jewish populations living now in
Israel and shdaring a common origin such as Jews from Iraq, Poland, etc. . .. An investigative look at these
data for similarities and differences between populations and between and within standard
demographic—anthropological classifications of these populations can provide clues relevant to the study
of genetic diseases and set a basic framework for successful genetic counselling. We had available
information on the history of these populations, where they lived, cultural exchanges, migrations,
admixture and more. A reasonable analysis of such data should incorporate this information but 2000
years of an eventful history cannot be summarized in a meaningful model. This situation does not give an
initial stage for criticism to start iterating on.

My point therefore is that in some situations one will have to use ad hoc techniques incorporating
features appropriate to the data, such as measures of particular meaning in genetics, as was done in the
analysis mentioned above, and making use of prior information, such as historical knowledge, without
putting it in an analytical model.

Professor ToM LEONARD (University of Wisconsin): I would like to add my congratulations to
Professor Box for this highly creative landmark paper which pioneers the unification of the Bayesian and
frequentist elements of parametric statistical methodology. It is by now fairly widely accepted that Bayes is
very good when the statistician conditions upon the truth of his assumed sampling model; for example the
dualities between Bayes and admissible procedures lead us to some of the best properties available under a
frequentist philosophy. However, practical statistics is primarily concerned with aspects of modelling;
whilst standard Bayesian approaches, based upon finite mixtures of specified models, are helpful, they do
not seem to provide the final answer (e.g. the statistician needs to specify accurately several priors
corresponding to several sampling distributions). Two alternative choices involve (a) proceeding
pragmatically in the manner recommended by Professor Box, or (b) referring to a non-parametric
procedure.

Some Bayesian non-parametric procedures (e.g. Ferguson, 1973; Leonard, 1978) parallel Professor
Box’s Bayes/non-Bayes compromise; they fit in very naturally with his important philosophy of iterative
model-building. A hypothesized model is introduced as a prior estimate; the posterior estimate then
indicates both local and overall differences from the hypothesized model and also suggests how the
hypothesized model could be revised. One of the further prior parameters measures the degree of belief in
the hypothesized model and parallel’s Professor Box’s significance level; it may itself be estimated from the
data by either an empirical or a hierarchical Bayesian procedure.

A beneficial conclusion to be drawn by intermingling the ideas in (a) and (b) is that it might be a bit
overambitious for a statistician to try to check out his model against a finite data set unless either (i) he also
refers to the scientific background of the data (e.g. by interacting with a client), or (ii) he makes some
particular assumptions (e.g. independence and homogeneity of errors) about the true model (or
equivalently about available alternative models). In the context of non-parametrics suppose that the true
density of the observation vector y is given by

__exp{go(y) +ey)}
/) exp {go(u)+e(u)} du’

)]

where ¢, is the logistic transform of the hypothesized density

exp.{go(y)}
fexp {go(w)} du’

and the multi-dimensional function ¢ measures the departure of f from f,.

The expression in (1) also provides the likelihood functional of ¢ and therefore concisely summarizes all
information contained in the data about departures of ffrom f,. It seems (e.g. by trying to maximize (1) with
respect to ¢) that this information can only be sensibly utilized on its own by making some specific
assumptions about ¢ which effectively reduce its dimensionality. We could, for example, assume ¢ to take

Soy) = @
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the form
&y) = X n(y),
i=1

and then estimate the one-dimensional function #, e.g. by maximum likelihood or a Bayesian smoothing
procedure or an approximation based upon a polynomial or a linear combination of basic splines. This
involves an assumption analogous to independence of error terms of the true model. Without a simplifying
assumption like this, on the true or alternative models, it seems that we would need to bring in information
external to the likelihood functional of ¢ in order to reach a viable conclusion. This parallels Professor
Box’s choice of diagnostic statistics, which may be based upon background considerations; also his choice
of significance level may be made pragmatically.

In summary, either a Bayes/non-Bayes compromise or a suitably chosen non-parametric procedure is
useful in modelling situations. George Box’s brilliant approach will prove historically to be a splendid
addition to this area.

Professor D. V. LINDLEY (Somerset): Professor Box would have us abandon the likelihood prirtciple
when it is a question of testing the adequacy of fit of a statistical model. Even outside the Bayesian
paradigm, the arguments in support of the principle by Birnbaum (1962) and Basu (1975) are most
convincing and it would be interesting to know why they have been implicitly rejected tonight. An ytestofa
model surely requires some consideration of alternatives as the following example illustrates. A statistician
judges a sequence of 12 0’s and 1’s to be Bernoulli (the model). On observing the sequence he sees
010101010101 and a plausible alternative immediately suggests itself. Suppose, however, he had observed
111010100010, then the alternative that trials of prime (composite) order always give a 1(0) is not seriously
entertained because it has low probability. Yet both these sequences have the same probability on the
model.

A curious feature of abandoning the likelihood principle is the need to appeal to aspects of the data
previously thought to be irrelevant, namely the data values that were not obtained originally but might
have been. For example, (2.3) implicitly assumes the sample size was fixed. Curiously, were the alternatives
themselves to be parameterized, this information would again not be necessary.

The bulk of the paper is not, however concerned with such issues, but with the task of developing
workable tests for the adequacy of a model and, master craftsman that he is, Box succeeds admirably. It is
interesting to notice that the valuable procedures derived from the g4(y) criterion scarcely depend on the
viewpoint adopted. Only casually, as at the end of Section 4.5 when a Monte Carlo study is mentioned,
does the sampling attitude surface. And even there, under rather special assumptions, the procedure has a
Bayesian interpretation given by (4.22). (Incidentally, in that argument, would it be reasonable to suppose
p(B) flat since the use of f, rather suggests high probability for that value?) The sampling approach is
typically quite satisfactory in suggesting a criterion to consider—for, after all, even it admits that the only
solutions worth considering are Bayesian solutions—where it fails is in saying what to do with the
criterion, or with the plots. Tail-areas are preferred to probability ratios and it is there that the sampling
argument is dangerous. Let us use the valuable results derived in tonight’s paper but let us judge them by
coherent standards.

Dr RoBERT B. MILLER (University of Wisconsin): Our purpose as scientists is to draw conclusions
about the world from data. Scientists engage in modelling in order to guide the data analysis and data
collection processes, which in turn inform the process of drawing conclusions. Thus a model must be
viewed as an expression of a scientist’s thinking at a particular moment and not as an objective entity. The
fact that a model is widely accepted among scientists makes it neither objective nor true, only widely
accepted. The only objective entity is data, and even data are corrupted by measurement error, selection
bias, processing error, etc.

Professor Box rightly reminds us that the predictive distribution provides a formal mechanism for
checking conclusions against objective evidence. I have reservations about equating this mechanism with
sampling theory. Whereas contemplation of hypothetical, identical repetitions of an experiment is very
useful in model conception, it does not enter so naturally into model validation. At least I cannot think ofa
natural sampling theory way to deal with structural shifts in either a model or its parameters or, at a more
elementary level, with even the validation of a stationary time series model.
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I believe a very important principle is embodied in Professor Box’s definition of robustification as
“judicious and grudging elaboration of the model to ensure against particular hazards”. The principle is
that robustness is more in the scientist’s frame of mind than in any particular model. While statisticians will
inevitably speak of robust models and robust procedures, they will, consciously or unconsciously, be
speaking about the one who guides the application of these models and procedures toward conclusions
about the world.

Perhaps robustness should be defined as a scientists’ ability to ferret simple, lasting structures from
data that are subject to myriad sources of variation. In keeping with this point of view it is well to remember
that a surprisingly large variety of data patterns is consistent with the assumption of a fixed (and relatively
simple) model structure if the parameters are allowed to fluctuate randomly over groups or over time or
both. If we make a parameter process a part of our model, then Bayesian analysis becomes hierarchical.
Some will say heretical, but I believe this point of view is the best hope for robust data analysis in such
volatile fields as business, economics, and environmental modelling. Significantly, random coefficient
models already have wide currency in these fields.

Finally, I wish to thank Professor Box for his very useful contribution to both the philosophical and the
practical sides of statistics.

Dr D. J. SPIEGELHALTER (University of Nottingham): Professor Box has suggested the use of Fisher’s
score function to measure discrepancies from a specific model assumption. One application is within the
context of testing for the shape of a univariate distribution, when, for example, normality may be
embedded in the exponential power family. For known location and assuming p(¢)oco ™!, Fisher’s score
has a simple form, and for unknown location the statistic may be closely approximated by X z2 In z2, where
z; = (x;— X)/s.

Similarly, the exponential shape may be embedded in the gamma or Weibull family and simple
“locally”, in a specific sense, most powerful invariant tests obtained. The sampling characteristics of these
tests are currently under investigation.

Another Bayes/sampling theory combination involves using the posterior probability of a specific
model, embedded in a finite family of alternatives, as a test statistic. This has been shown to be successful as
a small sample test for normality (Spiegelhalter, 1977, 1980).

Professor S. M. STIGLER (University of Chicago): George Box has made a bold, and I think largely
successful, attempt to spell out the compatible and complementary roles Bayesian inference and
significance tests may have in scientific investigation. There is one point that I think is implicit in his tour de
Jforce that, I feel, deserves greater emphasis. He notes the importance to model criticism of the predictive
distribution,

p(y|A) = fp(y |8, 4) p(8]| 4) 6.

But the predictive distribution is, of course, not unique. Let z = y(y). Then the predictive distribution of z
may be very different from that of y, even though if y is 1 — 1, the data given by z are equivalent to those
given by y. Different choices of y will render the significance test sensitive to different departures from the
model. In the example that begins Section 2, we have a likelihood p(y | 0) that is a function of a sufficient
statistic T(y) = (v,5%); p(y|6) = h(y)-g(T(y)|0), where here h(y)=1. This yields (2.2), a predictive
distribution that is also a function of T(y), and thus a significance test that is only sensitive to model
departures that perturb the distribution of T(y). Many other formulations are possible, such as the one
Professor Box cleverly exploits later in Section 2: in effect, he works in (2.7)«2.12) with the predictive
distribution of z = Y(y) = (T(y),u). He is then led to a different set of significance tests, remarking that
- while the test (and its outcome) is affected by transformation, this is not particularly disturbing. I expect
many of his readers will be disturbed, but I am not. I think he is quite correct in expecting different answers
to different questions. Still, I think he leaves us with a dilemma, namely what question should we ask?

If the predictive distribution and the resulting significance test are affected in important ways by
transformation (and they are), we need guidance in the choice of transformation. Professor Box has shared
his experience and considerable intuition in providing some of the needed guidance, but I feel he should
give more emphasis to a formal consideration of alternative hypotheses. The tests discussed are introduced
without specific (only vague) alternatives in mind, but they are in fact likelihood ratio tests for specific
families of alternative hypotheses (as can be seen from De Groot, 1973, for example). I would suggest that
we could borrow a clue from Professor Box’s last section, where he increases our understanding of Tukey’s
Biweight by relating it to a Bayesian procedure, and gain some of the needed guidance in choice of
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transformation by studying the classes of alternatives for which the suggested tests are likelihood ratio
tests. Whether or not such an approach will be both feasible and enlightening remains to be seen, but I do
think further guidance in choice of transformation (or, equivalently, choice of significance test) is needed.
Otherwise, we risk asking either the wrong questions, or too many questions. In many importantsituations
involving social data, non-stationary aspects of the underlying processes will prohibit any practical appeal
to the iteration that Professor Box correctly notes (at the end of Section 4) will “quickly terminate” the
chase in much industrial or laboratory experimentation.

Two centuries have passed since the first statistician, Laplace, embraced both Bayesian inference and
significance tests. It is a pleasure to learn at last that this was not an adulterous relationship, but one that
can be defended on principle.

Professor A. ZELLNER (University of Chicago): This stimulating paper prompts the following
observations. First, I believe that a scientific model is better represented by p(y,8|4) = p(y | 0,4)p(0] 4)
than by p(y| 0, A), the likelihood function since the form and content of p(0| A), the prior distribution are
significant parts of any scientific model. Second, sampling theory considerations appear relevant before we
observe the data in establishing sampling properties of Bayesian estimation and significance testing
procedures, for example admissibility and average risk properties of Bayesian estimators and operating
characteristics of Bayesian significance testing procedures based on posterior odds ratios; on this latter
topic see, for example, Dyer (1973), Jeffreys (1967, p. 396) and Zidek (1969). After data are observed,
posterior distributions and odds ratios provide a basis for inference about parameter values and
hypotheses, sharp or non-sharp. Significance testing based on posterior odds ratios, mentioned briefly by
Box in Sections 4.1 and 4.6 is a basic Bayesian procedure for model criticism when specific alternative
hypotheses are available, as they usually are. Jeffreys (1967, Ch. V and Ch. VI) provides posterior odds
ratios for many problems including hypotheses about a normal mean and standard deviation that are
relevant for the normal mean problem that Box analysed in Section 2. Third, for any given sample of data,
there will be some function of the observations, including the whole set that will be improbable or unusual
given the model, a circumstance that led Jeffreys to write (1967, p. 385), “If mere improbability of the
observations, given the hypothesis, was the criterion, any hypothesis whatever would be rejected.” Then,
without an alternative hypothesis, we are left with no model at all. Also, his critique of the rationale for the
use of tail areas or P-values that Box employs warrants attention. Last, the basic idea of significance testing
or model criticism is of great importance as Box emphasizes and thus it is fortunate that Bayesian posterior
odds ratios are available for this important aspect of inference and that they generally have very good
sampling properties.

The AUTHOR replied later, in writing, as follows.

I need hardly say how happy I am at the reception afforded my paper which I was particularly anxious
to present here because of the unique vitality of this Society and its well known willingness to entertain and
criticize ideas.

To clear up some misunderstandings and to set my reply in context, let me first make clear what I
regard as the proper role of a statistican. This is not as the analyst of a single set of data, nor even as the
designer and analyser of a single experiment, but rather as a colleague working with an investigator
throughout the whole course of iterative deductive—inductive investigation. As a general rule he should, I
think, not settle for less. In some examples the statistician is a member of a research team. In others the
statistician and the investigator are the same person but it is still of value to separate his dual functions.
Also I have tended to set the scene in the physical sciences where designed experiments are possible. I
would however argue that the scientific process is the same for, say, an investigation in economics or
sociology where the investigator is led along a path, unpredictable a priori, but leading to (a) the study of a
number of different sets of already existing data and/or (b) the devising of appropriate surveys.

The objective taking precedence over all others is that the scientific iteration converge as surely and as
quickly as possible. In this endeavour the statistician has an alternating role as sponsor and critic of the
evolving model. Deduction, based on the temporary pretense that the current model is true, is attractive
because it involves the statistician in “exact” estimation calculations which he alone controls. By contrast
induction resting on the idea that the current model may not be true is messy and the statistician is much
less in control. His role is now to present analyses in such a form, both numerical and graphical, as will
accurately portray the current situation to the investigator’s mind, and appropriately stimulate his
colleague’s imagination, leading to the next step. Although this inductive jump is the only creative part of
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the cycle and hence is scientifically the most important, the statistician’s role in it may appear inexact and
indirect.

If he finds these facts not to his liking, or if his training has left him unfamiliar with them, the statistician
can construct an imaginary world consisting of only the clean deductive half of the scientific process. This
has undoubted advantages. A model dubbed true remains so, all alternative models are known a priori, the
likelihood principle and the principle of coherence reign supreme. It is possible to devise rigid “optimal”
rules with known operating characteristics which aspire to elevate the statistician from a mere subjective
artist to an objective automaton. But there are disadvantages. Deduction alone is sterile—by cutting the
iterative process in two you kill it. What is left can have little to do with the never-ending process of model
evolution which is the essence of Science.

My object then is to suggest a theory which can fully explain both the inductive and deductive
statistical aspects of investigation. I argue that fcr this we need look no further than the factorization of the
model p(y, 8| 4;), expressing all aspects of currently held belief at some stage i, into its Bayesian and
predictive parts. In particular the predictive distribution p(y | 4;), since it is the distribution of all possible
samples generated by the current model, provides, free from nuisance parameters 0, the appropriate
reference set for y, or for any diagnostic checking function g(y,).

Some contributors have found confusing my speaking of a “sampling theory argument”. I mean by this,
reference of a function of the data to an appropriate reference distribution implied by the model as in a
significance test. The problem of what is the appropriate reference set is completely resolved in the present
context: it is the set defined by the predictive distribution. Notice that on this basis a “sampling theory
argument” is no less so because a prior distribution is involved in the generation of the (predictive)
reference set.

Although I do not think that Professor Barnard and I are far apart in our basic philosophy, I fear that
his final remarks about subjectivity and relations with clients (or as I would say investigators) may be
misunderstood. Surely what he says applies only to perhaps the last 5 per cent of the experimental effort
when it isto be demonstrated that the final destination reached is where it is claimed to be. The other 95 per
cent—the wandering journey that has finally led to that destination—involves, as I have said, many heroic
subjective choices (what variables? what levels? which scales? etc., etc.) at every stage. So far as this major
effort is concerned then, since we must swallow the subjective camel, why strain at the subjective gnat?

Professor Dawid complains that much of my analysis in Section 4 has reproduced classical tests, and
asks what has been gained. The answer is that my proposals come from a theory having general
application, in which the Predictive Eve is no longer separated from the Bayesian Adam. While highly
specialized structure is not a requirement, when it exists it is appropriately used, and then reproduces
sensible classical tests. So far as it goes I suspect my readers will find this more reassuring than if the
contrary had been the case. For ordinary well-behaved predictive distributions zero will be the appro-
priate value for the score functions of Section 4 since this will imply that f, maximizes the predictive
density.t In particular examination of the plots in Box and Cox (1964) and elsewhere verifies that, for all
examples I have seen, this is sensible for g,(y) of (4.7). The phrase “reference of p{g,(y,)} to its sampling
distribution” does not appear in the paper presented to this Society. It appeared in an earlier draft which
Professor Dawid saw but was changed precisely because the earlier version did not make it sufficiently
clear that the sampling involved was from the predictive reference set. It is quite evident in Sections 1, 2
and 3 that a formal check is made by referring the predictive densities p(y,) and p{gy,)} to their pre-
dictive distributions, where necessary by computer simulation. These distributions cannot of course
contain nuisance parameters.

Concerning (4.8), trials with actual samples showed that although local quadratic approximation of z
was good, the approximation B = j~! was exceptionally poor. It was not used therefore. Of course B is
data dependent but the only purpose of the analysis leading to (4.11) is to show that (making only the
assumption that zis locally quadratic in y), g ,(y) is a function not only of Tukey’s statistic T, , but of T,, and
T;, as well; as common sense says it ought to be. This analysis also sets Andrews’ criterion in its proper
context.

Suppose, following Professors Bernardo and Lindley my proposals are applied to the binomial, and for
illustration, using Bernardo’s notation, assume a beta function prior

PBLA) = oo™ (1 — Bo)™* =9~ B{mfo, m(1 ~ Bo)}

1 Which, with some advantages, replaces likelihood.
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Then the predictive distribution is

p(r| 4) = (':)B{mﬁo+r,m(1 ~Bo)+n—r} / B{mpo,m(1 - Bo)}.

Referral of p(r, | A) to this distribution can, without specification of alternatives, discredit the model and
subsequent Bayesian analysis. In particular, as m — oo, p(f8| A) becomes concentrated at 8, and the
predictive check consists of the standard binomial significance test in which r, is referred to

pr|4) = (f)ﬁau ~Bor™".

This is despite Lindley’s remark that any test of a model requires alternatives. However, as I say, although
such an analysis can discredit the model, it cannot adequately check it. In particular suspected deviations,
such as that implied by Lindley’s example, from binomial sampling would require checking functions
which, I grant, would imply specific alternatives. In particular a suitable function of the data g,(r) with &
measuring some discrepancy from binomial sampling could be obtained using the ideas in Section 4 of the
paper and would then be referred to its predictive distribution.

The analysis via p(r | 4) discussed above, and not that fathered on me by Professor Bernardo, follows
the suggestions made in this paper. If, however, we do look at

94y = n(%—/%) / Bol1 =Bo)

this simply confirms the point (in this case trivial) that the appropriate function of the data to consider is r
itself. Reference to the predictive distribution brings us once again to the previous result. Concerning
Professor Bernardo’s Figs D3 and D4, I can only say that outside the famous classic by Darrell Huff(1954)
it is unusual to see comparisons made between unstandardised unsquared quantities and standardised
squared ones.

Returning to Professor Lindley’s remarks, there is in my mind no question of abandoning the
likelihood principle so far as estimation is concerned. When we are asking what can be said of a variable 0
in relation to a single vector y,, I do not find it surprising that the sampling rule should be irrelevant. But if
we aim to judge whether samples resembling in some relevant respect the one we have observed are or are
not rare, it seems to me essential to know (as part of the model) the rule by which the samples were
generated. In most cases this information is available. But if it is not, then I believe no absolute check on the
model is possible. In particular as Professor Hunter points out this allows an appropriate role for
randomization.

Concerning tail areas and probability ratios, my prescription is that low predictive density, not
location in tail areas per se, casts doubt on the model. It is not difficult to produce examples where the
predictive distribution of a sensible checking function could have two humps, with extreme and
intermediate values appropriately suspect. I acknowledge that I prefer to sit on a different horn of this
dilemma than the one favoured by Professor Cox. My difficulty with probability ratios (and likelihood
ratios and predictive ratios) is of course that while I grant that it may be useful to know that it is a million
times more probable that the first man I meet when I walk down the street will be called John Smith rather
than Jeremiah Hezekiah Bramblebottom, this in itself tells me little about the chance of meeting a man
called John Smith. Invent a few more names and one sees the difficulty with the formula which Dr O’Hagan
displays and with whose uses and difficulties  am not unfamiliar (see, for example, Box and Hill, 1967). I do
find it astonishing, however, that he regards as trivial the assumption that all possible models
M, M,,..., M, are known a priori. If he lacks personal experience of scientific investigation, he would need
only to read any moderately accurate account of one such (e.g. Watson’s The Double Helix, 1968) to know
that models evolve. Dr O’Hagan is welcome to his screwdriver; I am saying that it is an unsuitable
instrument for driving in a nail. Once more let me say that the difficulty with any attempt to use the
Bayesian half of the model alone, is that it is eternally conditional. We can move the conditionality around
but we cannot lose it. The buck stops when we cease to ignore the other half of the model p(y | A).

Dr Atkinson’s generous attribution to me of some part in his becoming a statistician is very flattering.
In response to his further remarks, Steve Bailey and I have also found that on suitable transformation
apparent outliers can vanish away (Bailey and Box, 1980b), but, as he says, this does not seem to be true for
the Box and Behnken data. Dr Atkinson has doubts about the accuracy of Table 1; these calculations have
now been carefully rechecked and apart from very minor discrepancies they seem not to be in error but
remarkably sensible as evidenced by Table D2.
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TABLE D2
By B, Bs Ba By
No omissions 193 (0-42) —196(042) 1-13(042) —3-68 (0-42) —1:42(0-63)
¢ = 0:001 2:46 (0-28) —1:96 (0-22) 113 (0:22) —315(0-28) —1:88 (0:44)
¢ = 0020 249 (0-22) —1-96 (0-20) 1-13 (0-20) -312(022)  —189(042)
Y10 deleted 2:57(0-12) —1:96 (0-11) 1-13(0-11) —3:04 (0-12) —205(0-18)
ﬁzz_ Bas Baa Biz Bis
No omissions —433(063)  —224(063) —258(063) —167(073)  —382(073)
¢ = 0001 —-410(036)  —201(038)  —305(044)  —167(039)  —382(0:39)
¢ = 0020 —409(034)  —200(034)  —305(042)  —167(034)  —382(0-34)
Y10 deleted —401(0-17) —192(0:17) —321(0-18) —1-68 (0-19) —382(0-19)
ﬂ 14 ﬂ 23 ﬁ 24 ﬁ 34
No omissions 0-95 (0-73) —1-68 (0-73) —2:62'(0-73) —425(0-73)
¢ = 0001 —045(095)  —167(039)  —262(039)  —425(0-39)
¢ = 0020 —0-48 (0:95) —1:67 (0-35) —2:62(0-35) —4:25(0-34)
V1o deleted —095(025  —168(019)  —262(019)  —425(0-19)

The four rows of the table show (i) least squares estimates with no omissions; the Bailey and Box
analysis for (i) ¢ = 0-001; (iii) ¢ = 0-020 taken from Table 1 and (iv) the least squares estimates with y,,
omitted. Comparison of the estimates shows that over the very wide range ¢ = 0001 to & = 0-020
(o = 0-005 to a = 0-091) the Bayesian means and standard deviations do not change very much. Also that
when the four estimates differ appreciably the Bayesian means occupy a position between, but sharply
different from estimates which assume for certain that there are no bad values, and from those which
assume for certain that y,, is bad. The Bayes analysis thus produces a stable compromise which correctly
acknowledges that since we do not know for sure whether y,  is bad or good, we should neither accept nor
reject it but only downweight it. In fact it is a little more subtle than this because of course it allows
appropriately for other possible bad values. In this case this mostly means that y, 5 also is downweighted
slightly. The large standard deviation associated with Bayesian means for f8,, occurs because two of the
four observations essentially involved (y,, and y, ;) are the major suspects.

IfI understand Dr Gathercole correctly, he believes that the results from the analysis in Section 2 would
be anomalous if the data had been 70, 70, 70, 74. I do not see why. In that case

(Va=00) (n— 1)s3

- = 044 +12-
90%) n~!g? 4 g} a? 044 +12:00

correctly indicating that the supposition that the test results can be treated as independently and
identically distributed random variables with 62 = 1 is called into question, but that the other structure is
not. Incidentally, responding to Mr Jackson, I agree that to speak of a model being “called into question”
rather than of its being “discredited” would have reduced the chance of my intention being misunderstood.
We certainly need (as Fisher clearly intended by his use of the term “discredit”) to distance ourselves as far
as possible from the terminology “reject the model/hypothesis”.

Since I am not proposing to estimate the prior distribution in the manner proposed by Professor
Godambe, I do not see the relevance of the first part of his contribution to this discussion. Concerning the
second part, while, as I have said, I do not “reject” models on the basis he suggests and am suspicious of
probability ratios, I acknowledge that it is possible to construct conundrums of the kind he mentions. But
when he talks of how these should be “resolved” I assume he does not mean as some kind of mathematical
puzzle but in the context of a real scientific investigation. In that case if at first there seemed to be
inconsistencies in the quantities I had calculated or the plots I had made, I would try to see why, by
reviewing the assumptions behind and the meanings of my various quantities. Then in cooperation with
the investigator and taking into account many other vexing indeterminacies which were perhaps more
relevant, I would help him to decide what to do next.

My response to Professor Kadane about choice of “significance levels” follows similar lines. In (2.6) I
did not mean that 0-001 was to be taken as a critical value but only that the approximate probability should
be recorded and in practice would be considered in relation to (among other things) “the size of likely
discrepancies, their impact on the conclusions . . .” which he mentions. I believe however that in practice
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this has to be done informally and not by formal appeal to decision theory. I believe that the question: how
small must « be to be small? unrealistically selects one aspect of necessary scientific subjectivity for
criticism in the mistaken belief that scientific research can be made wholly objective. It seems to me that the
significance test idea is natural and indeed a necessary part of the conduct and management of everyday
life, and I find it hard to understand the horror with which it is sometimes greeted nowadays. The process of
modification of belief occurs in two stages: (a) the recognition that the data do not fit with the presently
entertained model of the world, (b) the later consideration of what are alternative models that might better
explain the data. For example, suppose I have an office that looks onto, say, Oxford Street in London,
normally thronged with people. One day I look out of the window at 11 o’clock in the morning and notice
that there are only two people in the whole street. My initial reaction surely is that on the null (status quo)
model this is an unusual event possibly worthy of further investigation. Alternative models that might
explain the phenomenon come later. These might posit that the street has been blocked off for a ceremonial
occasion, that there is a bomb scare, or that it is a Sunday, etc. But notice that the basis of the initial
reaction, which requires no alternatives, is surely that I have (or could have) looked out of the window on
many previous occasions and rarely have I (would I have) seen as few as two people in the street. The
motivation is economy of effort and is employed by all of us hundreds of times in our daily lives—when the
null model is plausible I will not worry, but when data make it implausible perhaps I should be concerned.
Quality control charts and the principle of “management by exception” also employ this concept, thus
ensuring that we are not often distracted except when we should be.

Professor Huber asks why Bayesian robustness has not developed as rapidly as its non-Bayesian
counterpart. I think that this is a temporary situation arising from inferior publicity, lack of computer
programs and (if we allow “develop” to mean proliferation of theory rather than use) to the fact that non-
Bayesian robustness lends itself to mathematistry. Indeed, the problem of arbitrary choice which he lays at
the Bayesian door would, I should have thought, have been a greater embarrassment to non-Bayesians.
Even for the single problem of robustification against systematic heavy-tailed distributions they have
already produced a bewildering plethora of solutions and the end seems nowhere in sight.

Ifind Professor Huber’s objections to my statements in the first part of Section 5 incomprehensible, and
my head is unbowed even after the invocation of Kolmogorov and the weak law of large numbers. In
relation to the small probability of mishap on a plane trip “the practical translation of probabilities into
actions” takes the form before each flight of my fastening my seat belt and attending to the cabin
demonstration of the safety equipment, not of my refusing to fly. In the same way, the knowledge that there
is a small finite probability that a sample could contain one or more bad values results in my using a robust
procedure, not in my refusal to analyse the data.

The idea of using a prior distribution for « is discussed in Bailey and Box (1980a); see also (d) after (5.4)
in the present paper. The results are not very different from those presented here. I believe Professor
Huber’s fear about the possibility of my suggestion’s wasting iterations is groundless. My experience has
been that to produce a satisfactory model it is not necessary that it be exactly right (no model/procedure is
perfect) but rather that it not be grossly wrong in the context in which it is to be used. Examples of models
that can be grossly wrong in specific contexts are the standard linear model when data are collected serially
(because the model totally discounts the possibility of serial correlation), the same model in the common
situation where bad values can occur (because it says they cannot happen), the normal model for the
comparison of variances (because it uses, directly or indirectly, the fact that for exact normality u, = 3u2).
Simple and obvious repairs for these and similar cases can, I believe, be extremely effective. We do not need
to throw away our traditional approaches to estimation and statistical models in an orgy of ad hockery.

Concerning Dr Kenett’s interesting observation, I think it necessary to recognise that the scientific
iteration is not necessarily completed at one location (in a wide sense it is never completed). The results
from his publication based on vague models may well make possible a course of investigation, perhaps by
others, resulting in models that are much more precise.

I thank the remaining contributors for their many kind remarks. Where we differ I find I have already
stated my side of the case as well as I can. It therefore only remains for me to thank the Society for
tentatively entertaining me and my paper in such a generous spirit.
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